Skip to main content
Log in

An enhanced sitting–sizing scheme for shunt capacitors in radial distribution systems using improved atom search optimization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, an enhanced sitting–sizing scheme for shunt capacitors (4SCs) in a radial distribution system (RDS) based on an improved atom search optimization (IASO) algorithm is proposed. IASO emulates the model of atomic motion in nature based on interaction forces among atoms. The main goal of the 4SCs problem is to reduce the line losses and minimize the capacitor installation cost by searching for the optimal location and sizing of the capacitors. This leads to improvements in the voltage profile and reliability of the system. The IASO algorithm is introduced to achieve the optimal sitting and sizing of capacitors for RDSs. The proposed IASO algorithm is benchmarked and validated on different radial systems, including the IEEE 33-bus, IEEE 34-bus, IEEE 65-bus, IEEE 85-bus and Marsa Matrouh networks, to demonstrate its performance in real-world applications. The results obtained by the proposed IASO algorithm are compared with the standard ASO, PSO, SCA, GWO and SSA algorithms. Furthermore, the significance of the obtained results is confirmed by performing a nonparametric statistical test, i.e., the Wilcoxon’s rank-sum at the 5% significance level. The comprehensive results demonstrate that the results obtained by the proposed IASO algorithm denominate the results obtained by the other algorithms and that IASO minimizes the operating costs while achieving better voltage profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Prakash DB, Lakshminarayana C (2017) Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm. Alex Eng J 56(4):499–509

    Article  Google Scholar 

  2. Schmill JV (1965) Optimum size and location of shunt capacitors on distribution feeders. IEEE Trans Power Apparat Syst 84:825–832

    Article  Google Scholar 

  3. Duran H (1968) Optimum number, location and size of shunt capacitors in radial distribution feeders: a dynamic programming approach. IEEE Trans Power Apparat Syst 87:1769–1774

    Article  Google Scholar 

  4. Grainger JJ, Lee SH (1981) Optimum size and location of shunt capacitors for reduction of losses on distribution feeders. IEEE Trans Power Apparat Syst 100(3):1105–1118

    Article  Google Scholar 

  5. Grainger JJ, Civanlar S (1985) Volt/var control on distribution systems with lateral branches using shunt capacitors as voltage regulators-part I, II and III. IEEE Trans Power Apparat Syst 104(11):3278–3297

    Article  Google Scholar 

  6. Baran ME, Wu FF (1989) Optimal sizing of capacitors placed on a radial distribution system. IEEE Trans Power Deliv 1:735–743

    Article  Google Scholar 

  7. Baran ME, Wu FF (1989) Optimal capacitor placement on radial distribution system. IEEE Trans Power Deliv 4(1):725–734

    Article  Google Scholar 

  8. Liu Zhao, Li Han, Zhu Ping (2019) Diversity enhanced particle swarm optimization algorithm and its application in vehicle lightweight design. J Mech Sci Technol 33(2):695–709

    Article  Google Scholar 

  9. Rizk-Allah RM, El-Sehiemy RA, Wang G-G (2018) A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution. Appl Soft Comput 63:206–222

    Article  Google Scholar 

  10. Rizk-Allah RM, Hassanien AE (2018) New binary bat algorithm for solving 0–1 knapsack problem. Complex Intell Syst 4(1):31–53

    Article  Google Scholar 

  11. Rizk-Allah RM (2018) An improved sine cosine algorithm based on orthogonal parallel information for global optimization. Soft Comput. https://doi.org/10.1007/s00500-018-3355-y

    Article  Google Scholar 

  12. Rizk-Allah RM, El-Sehiemy RA, Deb S, Wang G-G (2017) A novel fruit fly framework for multi-objective shape design of tubular linear synchronous motor. J Supercomput 73(3):1235–1256

    Article  Google Scholar 

  13. Rizk-Allah RM (2018) Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. J Comput Design Eng 5:249–273

    Article  Google Scholar 

  14. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  15. Mirjalili S et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  16. Rizk-Allah RM, Hassanien AE, Bhattacharyya S (2018) Chaotic crow search algorithm for fractional optimization problems. Appl Soft Comput 71:1161–1175

    Article  Google Scholar 

  17. Rizk-Allah RM, Hassanien AE, Elhoseny M (2018) A new binary salp swarm algorithm: development and application for optimization tasks. In: Neural computing and applications. Accepted, 22 June 2018

  18. Rizk-Allah RM (2016) Hybridization of fruit fly optimization algorithm and firefly algorithm for solving nonlinear programming problems. Int J Swarm Intel Evol Comput 5(2):1–10

