Skip to main content
Log in

Battle royale optimization algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Recently, several metaheuristic optimization approaches have been developed for solving many complex problems in various areas. Most of these optimization algorithms are inspired by nature or the social behavior of some animals. However, there is no optimization algorithm which has been inspired by a game. In this paper, a novel metaheuristic optimization algorithm, named BRO (battle royale optimization), is proposed. The proposed method is inspired by a genre of digital games knowns as “battle royale.” BRO is a population-based algorithm in which each individual is represented by a soldier/player that would like to move toward the safest (best) place and ultimately survive. The proposed scheme has been compared with the well-known PSO algorithm and six recent proposed optimization algorithms on nineteen benchmark optimization functions. Moreover, to evaluate the performance of the proposed algorithm on real-world engineering problems, the inverse kinematics problem of the 6-DOF PUMA 560 robot arm is considered. The experimental results show that, according to both convergence and accuracy, the proposed algorithm is an efficient method and provides promising and competitive results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lazar A (2002) Heuristic knowledge discovery for archaeological data using genetic algorithms and rough sets. In: Sarker R, Abbass H, Newton C (eds) Heuristic and optimization for knowledge discovery. IGI Global, Hershey, pp 263–278

    Chapter  Google Scholar 

  2. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67. https://doi.org/10.1109/MCS.2002.1004010

    Article  Google Scholar 

  3. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T (eds) Stochastic algorithms: foundations and applications. Springer, Berlin, pp 169–178

    Chapter  Google Scholar 

  4. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  5. Li MD, Zhao H, Weng XW, Han T (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–88. https://doi.org/10.1016/j.advengsoft.2015.11.004

    Article  Google Scholar 

  6. Sharafi Y, Khanesar MA, Teshnehlab M (2016) COOA: competitive optimization algorithm. Swarm Evolut Comput 30:39–63. https://doi.org/10.1016/j.swevo.2016.04.002

    Article  Google Scholar 

  7. Savsani P, Savsani V (2016) Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl Math Model 40(5):3951–3978. https://doi.org/10.1016/j.apm.2015.10.040

    Article  MATH  Google Scholar 

  8. Jaddi NS, Alvankarian J, Abdullah S (2017) Kidney-inspired algorithm for optimization problems. Commun Nonlinear Sci Numer Simul 42:358–369. https://doi.org/10.1016/j.cnsns.2016.06.006

    Article  MATH  Google Scholar 

  9. Seyyedabbasi A, Kiani F (2019) I-GWO and Ex-GWO: improved algorithms of the Grey Wolf Optimizer to solve global optimization problems. Eng Comput. https://doi.org/10.1007/s00366-019-00837-7

    Article  Google Scholar 

  10. Holland J (1975) Adaptation in natural and artificial systems: an introductory analysis with application to biology. Control and artificial intelligence. MIT press, Cambridge

    MATH  Google Scholar 

  11. Schwefel H-P (1984) Evolution strategies: a family of non-linear optimization techniques based on imitating some principles of organic evolution. Ann Oper Res 1(2):165–167

    Article  Google Scholar 

  12. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549. https://doi.org/10.1016/0305-0548(86)90048-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. In: Aart EH, van Laarhoven PJ (eds) Simulated annealing: theory and applications. Springer, Berlin, pp 7–15

    Chapter  Google Scholar 

  14. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  15. Ghaemi M, Feizi-Derakhshi M-R (2014) Forest optimization algorithm. Expert Syst Appl 41(15):6676–6687. https://doi.org/10.1016/j.eswa.2014.05.009

    Article  Google Scholar 

  16. Askarzadeh A (2014) Bird mating optimizer: an optimization algorithm inspired by bird mating strategies. Commun Nonlinear Sci Numer Simul 19(4):1213–1228. https://doi.org/10.1016/j.cnsns.2013.08.027

    Article  MathSciNet  MATH  Google Scholar 

  17. Tang D, Dong S, Jiang Y, Li H, Huang Y (2015) ITGO: invasive tumor growth optimization algorithm. Appl Soft Comput 36:670–698. https://doi.org/10.1016/j.asoc.2015.07.045

    Article  Google Scholar 

  18. Eberhart R, Kennedy JA (1995) New optimizer using particle swarm theory. In: MHS’95. proceedings of the sixth international symposium on micro machine and human science, 4-6 Oct. 1995 1995. pp 39–43. https://doi.org/10.1109/mhs.1995.494215

  19. Dorigo M, Caro GD (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), 6-9 July 1999 1999. pp 1470–1477 Vol. 1472. https://doi.org/10.1109/cec.1999.782657

  20. Chu S-C, Tsai P-w, Pan J-S (2006) Cat swarm optimization. In: Yang Q, Webb G (eds) PRICAI 2006: trends in artificial intelligence. Springer, Berlin, pp 854–858

    Chapter  Google Scholar 

  21. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  22. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7):1867–1877. https://doi.org/10.1007/s00521-013-1433-8

