Skip to main content

Advertisement

Log in

Nonlinear single-input single-output model-based estimation of cardiac output for normal and depressed cases

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Mental depression is associated with an increased risk of cardiovascular mortality, thus provisioning generic simple nonlinear mathematical models for normal and depressed cases using only heart rate (HR) or stroke volume (SV) as a single input to produce cardiac output (CO) as a single output instead of using both HR and SV as two inputs. The proposed models could be in the future an effective tool to investigate the effect of neuroleptic medication, especially depression, and it reduces the time of processing. Seventy-four depressed cases, 74 normal peers and autoregressive considered as a main role in the nonlinear discrete system identification are chosen to lie under investigation on the way to produce four simple nonlinear models. The first generic model using only HR as an input which generated from the depressed case number 62 produced minimum root-mean-square error (RMSE) of 0.0018 and when it is applied to the 74 depressed cases it produced average RMSE equal to 0.1978. Second, generic model using only HR as an input created from the normal case number 55 produced minimum RMSE of 0.0008 and average RMSE equal to 0.0572. The third generic model using only SV as an input which generated from the depressed case number 16 produced minimum RMSE of 0.0027 and when it is applied to the 74 depressed cases it produced average RMSE equal to 0.9405. Fourth generic model using only SV as an input created from the normal case number 58 produced minimum RMSE of 0.0019 and average RMSE equal to 1.0833. The four simple nonlinear models for depression and normal cases are succeeded to determine CO by using only one input such as HR or SV and could be a good contribution in the future to neuroleptic medications field especially depression while HR showed the minimum average RMSE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sadock BJ, Sadock VA (2002) Kaplan and Sadock’s pocket handbook of clinical psychiatry, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Patel V, Weiss HA, Chowdhary N, Naik S, Pednekar S, Chatterjee S, De Silva MJ, Bhat B, Araya R, King M, Simon G, Verdeli H, Kirkwood BR (2010) Effectiveness of an intervention led by lay health counsellors for depressive and anxiety disorders in primary care. Lancet 376(9758):2086–2095

    Article  Google Scholar 

  3. Andrews G, Cuijpers P, Craske MG, McEvoy P, Titov N (2010) Computer therapy for the anxiety and depressive disorders is effective, acceptable and practical health care: a meta-analysis. PLoS ONE 5(10):e13196

    Article  Google Scholar 

  4. Schuppen J (2004) System theory for system identification. J Econom 118(1–2):313–339

    Article  MathSciNet  MATH  Google Scholar 

  5. Silke B, Campbell C, King DJ (2002) The potential cardiotoxicity of antipsychotic drugs as assessed by heart rate variability. J Psychopharmacol 16(4):355–360

    Article  Google Scholar 

  6. Murphy CA, Dargie HJ (2007) Drug-induced cardiovascular disorders. Drug Saf 30(9):783–804

    Article  Google Scholar 

  7. Mackin P (2008) Cardiac side effects of psychiatric drugs. Hum Psychopharmacol 23(1):3–14

    Article  Google Scholar 

  8. Magyar J, Bányász T, Bagi Z, Pacher P, Szentandrássy N, Fülöp L, Kecskeméti V, Nánási PP (2002) Electrophysiological effects of risperidone in mammalian cardiac cells. Naunyn Schmiedebergs Arch Pharmacol 366(4):350–356

    Article  Google Scholar 

  9. Roden DM (2004) Drug-induced prolongation of the QT interval. N Engl J Med 350(10):1013–1022

    Article  Google Scholar 

  10. McKinney PE, Rasmussen R (2003) Reversal of severe tricyclic antidepressant-induced cardiotoxicity with intravenous hypertonic saline solution. Ann Emerg Med 42(1):20–24

    Article  Google Scholar 

  11. Sicouri Serge, Antzelevitch Charles (2008) Sudden cardiac death secondary to antidepressant and antipsychotic drugs. Expert Opin Drug Saf 7(2):181–194

    Article  Google Scholar 

  12. Coulter DM, Bate A, Meyboom RH, Lindquist M, Edwards IR (2001) Antipsychotic drugs and heart muscle disorder in international pharmacovigilance: data mining study. BMJ 322(7296):1207–1209

    Article  Google Scholar 

  13. Belhani D, Frassati D, Megard R, Tsibiribi P, Bui-Xuan B, Tabib A, Fanton L, Malicier D, Descotes J, Timour Q (2006) Cardiac lesions induced by neuroleptic drugs in the rabbit. Exp Toxicol Pathol 57(3):207–212

