Skip to main content
Log in

l2,p-norm sequential bilateral 2DPCA: a novel robust technology for underwater image classification and representation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Many recently proposed robust two-dimensional principal component analysis (2DPCA) approaches can suppress the sensitivity to outliers in images to some extent. However, most approaches can neither perfectly minimize the reconstruction error nor use fewer coefficients to conveniently represent image information. To alleviate these deficiencies, we developed a novel robust 2DPCA approach for underwater image analysis, called l2,p-sequential bilateral-2DPCA (l2,p-SB-2DPCA). The outstanding advantages of l2,p-SB-2DPCA are as follows. First, our model uses the l2,p-norm as the metric criterion of the objective function, which not only improves the robustness of the algorithm but also preserves the basic properties of 2DPCA. Second, we establish the relationship between the variance of the projection data and the corresponding input data in both the row and column directions, which makes the model achieve good recognition ability while using fewer coefficients and further improves the interpretability of the model. Finally, to obtain the optimal value of l2,p-SB-2DPCA, we present an iterative algorithm. The experimental results show that the proposed algorithm achieves the best performance on three underwater datasets and one extended face dataset compared with other robust 2DPCA approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lu H, Li Y, Uemura T, Kim H, Serikawa S (2018) Low illumination underwater light field images reconstruction using deep convolutional neural networks. Future Gener Comput Syst 82:142–148

    Article  Google Scholar 

  2. Zhao D, Zhou F, Jiang R, Liu X, Chen Y (2019) Design of low-complexity 3-D underwater imaging system with sparse planar arrays. IEEE Trans Instrum Meas 68(10):3418–3432

    Article  Google Scholar 

  3. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  4. Turk M, Pentland A (1991) Face recognition using eigenfaces. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 586–591

  5. Du Q, Chang C (2001) A linear constrained distance-based discriminant analysis for hyperspectral image classification. Pattern Recognit 34(2):361–373

    Article  Google Scholar 

  6. He X, Niyogi P (2004) Locality preserving projections. In: Proceedings of the advances in neural information processing systems, pp 153–160

  7. Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal Mach Intell 29(12):2143–2156

    Article  Google Scholar 

  8. Yang J, Zhang D, Frangi AF, Yang J-Y (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  9. Yang J, Zhang D, Yong X, Yang J-Y (2005) Two-dimensional discriminant transform for face recognition. Pattern Recognit 38(7):1125–1129

    Article  Google Scholar 

  10. Zhang H, Wu QMJ, Chow TWS, Zhao M (2012) A two-dimensional neighborhood preserving projection for appearance-based face recognition. Pattern Recognit 45(5):1866–1876

    Article  Google Scholar 

  11. Kong H, Li X, Wang L, Teoh EK, Wang JG, Venkateswarlu R (2005) Generalized 2D principal component analysis. In: Proceedings of the international joint conference on neural networks, Montreal, Canada, vol 1, pp 108–113

  12. Zhang D, Zhou Z (2005) (2D)2PCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 69(1–3):224–231

    Article  Google Scholar 

  13. Noushath S, Kumar GH, Shivakumara P (2006) (2D)(2)LDA: an efficient approach for face recognition. Pattern Recognit 39(7):1396–1400

    Article  Google Scholar 

  14. Yang WK, Sun CY, Ricanek K (2012) Sequential row-column 2DPCA for face recognition. Neural Comput Appl 21(7):1729–1735

    Article  Google Scholar 

  15. Zhu Q, Xu Y (2013) Multi-directional two-dimensional PCA with matching score level fusion for face recognition. Neural Comput Appl 23(1):169–174

    Article  Google Scholar 

  16. Zhang F, Yang J, Qian J, Xu Y (2015) Nuclear norm-based 2-DPCA for extracting features from images. IEEE Trans Neural Netw Learn Syst 26(10):2247–2260

    Article  MathSciNet  Google Scholar 

  17. Hou J, Wang Y, Zuo J (2013) A novel matrix-based method for face recognition. Neural Comput Appl 23(7–8):2261–2265

    Article  Google Scholar 

  18. Ke Q, Kanade T (2005) Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol 1, pp 739–746

  19. Kwak N (2008) Principal component analysis based on L1-norm maximization. IEEE Trans Pattern Anal Mach Intell 30(9):1672–1680

    Article  Google Scholar 

  20. Nie F, Huang H, Ding C, Luo D, Wang H (2011) Robust principal component analysis with non-greedy l1-norm maximization. In: Proceedings of the international joint conference on artificial intelligence, pp 1433–1438