    Article  Google Scholar 

  23. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  MathSciNet  Google Scholar 

  24. Fausto F, Cuevas E, Valdivia A, González A (2017) A global optimization algorithm inspired in the behavior of selfish herds. Biosystems 160:39–55. https://doi.org/10.1016/j.biosystems.2017.07.010

    Article  Google Scholar 

  25. Formato RA (2007) Central force optimization. Prog Electromagn Res 77:425–491

    Article  Google Scholar 

  26. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  27. Husseinzadeh Kashan A (2015) A new metaheuristic for optimization: optics inspired optimization (OIO). Comput Oper Res 55:99–125. https://doi.org/10.1016/j.cor.2014.10.011

    Article  MathSciNet  MATH  Google Scholar 

  28. Kaveh A, Bakhshpoori T (2016) Water evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167:69–85. https://doi.org/10.1016/j.compstruc.2016.01.008

    Article  Google Scholar 

  29. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184. https://doi.org/10.1016/j.ins.2012.08.023

    Article  MathSciNet  Google Scholar 

  30. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3):267–289. https://doi.org/10.1007/s00707-009-0270-4

    Article  MATH  Google Scholar 

  31. Punnathanam V, Kotecha P (2016) Yin-Yang-pair optimization: a novel lightweight optimization algorithm. Eng Appl Artif Intell 54:62–79. https://doi.org/10.1016/j.engappai.2016.04.004

    Article  Google Scholar 

  32. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  33. Abedinpourshotorban H, Mariyam Shamsuddin S, Beheshti Z, Jawawi DNA (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evolut Comput 26:8–22. https://doi.org/10.1016/j.swevo.2015.07.002

    Article  Google Scholar 

  34. Chen S, Montgomery J (2013) Particle swarm optimization with thresheld convergence. In: 2013 IEEE congress on evolutionary computation, 20-23 June 2013 2013. pp 510–516. https://doi.org/10.1109/cec.2013.6557611

  35. Zhang Q, Wang R, Yang J, Ding K, Li Y, Hu J (2017) Collective decision optimization algorithm: a new heuristic optimization method. Neurocomputing 221:123–137. https://doi.org/10.1016/j.neucom.2016.09.068

    Article  Google Scholar 

  36. Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM comput Surveys (CSUR) 45(3):1–33

    Article  Google Scholar 

  37. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  38. Contributors W (14 October 2018) Battle royale game. Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Battle_royale_game&oldid=864010252

  39. Contributors W (2020) PlayerUnknown’s Battlegrounds—Wikipedia, The Free Encyclopedia

  40. Contributors W (2020) Call of duty: Warzone—Wikipedia, The Free Encyclopedia

  41. contributors W (2020) Apex Legends—Wikipedia, The Free Encyclopedia

  42. Contributors W (2020) Counter-Strike: Global Offensive—Wikipedia, The Free Encyclopedia

  43. Contributors W (2020) Ring of Elysium—Wikipedia, The Free Encyclopedia

  44. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  45. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  46. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  47. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  48. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30-47

    Article  Google Scholar 

  49. Krohling RA, Jaschek H, Rey JP (1997) Designing PI/PID controllers for a motion control system based on genetic algorithms. In: Proceedings of 12th IEEE international symposium on intelligent control, 16-18 July 1997 1997. pp 125–130. https://doi.org/10.1109/isic.1997.626429

  50. Richter CW, Sheble GB (1998) Genetic algorithm evolution of utility bidding strategies for the competitive marketplace. IEEE Trans Power Syst 13(1):256–261. https://doi.org/10.1109/59.651644

    Article  Google Scholar 

  51. Elmi A, Solimanpur M, Topaloglu S, Elmi A (2011) A simulated annealing algorithm for the job shop cell scheduling problem with intercellular moves and reentrant parts. Comput Ind Eng 61(1):171–178. https://doi.org/10.1016/j.cie.2011.03.007

    Article  Google Scholar 

  52. Foroughi A, Gökçen HA (2019) Multiple rule-based genetic algorithm for cost-oriented stochastic assembly line balancing problem. Assembly Automation. https://doi.org/10.1108/aa-03-2018-050

    Article  Google Scholar 

  53. Çavdar T, Mohammad M, Milani RA (2013) A new heuristic approach for inverse kinematics of robot arms. Adv Sci Lett 19(1):329–333. https://doi.org/10.1166/asl.2013.4700

    Article  Google Scholar 

  54. Milani MMRA, Çavdar T, Aghjehkand VF (2012) Particle swarm optimization—based determination of ziegler–Nichols parameters for PID controller of brushless DC motors. In: 2012 International symposium on innovations in intelligent systems and applications, 2-4 July 2012 2012. pp 1–5. https://doi.org/10.1109/inista.2012.6246984

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taymaz Rahkar Farshi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahkar Farshi, T. Battle royale optimization algorithm. Neural Comput & Applic 33, 1139–1157 (2021). https://doi.org/10.1007/s00521-020-05004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05004-4

Keywords

Navigation