Skip to main content
Log in

EEG classification using sparse Bayesian extreme learning machine for brain–computer interface

  • S.I. : Multi-Source Data Understanding (MSDU)
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Mu rhythm is a spontaneous neural response occurring during a motor imagery (MI) task and has been increasingly applied to the design of brain–computer interface (BCI). Accurate classification of MI is usually rather difficult to be achieved since mu rhythm is very weak and likely to be contaminated by other background noises. As an extension of the single layer feedforward network, extreme learning machine (ELM) has recently proven to be more efficient than support vector machine that is a benchmark for MI-related EEG classification. With probabilistic inference, this study introduces a sparse Bayesian ELM (SBELM)-based algorithm to improve the classification performance of MI. SBELM is able to automatically control the model complexity and exclude redundant hidden neurons by combining advantageous of both ELM and sparse Bayesian learning. The effectiveness of SBELM for MI-related EEG classification is validated on a public dataset from BCI Competition IV IIb in comparison with several other competing algorithms. Superior classification accuracy confirms that the proposed SBELM-based algorithm is a promising candidate for performance improvement of an MI BCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolpaw JR, Birbaumer N, McFarland D, Pfutscheller G, Vaughan T (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  Google Scholar 

  2. Zhang Y, Zhao Q, Jin J, Wang X, Cichocki A (2012) A novel BCI based on ERP components sensitive to configural processing of human faces. J Neural Eng 9(2):026018

    Article  Google Scholar 

  3. Pires G, Nunes U, Castelo-Branco M (2011) Statistical spatial filtering for a P300-based BCI: tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis. J Neurosci Methods 195(2):270–281

    Article  Google Scholar 

  4. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain–computer communication. Proc IEEE 89(7):1123–1134

    Article  Google Scholar 

  5. Zhang Y, Zhou G, Zhao Q, Jin J, Wang X, Cichocki A (2013) Spatial–temporal discriminant analysis for ERP-based brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 21(2):233–243

    Article  Google Scholar 

  6. Zhang Y, Yin E, Li F, Zhang Y, Tanaka T, Zhao Q, Cui Y, Xu P, Yao D, Guo D (2018) Two-stage frequency recognition method based on correlated component analysis for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng 165(7):1314–1323

    Article  Google Scholar 

  7. Zhang Y, Guo D, Li F, Yin E, Zhang Y, Li P, Zhao Q, Tanaka T, Yao D, Xu P (2018) Correlated component analysis for enhancing the performance of SSVEP-based brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 26(5):948–956

    Article  Google Scholar 

  8. Zhang R, Li Y, Yan Y, Zhang H, Wu S, Yu T, Gu Z (2016) Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation. IEEE Trans Neural Syst Rehabil Eng 24(1):128–139

    Article  Google Scholar 

  9. Long J, Li Y, Wang H, Yu T, Pan J, Li F (2012) A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Trans Neural Syst Rehabil Eng 20(5):720–729

    Article  Google Scholar 

  10. Cinar E, Sahin F (2013) New classification techniques for electroencephalogram (EEG) signals and a real-time EEG control of a robot. Neural Comput Appl 22(1):29–39

    Article  Google Scholar 

  11. Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441

    Article  Google Scholar 

  12. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller K (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1):41–56

    Article  Google Scholar 

  13. Park C, Looney D, Rehman N, Ahrabian A, Mandic D (2013) Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Trans Neural Syst Rehabil Eng 21(1):10–22

    Article  Google Scholar 

  14. Krusienski D, Grosse-Wentrup M, Galán F, Coyle D, Miller K, Forney E, Anderson C (2011) Critical issues in state-of-the-art brain–computer interface signal processing. J Neural Eng 8(2):025002

    Article  Google Scholar 

  15. Li J, Struzik Z, Zhang L, Cichocki A (2015) Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing 165:23–31

    Article  Google Scholar 

  16. Zhu X, Li X, Zhang S, Ju C, Wu X (2017) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 28(6):1263–1275

    Article  MathSciNet  Google Scholar 

  17. Zhou G, Zhao Q, Zhang Y, Xie S, Cichocki A (2016) Linked component analysis from matrices to high order tensors: applications to biomedical data. Proc IEEE 104(2):310–331

    Article  Google Scholar 

  18. Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2015) SSVEP recognition using common feature analysis in brain–computer interface. J Neurosci Methods 244:8–15

    Article  Google Scholar 

  19. Zhu X, Suk HI, Lee SW, Shen D (2016) Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans Biomed Eng 63(3):607–618

    Article  Google Scholar 

  20. Wang H, Zhang Y, Waytowich NR, Krusienski DJ, Zhou G, Jin J, Wang X, Cichocki A (2016) Discriminative feature extraction via multivariate linear regression for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng 24(5):532–541

