Skip to main content
Log in

MCK-ELM: multiple composite kernel extreme learning machine for hyperspectral images

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Multiple kernel (MK) learning (MKL) methods have a significant impact on improving the classification performance. Besides that, composite kernel (CK) methods have high capability on the analysis of hyperspectral images due to making use of the contextual information. In this work, it is aimed to aggregate both CKs and MKs autonomously without the need of kernel coefficient adjustment manually. Convex combination of predefined kernel functions is implemented by using multiple kernel extreme learning machine. Thus, complex optimization processes of standard MKL are disposed of and the facility of multi-class classification is profited. Different types of kernel functions are placed into MKs in order to realize hybrid kernel scenario. The proposed methodology is performed over Pavia University, Indian Pines, and Salinas hyperspectral scenes that have ground-truth information. Multiple composite kernels are constructed using Gaussian, polynomial, and logarithmic kernel functions with various parameters, and then the obtained results are presented comparatively along with the state-of-the-art standard machine learning, MKL, and CK methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63

    Article  Google Scholar 

  2. Bolton J, Gader P (2011) Application of multiple-instance learning for hyperspectral image analysis. IEEE Geosci Remote Sens Lett 8(5):889–893

    Article  Google Scholar 

  3. Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA (2014) Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process Mag 31(1):45–54

    Article  Google Scholar 

  4. Camps-Valls G, Gómez-Chova L, Calpe-Maravilla J, Martín-Guerrero JD, Soria-Olivas E, Alonso-Chordá L, Moreno J (2004) Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Trans Geosci Remote Sens 42(7):1530–1542

    Article  Google Scholar 

  5. Han M, Liu B (2015) Ensemble of extreme learning machine for remote sensing image classification. Neurocomputing 149:65–70

    Article  Google Scholar 

  6. Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247–259

    Article  Google Scholar 

  7. Pal M, Maxwell AE, Warner TA (2013) Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens Lett 4(9):853–862

    Article  Google Scholar 

  8. Chen C, Li W, Su H, Liu K (2014) Spectral–spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens 6(6):5795–5814

    Article  Google Scholar 

  9. Camps-Valls G, Bruzzone L (2005) Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 43(6):1351–1362

    Article  Google Scholar 

  10. Pao YH, Takefuji Y (1992) Functional-link net computing: theory, system architecture, and functionalities. Computer 25(5):76–79

    Article  Google Scholar 

  11. Igelnik B, Pao YH (1995) Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans Neural Netw 6(6):1320–1329

    Article  Google Scholar 

  12. Li M, Wang D (2017) Insights into randomized algorithms for neural networks: practical issues and common pitfalls. Inf Sci 382:170–178

    Article  Google Scholar 

  13. Wang D, Li M (2017) Stochastic configuration networks: fundamentals and algorithms. IEEE Trans Cybern 47(10):3466–3479

    Article  Google Scholar 

  14. Schmidt WF, Kraaijveld MA, Duin RP (1992) Feedforward neural networks with random weights. In: Proceedings of 11th IAPR international conference on pattern recognition, vol. II. Conference B: pattern recognition methodology and systems. IEEE, pp 1–4

  15. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Article  Google Scholar 

  16. Gönen M, Alpaydın E (2011) Multiple kernel learning algorithms. J Mach Learn Res 12(Jul):2211–2268

    MathSciNet  MATH  Google Scholar 

  17. Bach FR, Lanckriet GR, Jordan MI (2004) Multiple kernel learning, conic duality, and the smo algorithm. In: Proceedings of the 21st international conference on machine learning, ICML’04. ACM, p 6

  18. Gu Y, Chanussot J, Jia X, Benediktsson JA (2017) Multiple kernel learning for hyperspectral image classification: a review. IEEE Trans Geosci Remote Sens 55(11):6547–6565

    Article  Google Scholar 

  19. Wang Q, Gu Y, Tuia D (2016) Discriminative multiple kernel learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(7):3912–3927

    Article  Google Scholar 

  20. Liu X, Wang L, Huang GB, Zhang J, Yin J (2015) Multiple kernel extreme learning machine. Neurocomputing 149:253–264

    Article  Google Scholar 

  21. Li X, Mao W, Jiang W (2016) Multiple-kernel-learning-based extreme learning machine for classification design. Neural Comput Appl 27(1):175–184

    Article  Google Scholar 

  22. Camps-Valls G, Gomez-Chova L, Muñoz-Marí J, Vila-Francés J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97

    Article  Google Scholar 

  23. Zhou Y, Peng J, Chen CP (2015) Extreme learning machine with composite kernels for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 8(6):2351–2360

    Article  Google Scholar 

  24. Ergul U, Bilgin G (2017) Hyperspectral image classification with hybrid kernel extreme learning machine. In: IEEE 25th signal processing and communications applications conference, SIU’17. IEEE, pp 1–4

  25. Serre D (2000) Matrices: theory and applications, 2002. In: Graduate texts in mathematics

  26. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  27. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybern) 42(2):513–529

    Article  Google Scholar 

  29. Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y (2008) Simplemkl. J Mach Learn Res 9(Nov):2491–2521

    MathSciNet  MATH  Google Scholar 

  30. Xu X, Tsang IW, Xu D (2013) Soft margin multiple kernel learning. IEEE Trans Neural Netw Learn Syst 24(5):749–761

    Article  Google Scholar 

  31. Kloft M, Brefeld U, Sonnenburg S, Zien A (2011) Lp-norm multiple kernel learning. J Mach Learn Res 12(Mar):953–997

    MathSciNet  MATH  Google Scholar 

  32. Xia H, Hoi SC (2013) Mkboost: a framework of multiple kernel boosting. IEEE Trans Knowl Data Eng 25(7):1574–1586

    Article  Google Scholar 

  33. Boughorbel S, Tarel JP, Boujemaa N (2005) Conditionally positive definite kernels for svm based image recognition. In: IEEE international conference on multimedia and expo, ICME’05. IEEE, pp 113–116

  34. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46

    Article  Google Scholar 

  35. Viera AJ, Garrett JM et al (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37(5):360–363

    Google Scholar 

  36. Foody GM (2004) Thematic map comparison. Photogramm Eng Remote Sens 70(5):627–633

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by Yildiz Technical University, Scientific Research Projects Coordination Department, Project Number: 2016-04-01-DOP03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Bilgin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergul, U., Bilgin, G. MCK-ELM: multiple composite kernel extreme learning machine for hyperspectral images. Neural Comput & Applic 32, 6809–6819 (2020). https://doi.org/10.1007/s00521-019-04044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04044-9

Keywords

Navigation