Skip to main content
Log in

Application research of multi-objective Artificial Bee Colony optimization algorithm for parameters calibration of hydrological model

  • S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Parameter optimization methods for hydrological models have an important impact for the hydrological forecasting. To achieve the parameters’ optimization and calibration for the distributed, conceptual watershed Xinanjiang model effectively and accurately, a multi-objective Artificial Bee Colony algorithm named RMOABC which adopts the mechanisms of regulation operator and Adaptive Grid is introduced in the paper. In the evolution of the algorithm, the regulation operator mechanism can balance the weights of local search and global search, and the Adaptive Grid mechanism is utilized to evaluate and maintain the Pareto solutions in the external archive. In the experiments, three commonly used multi-objective optimization algorithms, the NSGA-II, the ε-MOEA and the SMPSO, with the RMOABC algorithm were applied in Heihe River Basin, and the parameter optimization problem of Xinanjiang hydrological model was taken as the application case for long-term runoff prediction to validate and compare their performance. The experiments results showed the RMOABC algorithm can provide more comprehensive and reliable parameters sets for practical hydrological forecasting in the study area with lower execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. James W (2000) Simulation modeling for watershed management. Springer, New York

    Google Scholar 

  2. Ye J, Ding Y (2018) Controllable keyword search scheme supporting multiple users. Future Gener Comput Syst 81:433–442

    Article  Google Scholar 

  3. Carpenter TM, Georgakakos KP (2004) Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model. J Hydrol 298:27–60

    Article  Google Scholar 

  4. Yang BB, Wang WC (2010) Comparison between multi-objective evolutionary algorithms for calibration of Xinanjiang model. J China Hydrol 30(3):38–42

    Google Scholar 

  5. Tavares LG, Lopes HS, Lima CRE (2009) A study of topology in insular parallel genetic algorithms. In: World congress on nature and biologically inspired computing

  6. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

  7. Fan QQ, Yan XF (2015) Self-adaptive differential evolution algorithm with discrete mutation control parameters. Expert Syst Appl 42:1551–1572

    Article  Google Scholar 

  8. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Computer Engineering, Department, Erciyes University, Turkey

  9. Yeh WC, Hsieh TJ (2002) Artificial bee colony algorithm-neural networks for s-system models of biochemical networks approximation. Neural Comput Appl. https://doi.org/10.1007/s00521-010-0435-z

    Article  Google Scholar 

  10. Gozde H, Taplamacioglu MC (2001) Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. J Frankl Inst Eng Appl Math 348(8):1927–1946

    Article  Google Scholar 

  11. Sonmez M (2011) Artificial bee colony algorithm for optimization of truss structures. Appl Soft Comput 11(2):2406–2418

    Article  Google Scholar 

  12. Li ZJ, Xin PL, Tang JH (2011) Study of the Xinanjiang model parameter calibration. J Hydrol Eng 18:1513–1521

    Google Scholar 

  13. Huo JY, Zhang YN, Zhao HX (2014) Improved artificial bee colony algorithm and its application in parameter estimation. Comput Eng 40:166–171

    Google Scholar 

  14. Li ZJ, Zhang H, Cheng Y, Kan GY (2013) Application of coupling global optimization of single-objective algorithm with multi-objective algorithm to calibration of Xinanjiang model parameters. J Hydroelectr Eng 32(5):6–12

    Google Scholar 

  15. Huo JY, Liu LQ, Zhang YN (2016) Comparative research of optimization algorithms for parameters calibration of watershed hydrological model. J Comput Methods Sci Eng 16(3):653–669

    Google Scholar 

  16. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    MATH  Google Scholar 

  17. Pareto V (1968) The rise and fall of the elites. N. J., Bedminster Press, Totowa

    Google Scholar 

  18. Bekele EG, Nicklow JW (2007) Multi-objective optimal control Model for watershed management using SWAT and NSGA-II. In: World environmental and water resources congress, pp 1–10

