Skip to main content
Log in

Comprehensive learning gravitational search algorithm for global optimization of multimodal functions

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new comprehensive learning gravitational search algorithm (CLGSA) is proposed to enhance the performance of basic GSA. The proposed algorithm is a new kind of intelligent optimization algorithm which has better ability to choose good elements. An intensive comprehensive learning methodology is proposed to enrich the optimization ability of the GSA. The efficiency of the proposed algorithm was evaluated by 28 benchmark functions which have been proposed in IEEE-CEC 2013 sessions. The results are compared with eight state-of-the-art algorithms IPOP, BIPOP, NIPOP, NBIPOP, DE/rand, SPSRDEMMS, SPSO-2011 and GSA. A variety of ways are considered to examine the ability of the proposed technique in terms of convergence ability, success rate and statistical behavior of algorithm over dimensions 10, 30 and 50. Apart from experimental studies, theoretical stability of the proposed CLGSA is also proved. It was concluded that the proposed algorithm performed efficiently with good results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rashedi E, Nezamabadi HP, Saryadi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  2. Formato RA (2008) Central force optimization: a new nature inspired computational framework of multidimensional search and optimization. Stud Comput Intell 129:221–238

    Google Scholar 

  3. Formato RA (2007) Central force optimization: a new metaheuristic with application in applied electromagnetic. Prog Electromagn Res 77:425–491

    Article  Google Scholar 

  4. Mirajalili S, Hashim SZ (2010) A new hybrid psogsa algorithm for function optimization. In: Proceeding of international conference of computer and information applications 2010, pp 374–377

  5. Newton I (xxxx) Philosophiae naturalis principia mathematica, sumptibus. Soc 1714

  6. Qin AK, Li X (2013) Differential evolution on CEC 2013 single objective continuous optimization testbed. In: IEEE congress on evolutionary computation, pp 1096–1106

  7. Auger A, Hansen N, Restart A (2005) CMA evolution strategy with increasing population size. In: IEEE congress on evolutionary computation, IEEE Press, pp 1769–1776

  8. Hansen N (2009) Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In: GECCO companion, pp 2389–2396

  9. Loshchilov I, Schoenauer M, Sebag M (2012) Black-box optimization benchmarking of NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the BBOB-2012 Noiseless Testbed. In: Genetic and evolutionary computation conference (GECCO Companion), ACM Press, pp 269–276

  10. Loshchilov I, Schoenauer M, Sebag M (2012) Alternative restart strategies for CMA-ES. Parallel problem solving from nature (PPSN XII), LNCS. Springer, Berlin, pp 296–305

    Book  Google Scholar 

  11. Zamuda A, Brest J, Mezura-Montes E (2013) Structured population size reduction differential evolution with multiple mutation strategies on CEC 2013 real parameter optimization. In: 2013 IEEE congress on evolutionary computation, pp 1925–1931

  12. Liang JJ, QBY, SPN (2013) Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization. In: Computational intelligence Laboratory, Zhengzhou University, Zhengzhou China And Nanyang Technological University, Singapore, Technical Report 2012

  13. Astrom KJ, Wittenmark B (1997) Computer-controlled systems-theory and design, 3rd edn. Englewood Cliffs, Prentice Hall

    Google Scholar 

  14. Črepinšek M, Liu S-H, Mernik L, Mernik M (2016) Is a comparison of results meaningful from the inexact replications of computational experiments? Soft Comput 20(1):223–235

    Article  Google Scholar 

  15. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of non parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  16. Črepinšek M, Liu S-H, Mernik M (2014) Replication and comparison of computational experiments in applied evolutionary computing: common pitfall sand guidelines to avoid them. Appl Soft Comput 19:161–170

    Article  Google Scholar 

  17. Črepinšek M, Liu S-H, Mernik L (2012) A note on teaching-learning-based optimi- zation algorithm. Inf Sci 212:79–93

    Article  Google Scholar 

  18. Jianga S, Wanga Y, Ji Z (2014) Convergence analysis and performance of an improved gravitational search algorithm. Appl Soft Comput 24:363–384

    Article  Google Scholar 

  19. Clerc M (2011) Standard particle swarm optimisation. http://clerc.maurice.free.fr/PSO/PSOmathstuff/PSOmathstuff.htm

  20. van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176:937–971

    Article  MathSciNet  MATH  Google Scholar 

  21. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  22. Qin A, Huang V, Suganthan P (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  23. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evolut Comput 10(3):281–294

    Article  Google Scholar 

  24. Chen W, Zhang J, Chung H, Zhong W, Wu W, Shi Y (2010) A novel set based particle swarm optimization method for discrete optimization problems. IEEE Trans Evol Comput 14(2):278–300

    Article  Google Scholar 

  25. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  26. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self -adaptive control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  27. Cheng J, Zhang G, Neri F (2013) Enhencing distributed differential evolution with multicultural migration for global numerical optimization. Inf Sci 247:72–93

