Skip to main content
Log in

Finite-time synchronization of delayed memristive neural networks via 1-norm-based analytical approach

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

By using 1-norm-based analytical approach, this paper considers finite-time (FET) synchronization for memristive neural networks (MNNs) with time-varying delays. New quantized controllers are designed, which can save communication channel and play an important role in synchronizing MNNs. By constructing Lyapunov function, and developing 1-norm-based analytical methods, several conditions are derived to guarantee that the MNNs can be synchronized within a settling time. In addition, the settling time is also presented for the considered MNNs. Some numerical simulations are provided to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    MATH  Google Scholar 

  2. Kwok T, Smith KA (1999) A unified framework for chaotic neural-network approaches to combinatorial optimization. IEEE Trans Neural Netw 10(4):978–981

    Google Scholar 

  3. Huberman BA, Adamic LA (1999) Growth dynamics of the world-wide-web. Nature 401:131–132

    Google Scholar 

  4. Stogatz SH, Stewart I (1993) Coupled oscillators and biological synchronization. Sci Am 269(6):102–109

    Google Scholar 

  5. Hoppensteadt FC, Izhikevich EM (2000) Pattern recognition via synchronization in phase-locked loop neural networks. IEEE Trans Neural Netw 11(3):734–738

    Google Scholar 

  6. Li C, Liao X, Wong K (2005) Lag synchronization of hyperchaos with application to secure communications. Chaos Solitons Fractals 23(1):183–193

    MathSciNet  MATH  Google Scholar 

  7. Wang Q, Yu S, Li C, Lü J, Fang X, Guyeux C, Bahi JM (2016) Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans Circuits Syst I Regul Pap 63(3):401–412

    MathSciNet  Google Scholar 

  8. Wang J, Wu H, Huang T, Ren S, Wu J (2018) Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength. IEEE Trans Neural Netw Learn Syst 29(2):364–376

    MathSciNet  Google Scholar 

  9. Huang T, Li C, Duan S, Starzyk J (2012) Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans Neural Netw Learn Syst 23:866–875

    Google Scholar 

  10. Li X, Rakkiyappan R (2013) Impulsive controller design for exponential synchronization of chaotic neural networks with mixed delays. Commun Nonlinear Sci Numer Simul 18(6):1515–1523

    MathSciNet  MATH  Google Scholar 

  11. Vincent UE, Guo R (2011) Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys Lett A 375:2322–2326

    MATH  Google Scholar 

  12. Aghababa MP, Khanmohammadi S, Alizadeh G (2011) Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl Math Model 35(6):3080–3091

    MathSciNet  MATH  Google Scholar 

  13. Haimo VT (1986) Finite-time controllers. SIAM J Control Optim 24(4):760–770

    MathSciNet  MATH  Google Scholar 

  14. Bhat S, Bernstein D (1997) Finite-time stability of homogeneous systems. In: Proceedings of American control conference, pp 2513–2514

  15. Shen J, Cao J (2011) Finite-time synchronization of coupled neural networks via discontinuous controllers. Cognit Neurodyn 5(4):373–385

    Google Scholar 

  16. Aghababa MP, Aghababa HP (2012) Synchronization of mechanical horizontal platform systems in finite time. Appl Math Model 36(10):4579–4591

    MathSciNet  MATH  Google Scholar 

  17. Xu C, Yang X, Lu J, Feng J, Alsaadi FE, Hayat T (2018) Finite-time synchronization of networks via quantized intermittent pinning control. IEEE Trans Cybern 48(10):3021–3027

    Google Scholar 

  18. Huang T, Li C, Yu W, Chen G (2009) Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback. Nonlinearity 22:569–584

    MathSciNet  MATH  Google Scholar 

  19. Guan Z, Liu Z, Feng G, Wang Y (2010) Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control. IEEE Trans Circuits Syst 57(8):2182–2195

    MathSciNet  Google Scholar 

  20. Wang L, Xiao F (2010) Finite-time consensus problems for networks of dynamic agents. IEEE Trans Autom Control 55(4):950–955

    MathSciNet  MATH  Google Scholar 

  21. Yang X, Wu Z, Cao J (2013) Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn 73(4):2313–2327

    MathSciNet  MATH  Google Scholar 

  22. Tang Y (1998) Terminal sliding mode control for rigid robots. Automatica 34:51–56

    MathSciNet  MATH  Google Scholar 

  23. Forti M, Grazzini M, Nistri P, Pancioni L (2006) Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Physica D 214(1):88–99

    MathSciNet  MATH  Google Scholar 

  24. Efimov D, Polyakov A, Fridman E, Perruquetti W, Richard JP (2014) Comments on finite-time stability of time-delay systems. Automatica 50:1944–1947