  19. Huo JY, Liu LQ (2017) An improved multi-objective artificial bee colony optimization algorithm with regulation operators. Information 8:18

    Article  Google Scholar 

  20. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  21. Deb K, Mohan M, Mishra S (2003) A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions. KanGAL Report No 2003002

  22. Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello Coello CA, Luna F, Alba E (2009) SMPSO: A new PSO-based metaheuristic for multi-objective optimization. In: 2009 IEEE symposium on computational intelligence in multicriteria decision-making, pp 66-73

  23. Carlos A, Coello C, Gregorio TP, Maximino SL (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8:256–279

    Article  Google Scholar 

  24. Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization for hydrologic models. J Hydrol 204:83–97

    Article  Google Scholar 

  25. Zhang L, Cui GB (2009) Automatic calibration of a hydrological model using multi-objective particle swarm optimization and TOPSIS. In: Computer science and information engineering, 2009 WRI world congress, vol 4, pp 617–621

  26. Amir MSII, Khan MMK, Sharma MGRRH, Akram F (2013) Automatic multi-objective calibration of a rainfall runoff model for the Fitzroy Basin, Queensland, Australia. Int J Environ Sci Dev 4:311–315

    Article  Google Scholar 

  27. Memari A, Rarhim ARA, Hassan A, Ahmad R (2016) A tuned NSGA-II to optimize the total cost and service level for a just-in-time distribution network. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2249-0

    Article  Google Scholar 

  28. Wang Y, Brubaker K (2015) Multi-objective model auto-calibration and reduced parameterization: exploiting gradient-based optimization tool for a hydrologic model. Environ Model Softw 70:1–15

    Article  Google Scholar 

  29. Liao X, Zhou J, Ouyang S et al (2014) Multi-objective artificial bee colony algorithm for long-term scheduling of hydropower system: a case study of china. Water Util J 7:13–23

    Google Scholar 

  30. Pérez CJ, Vega-Rodríguez MA, Reder K, Flörke M (2017) A Multi-Objective Artificial Bee Colony-based optimization approach to design water quality monitoring networks in river basins. J Clean Prod 166:579–589

    Article  Google Scholar 

  31. Tang Y, Reed P, Wagener T (2006) How effective and efficient are multi-objective evolutionary algorithms at hydrologic model calibration. Hydrol Earth Syst Sci 10:289–307

    Article  Google Scholar 

  32. Efstratiadis A, Koutsoyiannis D (2010) One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrol Sci J 55:58–78

    Article  Google Scholar 

  33. Chen GD, Li X, Wang SG (2009) Heihe River Basin: integrated management research of water. In: Ecological, economic systems. Science Press, Beijing, pp 336–408

  34. Huo JY, Liu LQ, Zhang YN (2018) An improved multi-cores parallel artificial Bee colony optimization algorithm for parameters calibration of hydrological model. Future Gener Comput Syst 81C:492–504

    Article  Google Scholar 

  35. Wang SG (2010) Studies on parameter estimation methods for hydrological model and associated uncertainties. Yellow River Water Conservancy Press, Henan, pp 5–142

    Google Scholar 

  36. Zhao RJ (1992) Watershed hydrological model—Xinanjiang model and Northern Shanxi model. China Water Power Press, Beijing, pp 126–127

    Google Scholar 

  37. Lu HS, Hou T, Horton R (2013) The streamflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method. J Hydrol 480:102–114

    Article  Google Scholar 

  38. Horn J (1997) Multicriterion decision making. In: Bäck T, Fogel D, Michalewicz Z (eds) Handbook of evolutionary computation, vol 1. Oxford University Press, London, pp F1.9:1–F1.9:15

    Google Scholar 

  39. Raquel CR, Naval PC (2005) An effective use of crowding distance in multiobjective particle swarm optimization. In: Genetic and evolutionary computation conference, GECCO 2005, Washington DC, USA, pp 257–264