    Article  Google Scholar 

  19. El-Sawy AA, Zaki EM, Rizk-Allah RM (2013) A novel hybrid ant colony optimization and firefly algorithm for solving constrained engineering design problems. J Nat Sci Math 6(1):1–22

    Google Scholar 

  20. El-Sawy AA, Zaki EM, Rizk-Allah RM (2013) Novel hybrid ant colony optimization and firefly algorithm for multi-objective optimization problems. Int J Math Arch 4(1):152–161

    MATH  Google Scholar 

  21. Rizk-Allah RM, Zaki Elsayed M, El-Sawy AA (2013) Hybridizing ant colony optimization with firefly algorithm for unconstrained optimization problems. Appl Math Comput 224(1):473–483

    MathSciNet  MATH  Google Scholar 

  22. Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T (2019) Artificial neural network methods for the solution of second order boundary value problems. Comput Mater Continua 59(1):345–359

    Article  Google Scholar 

  23. Ghasemi H, Park HS, Rabczuk T (2018) A multi-material level set-based topology optimization of flexoelectric composites. Comput Methods Appl Mech Eng 332:47–62

    Article  MathSciNet  MATH  Google Scholar 

  24. Prakash K, Sydulu M (2007) Particle swarm optimization based capacitor placement on radial distribution system. In: Proceedings of IEEE power engineering society general meeting, pp 1–5

  25. Levitin G, Kalyuzhny A, Shenkaman A (2000) Optimal capacitor allocation in distribution system using genetic algorithm and a fast energy loss computation technique. IEEE Trans Power Deliv 15(2):623–628

    Article  Google Scholar 

  26. Mohamed Shuaib Y, Surya Kalavathi M, Christober Asir Rajan C (2015) Optimal capacitor placement in radial distribution system using gravitational search algorithm. Int J Electr Power Energy Syst 64:384–397

    Article  Google Scholar 

  27. El-Fergany A (2015) Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm. Int J Electr Power Energy Syst 64:1197–1205

    Article  Google Scholar 

  28. Niknam T, Azizipanah-Abarghooee R, Narimani MR (2012) A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems. Eng Appl Artif Intel 25:1577–1588

    Article  Google Scholar 

  29. Ali ES, Abd-Elazim SM, Abdelaziz AY (2016) Improved harmony algorithm and power loss index for optimal locations and sizing of capacitors in radial distribution systems. Int J Electr Power Energy Syst 80:252–263

    Article  Google Scholar 

  30. Tamilselvan V, Jayabarathi T, Raghunathan T, Yang X-S (2018) Optimal capacitor placement in radial distribution systems using flower pollination algorithm. Alex Eng J 57(4):2775–2786

    Article  Google Scholar 

  31. Zhao Weiguo, Wang Liying, Zhang Zhenxing (2019) Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl Based Syst 163:283–304

    Article  Google Scholar 

  32. Teng JH (2003) A direct approach for distribution system load flow solutions. IEEE Trans Power Deliv 18(3):882–887

    Article  Google Scholar 

  33. Goldstein H, Poole CP, Safko JL (2001) Classical mechanics. Addison Wesley, Boston

    MATH  Google Scholar 

  34. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  Google Scholar 

  35. Lennard-Jones JE (1924) On the determination of molecular fields. Proc R Soc Lond A Math Phys Eng Sci 106(738):463–477

    Google Scholar 

  36. Srinivasas Rao R, Narasimham SVL, Ramalingaraju M (2011) Optimal capacitor placement in radial distribution system using plant growth simulation algorithm. Int J Electr Power Energy Syst 33:1133–1139

    Article  Google Scholar 

  37. Derrac J, García S, MolinaD Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  38. Ela E, Abou AA, Allam SM, Shehata NK (2017) Assessment of hybrid renewable energy with energy storage system for supplying distribution networks in Egypt. In: 2017 19th international middle east power systems conference (MEPCON). IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aboul Ella Hassanien.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rizk M. Rizk-Allah and Aboul Ella Hassanien: Scientific Research Group in Egypt. http://www.egyptscience.net.

Appendix: Benchmark optimization problems with their characteristics

Appendix: Benchmark optimization problems with their characteristics

This section provides the description of each benchmark function regarding the mathematical model, function nature (i.e., unimodal, multimodal) and graph. The major motivation for this representation is to concentrate on the more challenging and complicated benchmark problems while validating the performance of a certain algorithm to depict a fire validation.

  1. 1.