  21. Li X, Pang Y, Yuan Y (2010) L1-norm-based 2DPCA. IEEE Trans Syst Man Cybern Part B-Cybern 40(4):1170–1175

    Article  Google Scholar 

  22. Wang H, Wang J (2013) 2DPCA with L1-norm for simultaneously robust and sparse modelling. Neural Netw 46(10):190–198

    Article  Google Scholar 

  23. Wang R, Nie F, Yang X, Gao F, Yao M (2015) Robust 2DPCA with non-greedy L1-norm maximization for image analysis. IEEE Trans Cybern 45(5):1108–1112

    Article  Google Scholar 

  24. Pang Y, Li X, Yuan Y (2010) Robust tensor analysis with L1-norm. IEEE Trans Circuits Syst Video Technol 20(2):172–178

    Article  Google Scholar 

  25. Wang Q, Gao Q, Gao X, Nie F (2017) Optimal mean two-dimensional principal component analysis with F-norm minimization. Pattern Recognit 68:286–294

    Article  Google Scholar 

  26. Wang Q, Gao Q, Gao X, Nie F (2018) L2, p-norm based PCA for image recognition. IEEE Trans Image Process 27(3):1336–1346

    Article  MathSciNet  Google Scholar 

  27. Gao Q, Xu S, Chen F, Ding C, Gao X, Li Y (2019) R-1-2-DPCA and face recognition. IEEE Trans Cybern 49(4):1212–1223

    Article  Google Scholar 

  28. Zhou S, Zhang D (2019) Bilateral angle 2DPCA for face recognition. IEEE Signal Process Lett 26(2):317–321

    Article  Google Scholar 

  29. Ding C, Zhou D, He X, Zha H (2006) R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization. In: Proceedings of the 23rd international conference on machine learning, pp 281–288

  30. Li T, Li M, Gao Q, Xie D (2017) F-norm distance metric based robust 2DPCA and face recognition. Neural Netw 94:204–211

    Article  Google Scholar 

  31. Gao Q, Ma L, Liu Y, Gao X, Nie F (2018) Angle 2DPCA: a new formulation for 2DPCA. IEEE Trans Cybern 48(5):1672–1678

    Article  Google Scholar 

  32. Shao KT, Lin J, Wu CH, Yeh HM, Cheng TY (2012) A dataset from bottom trawl survey around Taiwan. ZooKeys 198:103–109

    Article  Google Scholar 

  33. Li Y, Lu H, Li J, Li X, Li Y, Serikawa S (2016) Underwater image de-scattering and classification by deep neural network. Comput Elect Eng 54:68–77

    Article  Google Scholar 

  34. Liu Y, Gao Q, Miao S, Gao X, Nie F, Li Y (2017) A non-greedy algorithm for l1-norm for LDA. IEEE Trans Image Process 26(2):684–695

    Article  MathSciNet  Google Scholar 

  35. Wang Q, Gao Q, Gao X, Nie F (2017) Angle principal component analysis. Proceedings of the international joint conference on artificial intelligence 2:1201–1207

    Google Scholar 

  36. Li Y, Lu H, Li J, Li X, Li Y, Serikawa S (2016) Underwater image de-scattering and classification by deep neural network. Comput Electr Eng 54:68–77

    Article  Google Scholar 

  37. Xu J, Bi P, Du X, Li J (2019) Generalized robust PCA: a new distance metric method for underwater target recognition. IEEE Access 7:51952–51964

    Article  Google Scholar 

  38. Sim T, Baker S, Bsat M (2002) The CMU pose, illumination, and expression (PIE) database. In: Proceedings of the IEEE international conference on automatic face gesture recognition, pp 53–58

  39. Lee J-M, Qin SJ, Lee I-B (2007) Fault detection of non-linear processes using kernel independent component analysis. Can J Chem Eng 85(4):526–536

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Best Sea Assembly and the Control Technology Institute. The authors would like to thank Jian Xu, Xue Du, Juan Li and Guangjia Chen for providing assistance with the underwater experiments. This work is also supported in part by the National Natural Science Foundation of China under Grants 51609046 and 51709062 and in part by Research Funds for the Underwater Vehicle Technology Key Laboratory of China under Grants 614221502061701 and 6142215180107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, P., Xu, J., Du, X. et al. l2,p-norm sequential bilateral 2DPCA: a novel robust technology for underwater image classification and representation. Neural Comput & Applic 32, 17027–17041 (2020). https://doi.org/10.1007/s00521-020-04936-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04936-1

Keywords

Navigation