    Article  Google Scholar 

  14. Garcia X, Mateu L, Maynar J, Mercadal J, Ochagavía A, Ferrandiz A (2011) Estimating cardiac output. Utility in the clinical practice. Available invasive and non-invasive monitoring. Med Intensiva 35(9):552–561

    Article  Google Scholar 

  15. Kirkman E, Sawdon M (2010) Neurological and humoral control of blood pressure. Anaesth Intensive Care Med 11(5):159–164

    Article  Google Scholar 

  16. Bar KJ, Letzsch A, Jochum T, Wagner G, Greiner W, Sauer H (2005) Loss of efferent vagal activity in acute schizophrenia. J Psychiatr Res 39(5):519–527

    Article  Google Scholar 

  17. Brook LH, Arpi M, Martin PP, Mark AG, William P (2010) Heart rate variability in bipolar mania and schizophrenia. J Psychiatr Res 44(3):168–176

    Article  Google Scholar 

  18. Castro MN, Vigo DE, Chu EM, Fahrer RD, de Achával D, Costanzo EY, Leiguarda RC, Nogués M, Cardinali DP, Guinjoan SM (2009) Heart rate variability response to mental arithmetic stress is abnormal in first-degree relatives of individuals with schizophrenia. Schizophr Res 109(1–3):134–140

    Article  Google Scholar 

  19. Friedman BH, Thayer JF (1998) Autonomic balance revisited: panic anxiety and heart rate variability. J Psychosom Res 44(1):133–151

    Article  Google Scholar 

  20. Karavidas MK, Lehrer PM, Vaschillo E, Vaschillo B, Marin H, Buyske S, Malinovsky I, Radvanski D, Hassett A (2007) Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Appl Psychophysiol Biofeedback 32(1):19–30

    Article  Google Scholar 

  21. Valkonen-Korhonen M, Tarvainen MP, Ranta-Aho P, Karjalainen PA, Partanen J, Karhu J, Lehtonen J (2003) Heart rate variability in acute psychosis. Psychophysiology 40(5):716–726

    Article  Google Scholar 

  22. Azar AT, Vaidyanathan S (2015) Handbook of research on advanced intelligent control engineering and automation. Advances in computational intelligence and robotics (ACIR) book series, IGI Global, USA. ISBN: 9781466672482

  23. Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and control. Studies in Computational Intelligence, vol 575, Springer, Berlin. ISBN: 978-3-319-11016-5

  24. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design, studies in computational intelligence, vol 581. Springer, Berlin. ISBN 978-3-319-13131-3

    Book  MATH  Google Scholar 

  25. Azar AT, Zhu Q (2015) Advances and applications in sliding mode control systems. Studies in computational intelligence, vol 576. Springer, Berlin. ISBN: 978-3-319-11172-8

  26. Zhu Q, Azar AT (2015) Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing, vol 319. Springer, Berlin. ISBN: 978-3-319-12882-5

  27. Sjoberg J, Zhang Q, Ljung L, Benveniste A, Delyon B, Glorennec PY, Hjalmarsson H, Juditsky A (1995) Non-linear black-box modeling in system identification a unified overview. Auromarica 31(12):1691–1724

    MATH  Google Scholar 

  28. Lennart Ljung (1999) System identification theory for the user. Prentice Hall PTR, Linköping

    MATH  Google Scholar 

  29. Azar AT (2011) Neuro-fuzzy system for cardiac signals classification. Int J Model Identif Control (IJMIC) 13(1/2):108–116

    Article  Google Scholar 

  30. Aboamer MM, Azar AT, Wahba K, Mohamed ASA (2014) Linear model-based estimation of blood pressure and cardiac output for Normal and Paranoid cases. Neural Comput Appl 25(6):1223–1240

    Article  Google Scholar 

  31. Aboamer MM, Azar AT, Mohamed ASA, Bar KJ, Berger BS, Wahba K (2014) Nonlinear features of heart rate variability in paranoid schizophrenic. Neural Comput Appl 25(7–8):1535–1555

    Article  Google Scholar 

  32. Coleman TG, Randall JE (1983) HUMAN—a comprehensive physiological model. Physiologist 26(1):15–21

    Google Scholar 

  33. Dickinson C (1977) A computer model of human respiration: ventilation-blood gas transport and exchange hydrogen ion regulation. University Park Press, Baltimore, p 1977

