Skip to main content
Log in

Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A new dynamic system, the fractional-order Hopfield neural networks with parameter uncertainties based on memristor are investigated in this paper. Through constructing a suitable Lyapunov function and some sufficient conditions are established to realize the robust synchronization of such system with discontinuous right-hand based on fractional-order Lyapunov direct method. Skillfully, the closure arithmetic is employed to handle the error system and the robust synchronization is achieved by analyzing the Mittag-Leffler stability. At last, two numerical examples are given to show the effectiveness of the obtained theoretical results. The first mainly shows the chaos of the system, and the other one mainly shows the results of robust synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Podlubny I (1999) Fractional differential equations. Academic Press, London

    MATH  Google Scholar 

  2. Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier Science Limited, Amsterdam

    MATH  Google Scholar 

  3. Ahmeda E, Elgazzar AS (2007) On fractional order differential equations model for nonlocal epidemics. Phys. A 379:607–614

    Article  Google Scholar 

  4. Sabaticer J, Agrawal OP, Machado JA (2007) Advances in fractional calculus. Springer, Dordrecht

    Book  Google Scholar 

  5. Ji Y, Fan G, Qiu J (2016) Sufficient conditions of observer-based control for nonlinear fractional-order systems. In: IEEE conference on control and decision (CCDC), Chinese. pp. 1512–1517

  6. Muthukumar P, Balasubramaniam P, Ratnavelu K (2017) Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem. Int J Dyn Control 5(1):115–123

    Article  MathSciNet  Google Scholar 

  7. Bouzerdoum A, Pattison TR (1993) Neural network for quadratic optimization with bound constraints. IEEE Trans Neural Netw 4(2):293–304

    Article  Google Scholar 

  8. Kosko B (1988) Bidirectional associative memories. IEEE Trans Syst Man Cybern 18(1):49–60

    Article  MathSciNet  Google Scholar 

  9. Guo D, Li C (2012) Population rate coding in recurrent neuronal networks with unreliable synapses. Cognit Neurodyn 6(1):75–87

    Article  Google Scholar 

  10. Jafarian A, Mokhtarpour M, Baleanu D (2017) Artificial neural network approach for a class of fractional ordinary differential equation. Neural Comput Appl 28(4):765–773

    Article  Google Scholar 

  11. Jafarian A, Rostami F, Golmankhaneh AK et al (2017) Using ANNs approach for solving fractional order volterra integro-differential equations. Int J Comput Intell Syst 10(1):470–480

    Article  Google Scholar 

  12. Cheng CJ, Liao TL, Hwang CC (2005) Exponential synchronization of a class of chaotic neural networks. Chaos Solitons Fractals 24:197–206

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen L, Chai Y, Wu R (2011) Modified function projective synchronization of chaotic neural networks with delays based on observer. Int J Mod Phys C 22(02):169–180

    Article  MATH  Google Scholar 

  14. Fei Z, Guan C, Gao H (2017) Exponential synchronization of networked chaotic delayed neural network by a hybrid event trigger scheme. In: IEEE transactions on neural networks and learning systems

  15. Hu C, Yu J, Chen Z et al (2017) Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks. Neural Netw 89:74–83

    Article  Google Scholar 

  16. Boroomand A, Menhaj MB (2008) Fractional-order Hopfield neural networks. In: International Conference on Neural Information Processing, Springer, Berlin. pp. 883–890

  17. Wu A, Liu L, Huang T et al (2017) Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments. Neural Netw 85:118–127

    Article  Google Scholar 

  18. Chen L, Liu C, Wu R et al (2016) Finite-time stability criteria for a class of fractional-order neural networks with delay. Neural Comput Appl 27(3):549–556

    Article  Google Scholar 

  19. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Article  Google Scholar 

  20. Strukov DB, Snider GS, Stewart DR et al (2008) The missing memristor found. Nature 453(7191):80–83

    Article  Google Scholar 

  21. Hu X, Feng G, Liu L et al (2015) Composite characteristics of memristor series and parallel circuits. Int J Bifurc Chaos 25(08):1530019

