Skip to main content
Log in

Feature selection based on correlation deflation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Feature selection is very important in many machine learning and data mining applications. In this paper, a simple and effective correlation-deflation-based feature selection method is proposed. The objective function of residual minimization constrained by \(L_{2,0}\)-norm is proved to be equivalent to maximizing sum of square of correlations between class labels and features. Then the whole procedure of correlation-deflation-based feature selection turns into selecting features out one-by-one by deflating correlations. Experiments on several public benchmark data sets show that the proposed method has better residual reduction and classification performance than many state-of-the-art feature selection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alon U, Barkai N, Notterman D et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96(12):6745–6750

    Article  Google Scholar 

  2. Backer E, Schipper JAD (1977) On the max–min approach for feature ordering and selection. In: The seminar on pattern recognition, Liege Univ, Liege, Belgium

  3. Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5:537–550

    Article  Google Scholar 

  4. Bhattacharjee A, Richards W, Staunton J et al (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci 98(24):13790–13795

    Article  Google Scholar 

  5. Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice-Hall, London

    MATH  Google Scholar 

  6. Ding CHQ, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Computat Biol 3(2):185–206

    Article  Google Scholar 

  7. Ding CHQ, Zhou D, He X, Zha H (2006) R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization. In: ICML, Pittsburgh, PA, USA, pp 281–288

  8. Dudoit S, Fridlyand J, Speed T (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97(457):77–87

    Article  MathSciNet  Google Scholar 

  9. Fang X, Xu Y, Li X, Fan Z, Liu H, Chen Y (2014) Locality and similarity preserving embedding for feature selection. Neurocomputing 128:304–315

    Article  Google Scholar 

  10. Golub T, Slonim D, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Article  Google Scholar 

  11. Gu B, Sheng VS (2016) A robust regularization path algorithm for v-support vector classification. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2016.2527796

    Article  Google Scholar 

  12. Gu B, Sheng VS, Tay KY, Romano W, Li S (2015a) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416

    Article  MathSciNet  Google Scholar 

  13. Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015b) Incremental learning for v-support vector regression. Neural Netw 67:140–150

    Article  Google Scholar 

  14. Gu B, Sun X, Sheng VS (2016) Structural minimax probability machine. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2016.2544779

    Article  Google Scholar 

  15. Guyon I (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  16. Huang D, Chow TW (2005) Effective feature selection scheme using mutual information. Neurocomputing 63:325–343

    Article  Google Scholar 

  17. Jain A, Zongker D (1997) Feature selection: evaluation, application and small sample performance. IEEE Trans Pattern Anal Machine Intell 19(2):153–158

    Article  Google Scholar 

  18. Khan J, Wei JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7(6):673–679

    Article  Google Scholar 

  19. Kira K, Rendell LA (1992) A practical approach to feature selection. In: Proceedings of the 9th international workshop on machine learning, ML92, pp 249–256

  20. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324

    Article  Google Scholar 

  21. Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. In: European conference on machine learning, pp 171–182

  22. Langley P (1994) Selection of relevant features in machine learning. In: Proceedings of the AAAI Fall symposium on relevance, pp 140–144

  23. Li Q, Xie B, You J, Bian W, Tao D (2016) Correlated logistic model with elastic net regularization for multilabel image classification. IEEE Trans Image Process 25(8):3801–3813

    Article  MathSciNet  Google Scholar 

  24. Liu H, Motoda H (1998) Feature selection for knowledge discovery and data mining. Kluwer, Norwell

    Book  Google Scholar 

  25. Liu H, Liu L, Zhang H (2009) Boosting feature selection using information metric for classification. Neurocomputing 73(1–3):295–303

    Article  Google Scholar 

  26. Ma S, Song X, Huang J (2007) Supervised group lasso with applications to microarray data analysis. BMC Bioinform 8:60

    Article  Google Scholar 

  27. Mao KZ (2002) Fast orthogonal forward selection algorithm for feature subset selection. IEEE Trans Neural Netw 13(5):1218–1224