    Google Scholar 

  34. Grodins FS (1959) Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Q Rev Biol 34(2):93–116

    Article  Google Scholar 

  35. Grodins FS, Gray JS, Schroeder KR, Norins AL, Jones RW (1954) Respiratory responses to CO2 inhalation; a theoretical study of a nonlinear biological regulator. J Appl Physiol 7(3):283–308

    Article  Google Scholar 

  36. Khoo MC, Yamashiro SM (1989) Models of control of breathing. In: Chang HK, Pavia M (eds) Respiratory physiology: an analytical approach. Marcel Dekker, New York, pp 799–829

    Google Scholar 

  37. Madwed JB, Albrecht P, Mark RG, Cohen RJ (1989) Low-frequency oscillations in arterial pressure and heart rate: a simple computer model. Am J Physiol 256(6 Pt 2):H1573–H1579

    Google Scholar 

  38. Milhorn HT, Benton R, Ross R, Guyton AC (1965) A mathematical model of the human respiratory control system. Biophys J 5(1):27–46

    Article  Google Scholar 

  39. Ursino M, Magosso E (2003) Short-term autonomic control of cardiovascular function: a mini-review with the help of mathematical models. J Integr Neurosci 2(2):219–247

    Article  Google Scholar 

  40. McCulloch A, Bassingthwaighte J, Hunter P, Noble D (1998) Computational biology of the heart: from structure to function. Prog Biophys Prog Biophys Mol Biol 69(2–3):153–155

    Google Scholar 

  41. Tawhai MH, Hunter P, Tschirren J, Reinhardt J, McLennan G, Hoffman EA (2004) CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J Appl Physiol 97(6):2310–2321

    Article  Google Scholar 

  42. Bai J, Lu H, Zhang J, Zhou X (1997) Simulation study of the interaction between respiration and the cardiovascular system. Methods Inf Med 36(4–5):261–263

    Google Scholar 

  43. Liang FY, Liu H (2006) Simulation of hemodynamic responses to the Valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system. J Physiol Sci 56(1):45–65

    Article  Google Scholar 

  44. Lu K, Clark JW Jr, Ghorbel FH, Ware DL, Bidani A (2001) A human cardiopulmonary system model applied to the analysis of the Valsalva maneuver. Am J Physiol Heart Circ Physiol 281(6):H2661–H2679

    Article  Google Scholar 

  45. Khoo MC, Gottschalk A, Pack AI (1991) Sleep-induced periodic breathing and apnea: a theoretical study. J Appl Physiol 70(5):2014–2024

    Article  Google Scholar 

  46. Stephenson R (2004) A theoretical study of the effect of circadian rhythms on sleep-induced periodic breathing and apnoea. Respir Physiol Neurobiol 139(3):303–319

    Article  Google Scholar 

  47. Limei C, Olga I, Hsing-Hua F, Michael CKK (2010) An integrative model of respiratory and cardiovascular control in sleep disordered breathing. Respir Physiol Neurobiol 174(1–2):4–28

    Google Scholar 

  48. Pennock B, Attinger EO (1968) Optimization of the oxygen transport system. Biophysics 8(8):879–896

    Google Scholar 

  49. Lehman AF, Lieberman JA, Dixon LB, McGlashan TH, Miller AL, Perkins DO, Kreyenbuhl J (2004) Practice guidelines for the treatment of patients with schizophrenia second edition. APA Pract Guide. doi:10.1176/appi.books.9780890423363.45859

  50. Excellence, N. I. f. C (2002) Guidance on the use of newer (atypical) antipsychotic drugs for the treatment of schizophrenia. IOP Publishing Physics. http://www.nice.org.uk/nicemedia/pdf/ANTIPSYCHOTICfinalguidance.pdf. Accessed May 2005

  51. Lieberman J, Stroup TS, Mcevoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RSE, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. doi:10.1056/NEJMoa051688

    Article  Google Scholar 

  52. Stephen B, Olubanke O, David T (2007) Which antipsychotics would mental health professionals take themselves? Psychiatrist 31:94–96. doi:10.1192/pb.bp.106.012955

    Article  Google Scholar 

  53. Haddad PM, Anderson IM (2002) Antipsychotic-related QTc prolongation, torsade de pointes and sudden death. Drugs 62(11):1649–1671

    Article  Google Scholar 

  54. Reilly JG, Ayis SA, Ferrier IN, Jones SJ, Thomas HL (2000) QTc-interval abnormalities and psychotropic drug therapy in psychiatric patients. Lancet 355(9209):1048–1052