    MathSciNet  MATH  Google Scholar 

  25. Yang X (2014) Can neural networks with arbitrary delays be finite-timely synchronized. Neurocomputing 143:275–281

    Google Scholar 

  26. Yang X, Song Q, Liang J, He B (2015) Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations. J Frankl Inst 352(10):4382–4406

    MathSciNet  MATH  Google Scholar 

  27. Yang X, Lu J (2016) Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Trans Autom Control 61(8):2256–2261

    MathSciNet  MATH  Google Scholar 

  28. Zhang W, Yang X, Xu C, Feng J, Li C (2018) Finite-time synchronization of discontinuous neural networks with delays and mismatched parameters. IEEE Trans Neural Netw Learn Syst 29(8):3761–3771

    MathSciNet  Google Scholar 

  29. Jia Q, Tang WKS (2018) Event-triggered protocol for the consensus of multi-agent systems with state-dependent nonlinear coupling. IEEE Trans Circuits Syst I Regul Papers 65(2):723–732

    Google Scholar 

  30. Jia Q, Tang W K S (2018) Consensus of multi-agents with event-based nonlinear coupling over time-varying digraphs. IEEE Trans Circuits Syst II Exp Briefs. https://doi.org/10.1109/TCSII.2018.2790582

  31. Brockett RW, Liberzon D (2000) Quantized feedback stabilization of linear systems. IEEE Trans Autom Control 45:1279–1289

    MathSciNet  MATH  Google Scholar 

  32. Fu M, Xie L (2005) The sector bound approach to quantized feedback control. IEEE Trans Autom Control 50:1698–1710

    MathSciNet  MATH  Google Scholar 

  33. Tian E, Yue D, Peng C (2008) Quantized output feedback control for networked control systems. Inf Sci 178(12):2734–2749

    MathSciNet  MATH  Google Scholar 

  34. Xiao X, Zhou L, Zhang Z (2014) Synchronization of chaotic Lur’e systems with quantized sampled-data controller. Commun Nonlinear Sci Numer Simul 19(6):2039–2047

    MathSciNet  MATH  Google Scholar 

  35. Wan Y, Cao J, Wen G (2017) Quantized synchronization of chaotic neural networks with scheduled output feedback control. IEEE Trans Neural Netw Learn Syst 28(11):2638–2647

    MathSciNet  Google Scholar 

  36. Zhang W, Yang S, Li C, Zhang W, Yang X (2018) Stochastic exponential synchronization of memristive neural networks with time-varying delays via quantized control. Neural Netw 104:93–103

    Google Scholar 

  37. Itoh M, Chua LO (2009) Memristor cellular automata and memristor discrete-time cellular neural networks. Int J Bifurc Chaos 19(11):3605–3656

    MATH  Google Scholar 

  38. Thomas A (2013) Memristor-based neural networks. J Phys D 46(9):093001

    Google Scholar 

  39. Wu A, Zeng Z (2012) Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays. Neural Netw 36:1–10

    MATH  Google Scholar 

  40. Wen S, Zeng Z, Huang T (2013) Dynamic behaviors of memristor-based delayed recurrent networks. Neural Comput Appl 23:815–821

    Google Scholar 

  41. Yang X, Cao J, Yu W (2014) Exponential synchronization of memristive Cohen–Grossberg neural networks with mixed delays. Cognit Neurodyn 8(3):239–249

    Google Scholar 

  42. Wang G, Shen Y (2014) Exponential synchronization of coupled memristive neural networks with time delays. Neural Comput Appl 24:1421–1430

    Google Scholar 

  43. Zhang W, Li C, Huang T, He X (2015) Synchronization of memristor-based coupling recurrent neural networks with time-varying delays and impulses. IEEE Trans Neural Netw Learn Syst 26(12):3308–3313

    MathSciNet  Google Scholar 

  44. Wang L, Shen Y, Zhang G (2016) Finite-time stabilization and adaptive control of memristor-based delayed neural networks. IEEE Trans Neural Netw Learn Syst 28(11):2648–2659

    MathSciNet  Google Scholar 

  45. Yang X, Ho Daniel W C (2016) Synchronization of delayed memristive neural networks: robust analysis approach. IEEE Trans Cybern 46(12):3377–3387

    Google Scholar 

  46. Filippov AF (1988) Differential equations with discontinuous righthand sides. Kluwer, Dordrecht

    Google Scholar 

  47. Aubin J-P, Cellina A (1984) Differential inclusions. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 61873213, 61673078, 61633011, 61703346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuandong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yang, S., Li, C. et al. Finite-time synchronization of delayed memristive neural networks via 1-norm-based analytical approach. Neural Comput & Applic 32, 4951–4960 (2020). https://doi.org/10.1007/s00521-018-3906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3906-2

Keywords

Navigation