    Article  Google Scholar 

  21. Zheng W, Zhu X, Zhu Y, Hu R, Lei C (2017) Dynamic graph learning for spectral feature selection. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-5272-y

    Article  Google Scholar 

  22. Ahangi A, Karamnejad M, Mohammadi N, Ebrahimpour R, Bagheri N (2013) Multiple classifier system for EEG signal classification with application to brain–computer interfaces. Neural Comput Appl 23(5):1319–1327

    Article  Google Scholar 

  23. Lv Z, Wang JJ, Luo X (2018) Neural computing in next-generation virtual reality technology. Neural Comput Appl 29(5):1195

    Article  Google Scholar 

  24. Kumar SU, Inbarani HH (2017) Pso-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task. Neural Comput Appl 28(11):3239–3258

    Article  Google Scholar 

  25. Zhu X, Suk HI, Huang H, Shen D (2017) Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Trans Big Data 3(4):405–414

    Article  Google Scholar 

  26. Zheng W, Zhu X, Wen G, Zhu Y, Yu H, Gan J (2018) Unsupervised feature selection by self-paced learning regularization. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2018.06.029

    Article  Google Scholar 

  27. Zhu X, Zhang S, Li Y, Zhang J, Yang L, Fang Y (2018) Low-rank sparse subspace for spectral clustering. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2018.2858782

    Article  Google Scholar 

  28. Zhu X, Zhang S, Hu R, Zhu Y (2018) Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans Knowl Data Eng 30(3):517–529

    Article  Google Scholar 

  29. Ang K, Chin Z, Wang C, Guan C, Zhang H (2012) Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci 6:p39

    Article  Google Scholar 

  30. Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2015) Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface. J Neurosci Methods 255:85–91

    Article  Google Scholar 

  31. Zhang Y, Wang Y, Jin J, Wang X (2017) Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. Int J Neural Syst 27(2):1650032

    Article  Google Scholar 

  32. Arvaneh M, Guan C, Ang K, Quek C (2011) Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 58(6):1865–1873

    Article  Google Scholar 

  33. Wu W, Chen Z, Gao X, Li Y, Brown EN, Gao S (2015) Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans Pattern Anal Mach Intell 37(3):639–653

    Article  Google Scholar 

  34. Zhang Y, Nam CS, Zhou G, Jin J, Wang X, Cichocki A (2018) Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2018.2841847

    Article  Google Scholar 

  35. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng 15(3):031005

    Article  Google Scholar 

  36. Li J, Li C, Cichocki A (2017) Canonical polyadic decomposition with auxiliary information for brain–computer interface. IEEE J Biomed Health Inf 21(1):263–271

    Article  Google Scholar 

  37. Siuly S, Li Y (2012) Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 20(4):526–538

    Article  Google Scholar 

  38. Thomas K, Guan C, Lau C, Vinod A, Ang K (2009) A new discriminative common spatial pattern method for motor imagery brain–computer interfaces. IEEE Trans Biomed Eng 56(11):2730–2733

    Article  Google Scholar 

  39. Zhang Y, Zhou G, Jin J, Zhao Q, Wang X, Cichocki A (2014) Aggregation of sparse linear discriminant analysis for event-related potential classification in brain–computer interface. Int J Neural Syst 24(1):1450003

    Article  Google Scholar 

  40. Zhang Y, Zhou G, Jin J, Wang M, Wang X, Cichocki A (2013) L1-regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng 21(6):887–896

    Article  Google Scholar 

  41. Shin Y, Lee S, Lee J, Lee H (2012) Sparse representation-based classification scheme for motor imagery-based brain–computer interface systems. J Neural Eng 9(5):056002

    Article  Google Scholar 

  42. Jiao Y, Zhang Y, Chen X, Yin E, Jin J, Wang XY, Cichocki A (2018) Sparse group representation model for motor imagery EEG classification. IEEE J Biomed Health Inf. https://doi.org/10.1109/JBHI.2018.2832538

    Article  Google Scholar 

  43. Vidaurre C, Blankertz B (2010) Towards a cure for BCI illiteracy. Brain Topogr 23(2):194–198

    Article  Google Scholar 

  44. Li J, Wang Y, Zhang L, Cichocki A, Jung TP (2016) Decoding EEG in cognitive tasks with time-frequency and connectivity masks, IEEE Transactions on Cognitive and Developmental Systems 8(4):298–308

    Article  Google Scholar 

  45. Huang G, Zhu Q, Siew C (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  46. Ding S, Xu X, Nie R (2014) Extreme learning machine and its applications. Neural Comput Appl 25(3–4):549–556