    Article  Google Scholar 

  55. Thomas SH (1994) Drugs, QT interval ab normalities and ventricular arrhythmias. Adverse Drug React Toxicol Rev 13(2):77–102

    Google Scholar 

  56. Kongsamut S, Kang J, Chen XL, Roehr J, Rampe D (2002) A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs. Eur J Pharmacol 450(1):37–41

    Article  Google Scholar 

  57. Darpo B (2001) Spectrum of drugs prolonging QT interval and the incidence of torsades de pointes. Eur Heart J Suppl 3(Supplement K):K70–K80

    Article  Google Scholar 

  58. Liberatore MA, Robinson DS (1984) Torsade de pointes: a mechanism for sudden death associated with neuroleptic drug therapy? J Clin Psychopharmacol 4(3):143–146

    Article  Google Scholar 

  59. Hennessy S, Bilker WB, Knauss JS, Margolis DJ, Kimmel SE, Reynolds RF, Glasser DB, Morrison MF, Strom BL (2002) Cardiac arrest and ventricular arrhythmia in patients taking antipsychotic drugs: cohort study using administrative data. BMJ 325(7372):1070–1071

    Article  Google Scholar 

  60. Ray WA, Meredith S, Thapa PB, Meador KG, Hall K, Murray KT (2001) Antipsychotics and the risk of sudden cardiac death. Arch Gen Psychiatry 58(12):1161–1167

    Article  Google Scholar 

  61. Reilly JG, Ayis SA, Ferrier IN, Jones SJ, Thomas SH (2002) Thioridazine and sudden unexplained death in psychiatric inpatients. Br J Psychiatry 180(6):515–522

    Article  Google Scholar 

  62. Straus SM, Bleumink GS, Dieleman JP, van der Lei J, Jong GW, Kingma JH, Sturkenboom MC, Stricker BH (2004) Antipsychotics and the risk of sudden cardiac death. Arch Intern Med 164(12):1293–1297

    Article  Google Scholar 

  63. Zarate CA Jr, Patel J (2001) Sudden cardiac death and antipsychotic drugs. Arch Gen Psychiatry 58(12):1168–1171

    Article  Google Scholar 

  64. Harrigan EP, Miceli JJ, Anziano R, Watsky E, Reeves KR, Cutler NR, Sramek J, Shiovitz T, Middle M (2004) A randomized evaluation of the effects of six antipsychotic agents on QTc, in the absence and presence of metabolic inhibition. J Clin Psychopharmacol 24(1):62–69

    Article  Google Scholar 

  65. Heinrich TW, Biblo LA, Schneider J (2006) Torsades de pointes associated with ziprasidone. Psychosomatics 47(3):264–268

    Article  Google Scholar 

  66. Tei Y, Morita T, Inoue S, Miyata H (2004) Torsades de pointes caused by a small dose of risperidone in a terminally ill cancer patient. Psychosomatics 45(5):450–451

    Article  Google Scholar 

  67. Vieweg WV, Schneider RK, Wood MA (2005) Torsade de pointes in a patient with complex medical and psychiatric conditions receiving low-dose quetiapine. Acta Psychiatr Scand 112(4):318–322

    Article  Google Scholar 

  68. Wayne AR, Cecilia PC, Katherine TM, Kathi H, Michael S (2009) Atypical antipsychotic drugs and the risk of sudden cardiac death. N Engl J Med 360:225–235. doi:10.1056/NEJMoa0806994

    Article  Google Scholar 

  69. Kurzthaler I, Fleischhacker WW (2001) The clinical implications of weight gain in schizophrenia. J Clin Psychiatry 62(suppl 7):32–37

    Google Scholar 

  70. Alpert JS, Thygesen K, Antman E, Bassand JP (2000) Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36(3):959–969

    Article  Google Scholar 

  71. Apple FS, Wu AH (2001) Myocardial infarction redefined: role of cardiac troponin testing. Clin Chem 47(3):377–379

    Google Scholar 

  72. Abdelmawla N, Mitchell A (2006) Sudden cardiac death and antipsychotics. Part 2: monitoring and prevention. Adv Psychiatr Treat 12(2):100–109

    Article  Google Scholar 

  73. Poulin MJ, Cortese L, Williams R, Wine N, McIntyre RS (2005) Atypical antipsychotics in psychiatric practice: practical implications for clinical monitoring. Can J Psychiatry 50:555–562

