Skip to main content
Log in

Generalized robust graph-Laplacian PCA and underwater image recognition

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Recently, given the importance of the structure-preserving ability of features, many principal component analysis (PCA) methods based on manifold learning theory, such as graph-Laplacian PCA (gLPCA), have been developed to protect the geometrical structure of the original data space. However, many methods do not best minimize the reconstruction error, which is great significance for underwater image recognition and representation. To alleviate this deficiency, a novel idea for gLPCA—generalized robust graph-Laplacian PCA (GRgLPCA)—was proposed. GRgLPCA not only employs the \(l_{2,p}\)-norm on regarding the correlation between the reconstruction error and variance in the projection data to suppress the influence of underwater noise, but it also employs it regarding the graph-Laplacian regularization term to better protect the intrinsic geometric information embedded in the data. Moreover, GRgLPCA preserves the rotational invariance well, and the solution of the model is related to image covariance matrix, which are the two desired properties of PCA-based method. Finally, we design a fast and effective non-greedy iterative algorithm to obtain the GRgLPCA solution. A series of experiments on several underwater image databases and one face image extension database illustrated the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chuang MC, Hwang JN, Williams K (2016) A feature learning and object recognition framework for underwater fish images. IEEE Trans Image Process 25(4):1862–1872

    MathSciNet  MATH  Google Scholar 

  2. Amer KO, Elbouz M, Alfalou A, Brosseau C, Hajjami J (2019) Enhancing underwater optical imaging by using a low-pass polarization filter. Opt Express 27(2):621–643

    Article  Google Scholar 

  3. Yellamraju T, Boutin M (2018) Clusterability and clustering of images and other “real” high-dimensional data. IEEE Trans Image Process 27(4):1927–1938

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang S, Wang T, Dong J, Yu H (2017) Underwater image enhancement via extended multi-scale Retinex. Neurocomputing 245:1–9

    Article  Google Scholar 

  5. Chen P, Rong Y, Nordholm S, He Z (2017) Joint channel and impulsive noise estimation in underwater acoustic OFDM systems. IEEE Trans Veh Technol 66(11):10567–10571

    Article  Google Scholar 

  6. Ma C, Lv X, Ao J (2019) Difference based median filter for removal of random value impulse noise in images. Multimed Tools Appl 78(1):1131–1148

    Article  Google Scholar 

  7. Sun X, Shi J, Liu L, Dong J, Plant C, Wang X, Zhou H (2018) Transferring deep knowledge for object recognition in low-quality underwater videos. Neurocomputing 275:897–908

    Article  Google Scholar 

  8. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition. pp 586–591

  9. Lavanya B, Inbarani HH (2018) A novel hybrid method based on principal component analysis and tolerance rough similarity for face identification. Neural Comput Appl 29(8):289–299

    Article  Google Scholar 

  10. Bartlett MS, Movellan JR, Sejnowski TJ (2002) Face recognition by independent component analysis. IEEE Trans Neural Netw 13(6):1450–1464

    Article  Google Scholar 

  11. Belhumeur PN, Movellan JP, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  12. He X, Niyogi P (2004) Locality preserving projections. In: Proceedings of advances in neural information processing systems. pp 153–160

  13. He X, Cai D, Yan S, Zhang H-J (2005) Neighborhood preserving embedding. In: Proceedings of the IEEE international conference on computer vision (ICCV), vol 2. pp 1208–1213

  14. Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: projection-based dimensionality reduction technique. IEEE Trans Pattern Anal Mach Intell 29(12):2143–2156

    Article  Google Scholar 

  15. Jiang B, Ding C, Tang J (2013) Graph-Laplacian PCA: closed-form solution and robustness. In: Proceedings of IEEE computer vision and pattern recognition (CVPR). pp 3492–3498

  16. Kang Z, Zhao X, Peng C, Zhu H, Zhou J, Peng X, Chen W, Xu Z (2020) Partition level multiview subspace clustering. Neural Netw 122:279–288

    Article  Google Scholar 

  17. Zhao C, Lai Z, Miao D, Wei Z, Liu C (2014) Graph embedding discriminant analysis for face recognition. Neural Comput Appl 24(7–8):1697–1706

    Article  Google Scholar 

  18. Kang Z, Xu H, Wang B, Zhu H, Xu Z (2019) Clustering with similarity preserving. Neural Comput 365:211–218

    Google Scholar 

  19. Zhang Y, Jia Q (2018) Complex process monitoring using KUCA with application to treatment of waste liquor. IEEE Trans Control Syst Technol 26(2):427–438

    Article  Google Scholar 

  20. Jian Y, Zhang D, Frangi AF, Yang J-Y (2004) Two-dimensional PCA: a new method to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  21. Lu H, Plataniotis KN, Venetsanopoulos AN (2008) MPCA: multilinear principal component analysis of tensor objects. IEEE Trans Neural Netw 19(1):18–39

    Article  Google Scholar 

  22. Yang W, Sun C, Ricanek K (2012) Sequential row-column 2DPCA for face recognition. Neural Comput Appl 21(7):1729–1735

    Article  Google Scholar 

  23. Beckmann CF, Smith SA (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23(2):137–152

    Article  Google Scholar 

  24. Yang J, Zhang D, Yong X, Yang J-Y (2005) Two-dimensional discriminant transform for face recognition. Pattern Recognit 38(7):1125–1129

    Article  MATH  Google Scholar 

  25. Zhang H, Wu QMJ, Chow TWS, Zhao M (2012) A two-dimensional neighborhood preserving projection for appearance-based face recognition. Pattern Recognit 45(5):1866–1876