    Article  MATH  Google Scholar 

  28. Sarafrazi S, Nezamabadi-Pour H, Saryazdi S (2011) Disruption: a new operator in gravitational search algorithm. Sci Iranica 18(3):539–548

    Article  Google Scholar 

  29. Gao S, Virappan C, Wang Y, Cao Q, Tang Z (2014) Gravitational search algorithm combined with Chaos for unconstrained numerical optimization. Appl Math Comput 231:48–62

    MathSciNet  MATH  Google Scholar 

  30. Khajehzadeh M, Taha MR, El-Shafie A, Eslami M (2012) ‘A modified gravitational search algorithm for slope stability analysis’. Eng Appl Artif Intell 25(8):1589–1597

    Article  Google Scholar 

  31. Yazdani S, Nezamabadi-Pour H, Kamyab S (2014) A gravitational search algorithm for multimodal optimization. Swarm Evol Comput 14:1–14

    Article  Google Scholar 

  32. David R-C, Precup R-E, Petriu E, Rdac M-B, Purcaru C, Dragos C-A, Preitl S (2012) Adaptive gravitational search algorithm for PI-fuzzy controller tuning. In: Proceedings of the 9th international conference on informatics in control, automation and robotics, pp 136–141

  33. Rashedi E, Nezamabadi H-P, Saryazdi S (2009) BGSA: binary gravitational search algorithm. Nat Comput 9(3):727–745

    Article  MathSciNet  MATH  Google Scholar 

  34. Mirjalili S, Hashim SZ, Sardroudi HM (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218(22):11125–11137

    MathSciNet  MATH  Google Scholar 

  35. Sun G, Zhang A (2013) A hybrid genetic algorithm and gravitational using multilevel thresholding. Pattern Recognit Image Anal 7887:707–714

    Article  Google Scholar 

  36. Guo Z (2012) A hybrid optimization algorithm based on artificial bee colony and gravitational search algorithm. Int J Digit Content Technol Appl 6(17):620–626

    Google Scholar 

  37. Xiangtao L, Yin M, Ma Z (2011) Hybrid differential evolution and gravitation search algorithm for unconstrained optimization. Int J Phys Sci 6(25):5961–5981

    Google Scholar 

  38. Yin M, Hu Y, Yang F, Li X, Gu W (2011) A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering. Expert Syst Appl 38(8):9319–9324

    Article  Google Scholar 

  39. Mirjalili S, Gandomi AH (2017) Chaotic gravitational constants for the gravitational search algorithm. Appl Soft Comput 53:407–419

    Article  Google Scholar 

  40. Ghalambaz M, Noghrehabadi AR, Behrang MA, Assareh E, Ghanbarzadeh A, Hedayat N (2011) A hybrid neural network and gravitational search algorithm (HNNGSA) method to solve well known Wessinger’s Equation. In: World academy of science, engineering and technology, pp 803–807

  41. Palanikkumar D, Anbuselvan P, Rithu B (2012) A gravitational search algorithm for effective Web service selection for composition with enhanced QoS in SOA. Int J Comput Appl 42(8):12–15

    Google Scholar 

  42. Kumar JV, Kumar DV, Edukondalu K (2013) Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market. Appl Soft Comput 13(5):2445–2455

    Article  Google Scholar 

  43. Qasem RA, Eldos T (2013) An efficient cell placement using gravitational search algorithms. J Comput Sci 9(8):943–948

    Article  Google Scholar 

  44. Li C, Zhou J (2011) ‘Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm’. Energy Convers Manage 52(1):374–381

    Article  MathSciNet  Google Scholar 

  45. Mallick S, Ghoshal S, Acharjee P, Thakur S (2013) Optimal static state estimation using improved particle swarm optimization and gravitational search algorithm. Int J Electr Power Energy Syst 52:254–265

    Article  Google Scholar 

  46. Bahrololoum A, Nezamabadi-Pour H, Bahrololoum H, Saeed M (2012) A prototype classifier based on gravitational search algorithm. Appl Soft Comput 12(2):819–825

    Article  Google Scholar 

  47. González-Álvarez D, Vega-Rodríguez M, Gómez-Pulido J, Sánchez-Pérez J (2011) Applying a multiobjective gravitational search algorithm (MO-GSA) to discover motifs. In: Advances in computational intelligence. Springer: Berlin, pp 372–379

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Institute of Technology Jalandhar, India. We would like to express our gratitude toward the unknown potential reviewers who have agreed to review this article and who have provided valuable suggestions to improve the quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Yadav.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, I., Yadav, A. Comprehensive learning gravitational search algorithm for global optimization of multimodal functions. Neural Comput & Applic 32, 7347–7382 (2020). https://doi.org/10.1007/s00521-019-04250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04250-5

Keywords

Navigation