    Article  Google Scholar 

  74. Nupura K, Beth LA, Robert C, Lawrence AL, Sarah H, Robert S, Moumita B, Susan S, Ahmed M, Mark P, Laura RP, Lori W, Tammy S, Adam L, Casimir S, Shree B (2008) Atypical antipsychotics, schizophrenia, and cardiovascular risk: what family physicians need to know. BCMJ 50(8):444–450

    Google Scholar 

  75. Zhang MY, Russell JR, Tsay RS (2001) A nonlinear autoregressive conditional duration model with applications to financial transaction data. J Econom 104:179–207

    Article  MathSciNet  MATH  Google Scholar 

  76. Epifanio Bagarinao K, Pakdaman Taishin Nomura, Sato Shunsuke (1999) Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models. Phys Rev E 60:1073–1076

    Article  Google Scholar 

  77. Lee MY, Yu SN (August 31 2010–September 4 2010) Improving discriminality in heart rate variability analysis using simple artifact and trend removal preprocessors. In: Conference proceedings of the IEEE engineering in medicine and biology society, Buenos Aires, Argentina, pp 4574–4577

  78. Barros AK, Mansour A, Ohnishi N (1998) Removing artifacts from electrocardiographic signals using independent components analysis. Neurocomputing 22(1–3):173–186

    Article  MATH  Google Scholar 

  79. Huang N, Attoh-Okine NO (2005) The Hilbert-Huang transform in engineering, chapter 1. Taylor & Francis Group, LLC Publisher, Boca Raton, pp 1–22

    Book  MATH  Google Scholar 

  80. Mijovi B, De Vos M, Gligorijevi I, Taelman J (2010) Source separation from single-channel recordings by combining empirical- mode decomposition and independent component analysis. IEEE Trans Biomed Eng 57(9):2188–2196

    Article  Google Scholar 

  81. Meijering E (2002) A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proc IEEE 90(3):319–342. doi:10.1109/5.993400

    Article  Google Scholar 

  82. Koschke M, Boettger MK, Schulz S, Berger S, Terhaar J, Voss A, Yeragani VK, Bär KJ (2009) Autonomy of autonomic dysfunction in major depression. Psychosom Med 71(8):852–860

    Article  Google Scholar 

  83. First MB (2005) Clinical utility: a prerequisite for the adoption of a dimensional approach in DSM. J Abnorm Psychol 114(4):560–564

    Article  Google Scholar 

  84. Heymann S, Latapy M, Magnien C (26–29 August 2012) Outskewer: using skewness to spot outliers in samples and time series. Advances in social networks analysis and mining (ASONAM), 2012 IEEE/ACM international conference, Istanbul, pp 527–534

  85. Lind DA, Marchal WG, Wathen SA (2006) Basic statistics for business & economics, chapter 4, 5th edn. McGraw-Hill Companies, Asia, pp 100–119

    Google Scholar 

  86. Saini BS, Singh D, Uddin M, Kumar V (2008) Improved power spectrum estimation for RR-interval time series. World Acad Sci Eng Technol Int Sci Index 22:43–48

  87. Malik M (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17(3):354–381

    Article  MathSciNet  Google Scholar 

  88. De Boor C (1978) A practical guide to splines. Springer, New York

    Book  MATH  Google Scholar 

  89. Escobar Jesica, Enqvist Martin (2012) On the detection of nonlinearities in sampled data. IFAC 45(16):1587–1592

    Google Scholar 

  90. Partington JR (2004) Linear operators and linear systems. London Mathematical Society Student Texts (60). Cambridge University Press, p 75. ISBN: 0-521-54619-2

  91. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai 14(2):1137–1145

    Google Scholar 

  92. Anthony GB (1992) Correspondence among the correlation, RMSE, and Heidke forecast verification measures; refinement of the Heidke score. Weather Forecast 7(4):699–709

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the (Department of Biomedical Equipment Technology, College of Applied Medical Sciences, Majmaaah University, 11952, Saudi Arabia) and the Deanship of Scientific Research for helpful support, advice and discussions that improved the Project Number 37/93.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abdelkader Aboamer.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Appendix

Appendix

See Tables 7, 8, 9, 10, 11, 12, 13 and 14.

Table 14 RMSE of depression cases for model of cardiac output 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, I.I., Aboamer, M.A., Azar, A.T. et al. Nonlinear single-input single-output model-based estimation of cardiac output for normal and depressed cases. Neural Comput & Applic 31, 2955–2978 (2019). https://doi.org/10.1007/s00521-017-3245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3245-8

Keywords

Navigation