    Article  Google Scholar 

  28. Mao KZ (2004) Orthogonal forward selection and backward elimination algorithms for feature subset selection. IEEE Trans Syst Man Cybern Part B 34(1):629–634

    Article  Google Scholar 

  29. Ng AY (2004) Feature selection, \(l_1\) vs. \(l_2\) regularization, and rotational invariance. In: ICML

  30. Nie F, Huang H, Cai X, Ding CHQ (2010) Efficient and robust feature selection via joint \(l_{2,1}\)-norms minimization. In: Advances in neural information processing systems, pp 1813–1821

  31. Nutt C, Mani D, Betensky R et al (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63(7):1602–1607

    Google Scholar 

  32. Pan Z, Jin P, Lei J et al (2016) Fast reference frame selection based on content similarity for low complexity HEVC encoder. J Vis Commun Image Represent 40(Part B):516–524

    Article  Google Scholar 

  33. Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176

    Article  Google Scholar 

  34. Pan Z, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast motion estimation based on content property for low-complexity H265 HEVC encoder. IEEE Trans Broadcast 62(3):675–684

    Article  Google Scholar 

  35. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Article  Google Scholar 

  36. Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature selection. Pattern Recognit Lett 15(11):1119–1125

    Article  Google Scholar 

  37. Raileanu LE, Stoffel K (2004) Theoretical comparison between the Gini index and information gain criteria. Ann Math Artif Intell 41(1):77–93

    Article  MathSciNet  Google Scholar 

  38. Skalak DB (1994) Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: ICML, NJ, USA, pp 293–301

  39. Su A, Welsh J, Sapinoso L et al (2001) Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 61(20):7388–7393

    Google Scholar 

  40. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  41. Wei D, Li S, Tan M (2012) Graph embedding based feature selection. Neurocomputing 93:115–125

    Article  Google Scholar 

  42. Wei H, Billings S (2007) Feature subset selection and ranking for data dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):162–166

    Article  Google Scholar 

  43. Xia Z, Wang X, Sun X, Liu Q, Xiong N (2016) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed Tools Appl 75(4):1947–1962

    Article  Google Scholar 

  44. Xuan P, Guo MZ, Wang J, Liu XY, Liu Y (2011) Genetic algorithm-based efficient feature selection for classification of pre-mirnas. Genet Mol Res 10(2):588–603

    Article  Google Scholar 

  45. Xue Y, Jiang J, Zhao B, Ma T (2017) A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Comput. https://doi.org/10.1007/s00500-017-2547-1

    Article  Google Scholar 

  46. Yang K, Cai Z, Li J, Lin G (2006) A stable gene selection in microarray data analysis. BMC Bioinform 7:228

    Article  Google Scholar 

  47. Yuan C, Sun X, R LV (2016) Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun 13(7):60–65

    Article  Google Scholar 

  48. Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 68(1):49–67

    Article  MathSciNet  Google Scholar 

  49. Zhang J, Yu J, Wan J, Zeng Z (2015) L2,1-norm regularized fisher criterion for optimal feature selection. Neurocomputing 166:455–463

    Article  Google Scholar 

  50. Zhang M, Ding CHQ, Zhang Y, Nie F (2014) Feature selection at the discrete limit. In: Proceedings of the 28th AAAI, Québec, Canada, pp 1355–1361

  51. Zhao G, Wu Y, Chen F, Zhang J, Bai J (2015) Effective feature selection using feature vector graph for classification. Neurocomputing 151:376–389

    Article  Google Scholar 

  52. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc B 67(2):301–320

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and anonymous reviewers for their valuable comments and suggestions, which were helpful in improving the paper. This work was supported in part by Key Project of Chinese National Programs for Fundamental Research and Development (973 Program) under Grant 2015CB351705, in part by the National Natural Science Foundation of China under Grants 61202228, 61472002, 61572030 and 61671018, and Collegiate Natural Science Fund of Anhui Province under Grant KJ2017A014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Bao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SB., Ding, C.H.Q., Zhou, ZL. et al. Feature selection based on correlation deflation. Neural Comput & Applic 31, 6383–6392 (2019). https://doi.org/10.1007/s00521-018-3467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3467-4

Keywords

Navigation