    Article  Google Scholar 

  47. Liang N, Saratchandran P, Huang GB, Sundararajan N (2006) Classification of mental tasks from EEG signals using extreme learning machine. Int J Neural Syst 16(1):29–38

    Article  Google Scholar 

  48. Zheng W, Qian Y, Lu H (2013) Text categorization based on regularization extreme learning machine. Neural Comput Appl 22(3–4):447–456

    Article  Google Scholar 

  49. Zong W, Huang G (2011) Face recognition based on extreme learning machine. Neurocomputing 74(16):2541–2551

    Article  Google Scholar 

  50. Pan C, Park DS, Yang Y, Yoo HM (2012) Leukocyte image segmentation by visual attention and extreme learning machine. Neural Comput Appl 21(6):1217–1227

    Article  Google Scholar 

  51. Lv Z, Song H, Basanta-Val P, Steed A, Jo M (2017) Next-generation big data analytics: state of the art, challenges, and future research topics. IEEE Trans Ind Inf 13(4):1891–1899

    Article  Google Scholar 

  52. Huang G, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybern) 42(2):513–529

    Article  Google Scholar 

  53. Huang G, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74(1):155–163

    Article  Google Scholar 

  54. Zhang Y, Wang Y, Zhou G, Jin J, Wang B, Wang X, Cichocki A (2018) Multi-kernel extreme learning machine for EEG classification in brain–computer interfaces. Expert Syst Appl 96:302–310

    Article  Google Scholar 

  55. Iosifidis A, Tefas A, Pitas I (2015) On the kernel extreme learning machine classifier. Pattern Recognit Lett 54:11–17

    Article  Google Scholar 

  56. Soria-Olivas E, Gómez-Sanchis J, Martín J, amd Vila-Francés J, Martínez M, Magdalena J, Serrano A (2011) BELM: Bayesian extreme learning machine. IEEE Trans Neural Netw 22(3):505–509

    Article  Google Scholar 

  57. Wong K, Vong C, Wong P, Luo J (2015) Sparse Bayesian extreme learning machine and its application to biofuel engine performance prediction. Neurocomputing 149:397–404

    Article  Google Scholar 

  58. Zhang Y, Jin J, Wang X, Wang Y (2016) Motor imagery EEG classification via Bayesian extreme learning machine. In: IEEE Sixth international conference on information science and technology (ICIST 2016), pp 27–30

  59. Tipping M (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244

    MathSciNet  MATH  Google Scholar 

  60. Huang GB (2014) An insight into extreme learning machines: random neurons, random features and kernels. Cognit Comput 6(3):376–390

    Article  MathSciNet  Google Scholar 

  61. Tipping M (2004) Bayesian inference: an introduction to principles and practice in machine learning. In: Bousquet O, von Luxburg U, Rätsch G (eds) Advanced lectures on machine learning, vol 3176. Lecture notes in computer science. Springer, Berlin, pp 41–62

    Chapter  MATH  Google Scholar 

  62. Zhang Y, Zhou G, Jin J, Zhao Q, Wang X, Cichocki A (2016) Sparse Bayesian classification of EEG for brain–computer interface. IEEE Trans Neural Netw Learn Syst 27(11):2256–2267

    Article  MathSciNet  Google Scholar 

  63. MacKay D (1992) Bayesian interpolation. Neural Comput 4(3):415–447

    Article  MATH  Google Scholar 

  64. Wu W, Chen Z, Gao S, Brown EN (2011) A hierarchical Bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG. NeuroImage 56(4):1929–1945

    Article  Google Scholar 

  65. Wu W, Wu C, Gao S, Liu B, Li Y, Gao X (2014) Bayesian estimation of ERP components from multicondition and multichannel EEG. NeuroImage 88:319–339

    Article  Google Scholar 

  66. Zhang Y, Zhou G, Jin J, Zhang YS, Wang X, Cichocki A (2017) Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition. Neurocomputing 225:103–110

    Article  Google Scholar 

  67. Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D (2018) Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2018.2814538

    Article  Google Scholar 

  68. Nie D, Wang L, Adeli E, Lao C, Lin W, Shen D (2018) 3-d fully convolutional networks for multimodal isointense infant brain image segmentation. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2018.2797905

    Article  Google Scholar 

  69. Tang J, Deng C, Huang GB (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Networks Learn Syst 27(4):809–821

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was supported in part by National Natural Science Foundation of China under Grant 61673124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Zhou, G., Gao, D. et al. EEG classification using sparse Bayesian extreme learning machine for brain–computer interface. Neural Comput & Applic 32, 6601–6609 (2020). https://doi.org/10.1007/s00521-018-3735-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3735-3

Keywords

Navigation