  40. Bastos-Filho CJA, Figueiredo EMN, Martins-Filho JF, Chaves DAR, Segatto MEV, Cani S, Pontes MJ (2011) Design of distributed optical-fiber Raman amplifiers using multi-objective particle swarm optimization. J Microw Optoelectron Electromagn Appl 10(2):323–336

    Article  Google Scholar 

  41. da Silva Maximiano M, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM (2013) A new multiobjective artificial bee colony algorithm to solve a real-world frequency assignment problem. Neural Comput Appl 22(7–8):1447–1459

    Article  Google Scholar 

  42. Knowles JD, Corne DW (2000) Approximating the non-dominated front using the Pareto archived evolution strategy. Evolut Comput 8:149–172

    Article  Google Scholar 

  43. Zhu GP, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217:3166–3173

    MathSciNet  MATH  Google Scholar 

  44. de Vos NJ, Rientjes THM (2007) Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model. Hydrol Sci J 52(3):397–413

    Article  Google Scholar 

  45. Shafii M, De Smedt F (2009) Multi-objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm. Hydrol Earth Syst Sci 13:2137–2149

    Article  Google Scholar 

  46. Nebro AJ, Durill JJ, Coello CAC (2013) Analysis of leader selection strategies in a multi-objective particle swarm optimizer. In: Evolutionary computation, IEEE, pp 3153–3160

  47. Hadka D (2015) MOEA framework—a free and open source java framework for multiobjective optimization. Version 2.12. http://www.moeaframework.org/

  48. Xu Z, Liu Y, Zhang H, Luo X, Mei L, Hu C (2017) Building the multi-modal storytelling of urban emergency events based on Crowdsensing of social media analytics. MONET 22(2):218–227

    Google Scholar 

  49. Karaboga D, Akay B, Ozturk C (2007) Artificial Bee Colony (ABC) optimization algorithm for training feed-forward neural networks. In: Modeling decisions for artificial intelligence, vol 4617/2007, No 0302-9743, pp 318–329

  50. Guo J, Zhou JZ, Zou Q, Song LX, Zhang YC (2011) Study on multi-objective calibration of hydrological model and effect of objective functions combination on optimization results. J Sichuan Univ (Eng Sci Ed) 43(6):58–63

    Google Scholar 

  51. Mohammadi SAR, Feizi Derakhshi MR, Akbari R (2013) An adaptive multi-objective artificial bee colony with crowding distance mechanism. IJST Trans Electr Eng 37(E1):79–92

    Google Scholar 

  52. Deb K, Mohan M, Mishra S (2005) Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evol Comput 13(4):501–525

    Article  Google Scholar 

  53. Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, New York

    MATH  Google Scholar 

  54. Madsen H (2003) Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Adv Water Resour 26:205–216

    Article  Google Scholar 

  55. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. J Hydrol 10:282–290

    Article  Google Scholar 

  56. Werkhoven KV, Wagener T, Reed P, Yong T (2009) Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models. Adv Water Resour 32(8):1154–1169

    Article  Google Scholar 

  57. Iman RL, Conover WJ (1980) Small sample sensitivity analysis techniques for computer models, with an application to risk assessment. Commun Stat A9(17):1749–1842

    Article  MathSciNet  Google Scholar 

  58. Gupta HV, Beven KJ, Wagener T (2005) Model calibration and uncertainty estimation, encyclopedia of hydrological sciences, Part 11, Rainfall-runoff modeling. Wiley, New York

    Google Scholar 

  59. Pagano RR (2012) Understanding statistics in the behavioral sciences. Cengage Learning, Boston

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Nature Science Foundation of China (Grant Nos. 61462058, 61741201) and Gansu Province Science and Technology Program (Grant No. 1606RJZA004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuyuan Huo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, J., Liu, L. Application research of multi-objective Artificial Bee Colony optimization algorithm for parameters calibration of hydrological model. Neural Comput & Applic 31, 4715–4732 (2019). https://doi.org/10.1007/s00521-018-3483-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3483-4

Keywords

Navigation