    Article  MATH  Google Scholar 

  22. Di Ventra M, Pershin YV, Chua LO (2009) Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE 97(10):1717–1724

    Article  Google Scholar 

  23. Itoh M, Chua LO (2009) Memristor cellular automata and memristor discrete-time cellular neural networks. Int J Bifurc Chaos 19(11):3605–3656

    Article  MATH  Google Scholar 

  24. Petras I (2010) Fractional-order memristor-based Chua’s circuit. IEEE Trans Circuits Syst II: Express Briefs 57(12):975–979

    Article  Google Scholar 

  25. Pershin YV, Di Ventra M (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23(7):881–886

    Article  Google Scholar 

  26. Tour JM, He T (2008) Electronics: the fourth element. Nature 453(7191):42–43

    Article  Google Scholar 

  27. Jiang Y, Li C (2016) Exponential stability of memristor-based synchronous switching neural networks with time delays. Int J Biomath 9(01):1650016

    Article  MathSciNet  MATH  Google Scholar 

  28. Wen S, Huang T, Zeng Z et al (2015) Circuit design and exponential stabilization of memristive neural networks. Neural Netw 63:48–56

    Article  MATH  Google Scholar 

  29. Wang H, Duan S, Li C et al (2017) Exponential stability analysis of delayed memristor-based recurrent neural networks with impulse effects. Neural Comput Appl 28(4):669–678

    Google Scholar 

  30. Meng Z, Xiang Z (2017) Stability analysis of stochastic memristor-based recurrent neural networks with mixed time-varying delays. Neural Comput Appl 28(7):1787–1799

    Article  Google Scholar 

  31. Wu A, Zeng Z, Zhu X et al (2011) Exponential synchronization of memristor-based recurrent neural networks with time delays. Neurocomputing 74(17):3043–3050

    Article  Google Scholar 

  32. Wu H, Zhang L, Ding S, et al (2013) Complete periodic synchronization of memristor-based neural networks with time-varying delays. Discrete Dyn Nat Soc 2013(11):479–504

  33. Wang L, Shen Y (2015) Design of controller on synchronization of memristor-based neural networks with time-varying delays. Neurocomputing 147:372–379

    Article  Google Scholar 

  34. Abdurahman A, Jiang H, Teng Z (2015) Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Netw 69:20–28

    Article  MATH  Google Scholar 

  35. Qi J, Li C, Huang T (2014) Stability of delayed memristive neural networks with time-varying impulses. Cognit Neurodyn 8(5):429–436

    Article  Google Scholar 

  36. Chen J, Zeng Z, Jiang P (2014) Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8

    Article  MATH  Google Scholar 

  37. Chen L, Wu R, Cao J et al (2015) Stability and synchronization of memristor-based fractional-order delayed neural networks. Neural Netw 71:37–44

    Article  MATH  Google Scholar 

  38. Bao HB, Cao JD (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9

    Article  MATH  Google Scholar 

  39. Velmurugan G, Rakkiyappan R, Cao J (2016) Finite-time synchronization of fractional-order memristor-based neural networks with time delays. Neural Netw 73:36–46

    Article  MATH  Google Scholar 

  40. Yang X, Li C, Huang T et al (2017) Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay. Neurocomputing 234:205–215

    Article  Google Scholar 

  41. Huang T, Li C, Duan S et al (2012) Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans Neural Netw Learn Syst 23(6):866–875

    Article  Google Scholar 

  42. Wong WK, Li H, Leung SYS (2012) Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties. Commun Nonlinear Sci Numer Simul 17(12):4877–4890

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang X, Li C, Huang T et al (2015) Dual-stage impulsive control for synchronization of memristive chaotic neural networks with discrete and continuously distributed delays. Neurocomputing 149:621–628

    Article  Google Scholar 

  44. Li Y, Chen YQ, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized MittagCLeffler stability. Comput Math Appl 59(5):1810–1821

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Nos. 11371049, 61772063) and the Fundamental Research Funds for the Central Universities (2016JBM070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongguang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yu, Y. & Zhang, S. Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties. Neural Comput & Applic 31, 3533–3542 (2019). https://doi.org/10.1007/s00521-017-3274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3274-3

Keywords

Navigation