    Article  MATH  Google Scholar 

  26. Tao D, Li X, Wu X, Maybank SJ (2007) General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell 29(10):1700–1715

    Article  Google Scholar 

  27. Ke Q, Kanade T (2005) Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming. In: Proceedings of IEEE conference computer vision pattern recognition, vol 1. pp 739–746

  28. Kwak N (2008) Principal component analysis based on L1-norm maximization. IEEE Trans Pattern Anal Mach Intell 30(9):1672–1680

    Article  Google Scholar 

  29. Nie F, Huang H, Ding C, Luo D, Wang H (2011) Robust principal component analysis with non-greedy l1-norm maximization. In: Proceedings of international joint conference artificial intelligence. pp 1433–1438

  30. Wang R, Nie F, Yang X, Gao F, Yao M (2015) Robust 2DPCA with non-greedy l(1)-norm maximization for image analysis. IEEE Trans Cybern 45(5):1108–1112

    Article  Google Scholar 

  31. Ye Q, Yang J, Liu F, Zhao C, Ye N, Yin T (2018) L1-norm distance linear discriminant analysis based on an effective iterative algorithm. IEEE Trans Circ Syst Video Technol 28(1):114–129

    Article  Google Scholar 

  32. Wang Q, Gao Q, Xie D, Gao X, Wang Y (2018) Robust DLPP with nongreedy l1-norm minimization and maximization. IEEE Trans Neural Netw Learn Syst 29(3):738–743

    Article  MathSciNet  Google Scholar 

  33. Kang Z, Pan H, Steven CH, Xu Z (2019) Robust graph learning from noisy data. IEEE Trans Cybern. https://doi.org/10.1109/tcyb.2018.2887094

    Article  Google Scholar 

  34. Peng C, Chen Y, Kang Z, Chen C, Cheng Q (2020) Robust principal component analysis: a factorization-based method with linear complexity. Inf Sci 513:581–599

    Article  Google Scholar 

  35. Feng C-M, Gao Y-L, Liu J-X, Zheng C-H, Yu J-G (2017) PCA based on graph Laplacian regularization and p-norm for gene selection and clustering. IEEE Trans Nanobiosci 16(4):257–265

    Article  Google Scholar 

  36. Wang Q, Gao Q, Gao X, Nie F (2017) Angle principal component analysis. In: Proceedings of international joint conference on artificial intelligence, vol 2. pp 1201–1207

  37. Gao Q, Xu S, Chen F, Ding C, Gao X, Li Y (2019) R1-2-DPCA and face recognition. IEEE Trans Cybern 49(4):1212–1223

    Article  Google Scholar 

  38. Wang Q, Gao Q, Gao X, Nie F (2018) L2, p-norm based PCA for image recognition. IEEE Trans Image Process 27(3):1336–1346

    Article  MathSciNet  MATH  Google Scholar 

  39. Ding C, Zhou D, He X, Zha H (2006) R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization. In: Proceedings of IEEE 23rd international conference on machine learning, Pittsburgh, PA, USA. pp 281–288

  40. Nie F, Yuan J, Huang H (2014) Optimal mean robust principal component analysis. In: Proceedings of international conference on machine learning. pp 1062–1070

  41. Wong WK, Lai Z, Xu Y, Wen J, Ho CP (2015) Joint tensor feature analysis for visual object recognition. IEEE Trans Cybern 45(11):2425–2436

    Article  Google Scholar 

  42. Zhang Z, Li F, Zhao M, Zhang L, Yan S (2017) Robust neighborhood preserving projection by nuclear/L2,1-norm regularization for image feature extraction. IEEE Trans Image Process 26(4):1607–1622

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu Y, Gao Q, Miao S, Gao X, Nie F, Li Y (2017) A non-greedy algorithm for l1-norm LDA. IEEE Trans Image Process 26(4):684–695

    Article  MathSciNet  MATH  Google Scholar 

  44. Shao K-T, Lin J, Wu C-H, Yeh HM, Cheng T-Y (2012) A dataset from bottom trawl survey around Taiwan. ZooKeys 198:103–109

    Article  Google Scholar 

  45. Li Y, Lu H, Li J, Li X, Li Y, Serikawa S (2016) Underwater image de-scattering and classification by deep neural network. Comput Electr Eng 54:68–77

    Article  Google Scholar 

  46. Xu J, Bi P, Du X, Li J, Chen D (2019) Generalized robust PCA: a new distance metric method for underwater target recognition. IEEE Access 7:51952–51964

    Article  Google Scholar 

  47. Sim T, Baker S, Bsat M (2002) The CMU pose, illumination, and expression (PIE) database. In: Proceedings of IEEE international conference on automatic face and gesture recognition, vol 25. Washington, DC, USA. pp 46–51

  48. Lee J-M, Qin SJ, Lee I-B (2007) Fault detection of non-linear processes using kernel independent component analysis. Can J Chem Eng 85(4):526–536

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Best Sea Assembly and the Control Technology Institute. The authors would like to thank Xue Du and Juan Li for providing assistance with the underwater experiments. This work is also supported in part by the National Natural Science Foundation of China Under Grants 51609046 and 51709062 and in part by Research Funds for the Underwater Vehicle Technology Key Laboratory of China Under Grants 614221502061701 and 6142215180107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, P., Xu, J., Du, X. et al. Generalized robust graph-Laplacian PCA and underwater image recognition. Neural Comput & Applic 32, 16993–17010 (2020). https://doi.org/10.1007/s00521-020-04927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04927-2

Keywords

Navigation