    Schaffer (F1)

$$ f(x_{1} ,x_{2} ) = 0.5 + \frac{{\sin^{2} \left( {x_{1}^{2} + x_{2}^{2} } \right)^{2} - 0.5}}{{\left( {1 + 0.001\left( {x_{1}^{2} + x_{2}^{2} } \right)} \right)^{2} }}. $$

Characteristics: unimodal, nonconvex, continuous, non-separable, differentiable and defined on an n-dimensional space.

Search space: \( {\mathbf{x}} = (x_{1} ,x_{2} ) \in \left[ { - 100,\,100} \right] \)

Global minimum: \( f({\mathbf{x}}) = 0 \) at \( {\mathbf{x}} = (0,0) \)

figure a
  1. 2.

    Griewank (F2)

$$ f({\mathbf{x}}) = \frac{1}{4000}\sum\limits_{i = 1}^{n} {(x_{i} - 100)^{2} } - \varPi_{i = 1}^{n} \cos \left( {\frac{{x_{i} - 100}}{\sqrt i }} \right) + 1,\;\;{\text{with}}\,n = 100. $$

Characteristics: unimodal, nonconvex, continuous, non-separable and defined on an n-dimensional space.

Search space: \( {\mathbf{x}} \in \left[ { - 600,\,600} \right] \)

Global minimum: \( f({\mathbf{x}}) = 0 \) at \( {\mathbf{x}} = 0. \)

figure b
  1. 3.

    Rastrigin (F3)

$$ f({\mathbf{x}}) = 10n + \sum\limits_{i = 1}^{n} {\left( {x_{i}^{2} - 10\cos (2\pi x_{i} )} \right)} ,\;\;{\text{where}}\,n = 100. $$

Characteristics: multimodal, differentiable, continuous, separable, convex and defined on an n-dimensional space.

Search space: \( {\mathbf{x}} \in \left[ { - 5.12,\,5.12} \right] \)

Global minimum: \( f({\mathbf{x}}) = 0 \) at \( {\mathbf{x}} = 0 \)

figure c
  1. 4.

    Rosenbrock (F4)

$$ f({\mathbf{x}}) = \sum\limits_{i = 1}^{n} {\left( {100(x_{i + 1}^{{}} - x_{i}^{2} )^{2} + (x_{i}^{{}} - 1)^{2} } \right)} + ,\;\;{\text{where}}\,n = 100. $$

Characteristics: Unimodal, differentiable, continuous, non-separable, convex and defined on an n-dimensional space.

Search space: \( {\mathbf{x}} \in \left[ { - 30,\,30} \right] \)

Global minimum: \( f({\mathbf{x}}) = 0 \) at \( {\mathbf{x}} = 1. \)

figure d
  1. 5.

    Ackley (F5)

$$ f({\mathbf{x}}) = - 20\,\exp \left( { - 0.2\sqrt {\frac{1}{n}\sum\nolimits_{i = 1}^{n} {x_{i} } } } \right) - \exp \left( {\frac{1}{n}\sum\limits_{i = 1}^{n} {\cos (2\pi x_{i} } )} \right) + 20 + \exp (1),\;\;{\text{where}}\,n = 100. $$

Characteristics: multimodal, nonconvex, continuous, non-separable and defined on an n-dimensional space.

Search space: \( {\mathbf{x}} \in \left[ { - 32,\,32} \right] \)

Global minimum: \( f({\mathbf{x}}) = 0 \) at \( {\mathbf{x}} = 0. \)

figure e
  1. 6.

    Penalized (F6)

$$ f({\mathbf{x}}) = 0.1\left\{ {\sin^{2} \left( {3\pi x_{1} } \right) + \sum\limits_{i = 1}^{n} {\left( {x_{i} - 1} \right)^{2} \left[ {1 + \sin (3\pi x_{i} + 1)} \right] + \left( {x_{n} - 1} \right)^{2} \left[ {1 + \sin^{2} (2\pi x_{n} )} \right]} } \right\} + \sum\nolimits_{i = 1}^{n} {u\left( {x_{i} ,\,5,100,4} \right)} . $$

Characteristics: multimodal, nonconvex, continuous, non-separable and defined on an n-dimensional space.

Search space: \( {\mathbf{x}} \in \left[ { - 50,\,50} \right] \)

Global minimum: \( f({\mathbf{x}}) = 0 \) at \( {\mathbf{x}} = 0. \)

figure f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizk-Allah, R.M., Hassanien, A.E. & Oliva, D. An enhanced sitting–sizing scheme for shunt capacitors in radial distribution systems using improved atom search optimization. Neural Comput & Applic 32, 13971–13999 (2020). https://doi.org/10.1007/s00521-020-04799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04799-6

Keywords

Navigation