Skip to main content
Log in

Fisher information-empowered sensing quality quantification for crowdsensing networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The sensing quality is critical for crowdsensing networks. However, it is still challenging to achieve reliable and accurate quantification on sensing quality. As most existing methods only quantify individual-level sensing quality, they cannot be simply extended to measure network-level sensing quality. Meanwhile, there are two critical challenges for the non-trivial quantifications of network-level sensing quality. First, it is quite daunting to accurately measure the sensing quality, due to the uncertainties in crowdsensing, such as random noise in sensing data and complicated inference of information. Second, it is incredibly difficult to conduct repeatable experiments for multiple times, with the natural dynamics of crowdsensing networks as well as the uncontrollable behaviors of crowdsensing participants. To address the above challenges, in this work, we devise a novel quantification metric to measure the uncertain sensing quality of crowdsensing networks. The proposed metric is based on the confidence interval, exploiting the asymptotic normality property of unbiased estimations. We further leverage the Fisher information in crowdsensing data and successfully derive the confidence interval without redundant multiple computations on repeated experiments. The trace-driven evaluations demonstrate that the proposed method can achieve remarkably accurate quantifications on the network-level sensing quality, outperforming the existing works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bickel PJ, Doksum KA (2015) Mathematical statistics: basic ideas and selected topics, volume I (Vol 117). CRC Press

  2. Chen C, Ding Y, Guo S, Wang Y (2020) DAVT: an error-bounded vehicle trajectory data representation and compression framework. IEEE Trans Veh Technol 69:10606–10618

    Article  Google Scholar 

  3. Chin JC, Rao NS, Yau DK, Shankar M, Yang Y, Hou JC, Srivathsan S, Iyengar S (2010) Identification of low-level point radioactive sources using a sensor network. ACM Trans Sensor Netw 7(3):1–35

    Article  Google Scholar 

  4. Chin JC, Yau DKY, Rao NSV (2011) Efficient and robust localization of multiple radiation sources in complex environments. In: Proceedings of the ICDCS, pp 780–789

  5. El Gamal A, Kim YH (2011) Network information theory. Cambridge University Press

  6. Eisenman S, Miluzzo E, Lane N, Peterson R, Ahn G, Campbell A (2009) BikeNet: a mobile sensing system for cyclist experience mapping. ACM Trans Sensor Netw 6(1):1–39

    Article  Google Scholar 

  7. Fan X, Xiang C, Chen C, Song X, Yang P, Gong L, Nanda P, He X (2020) Buildsensys: reusing building sensing data for traffic prediction with cross-domain learning. IEEE Trans Mobile Comput 16:6114–6123

    Google Scholar 

  8. Ganti RK, Ye F, Lei H (2011) Mobile crowdsensing: current state and future challenges. IEEE Commu Mag 49(11):32–39

    Article  Google Scholar 

  9. Goldsmith A (2005) Wireless communications. Cambridge University Press

  10. Gong L, Zhao Y, Chaocan X, Li Z, Qian C, Yang P (2019) Robust light-weight magnetic-based door event detection with smartphones. IEEE Trans Mob Comput 18(11):2631–2646

    Article  Google Scholar 

  11. Jin H, Su L, Chen D, Nahrstedt K, Xu J (2015) Quality of information aware incentive mechanisms for mobile crowd sensing systems. In: Proceedings of the Mobihoc, pp 167–176

  12. Karamshuk D, Boldrini C, Conti M, Passarella A (2011) Human mobility models for opportunistic networks. IEEE Commun Mag 49(12):157–165

    Article  Google Scholar 

  13. Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT (2010) A survey of mobile phone sensing. IEEE Commun Mag 48(9):140–150

    Article  Google Scholar 

  14. Li X, Zhang X (2019) Multi-task allocation under time constraints in mobile crowdsensing. IEEE Trans Mobile Comput PP:1

    Google Scholar 

  15. Li Y, Zheng J, Li Z, Liu Y, Qian F, Bai S, Liu Y, Xin X (2020) Understanding the ecosystem and addressing the fundamental concerns of commercial MVNO. IEEE/ACM Trans Netw 2020:1364–1377

    Article  Google Scholar 

  16. Liu C, Liu K, Guo S, Xie R, Lee VC, Son SH (2020) Adaptive offloading for time-critical tasks in heterogeneous internet of vehicles. IEEE Internet Things J 2020:1

    Google Scholar 

  17. Liu K, Xiao K, Dai P, Lee V, Guo S, Cao J (2020) Fog computing empowered data dissemination in software defined heterogeneous vanets. IEEE Trans Mobile Comput PP:1

    Google Scholar 

  18. Ma H, Zhao D, Yuan P (2014) Opportunities in mobile crowd sensing. IEEE Commun Mag 52(8):29–35

    Article  Google Scholar 

  19. Mathur S, Jin T, Kasturirangan N, Chandrasekaran J, Xue W, Gruteser M, Trappe W (2010) Parknet: drive-by sensing of road-side parking statistics. In: Proceedings of the Mobisys

  20. Mohan P, Padmanabhan VN, Ramjee R (2008) Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In: Proceedings of the SenSys, pp 323–336

  21. Nawaz S, Efstratiou C, Mascolo C (2013) Parksense: a smartphone based sensing system for on-street parking. In: Proceedings of the Mobicom, pp 75–86

  22. Peng D, Wu F, Chen G (2015) Pay as how well you do: a quality based incentive mechanism for crowdsensing. In: Proceedings of the Mobihoc, pp 177–186

  23. Phillips C, Senior R (2011) CRAWDAD data set pdx/metrofi (v. 2011-10-24). http://crawdad.cs.dartmouth.edu/pdx/metrofi

  24. Rana R, Chou C, Kanhere S, Bulusu N, Hu W (2010) Ear-phone: an end-to-end participatory urban noise mapping system. In: Proceedings of the IPSN, pp 105–116

  25. Rissanen JJ (1996) Fisher information and stochastic complexity. IEEE Trans Inf Theory 42(1):40–47

    Article  MathSciNet  Google Scholar 

  26. Tan R, Xing G, Wang J, So HC (2010) Exploiting reactive mobility for collaborative target detection in wireless sensor networks. IEEE Trans Mob Comput 9(3):317–332

    Article  Google Scholar 

  27. Vijayakumaran S, Levinbook Y, Wong TF (2007) Maximum likelihood localization of a diffusive point source using binary observations. IEEE Trans Signal Process 55(2):665–676

    Article  MathSciNet  Google Scholar 

  28. Wang D, Abdelzaher T, Kaplan L (2012) On truth discovery in social sensing: a maximum likelihood estimation approach. In: Proceedings of the IPSN, pp 233–244

  29. Wang D, Kaplan, L, Abdelzaher T, Aggarwal CC (2012) On scalability and robustness limitations of real and asymptotic confidence bounds in social sensing. In: Proceedings of the SECON, pp 506–514

  30. Wang D, Kaplan L, Aggarwal CC (2011) On quantifying the accuracy of maximum likelihood estimation of participant reliability in social sensing. In: Proceedings of the DMSN, pp 7–12

  31. Wang J, Wang F, Wang Y, Wang L, Qiu Z, Zhang D, Guo B, Lv Q (2019) Hytasker: hybrid task allocation in mobile crowd sensing. IEEE Trans Mob Comput 19(3):598–611

    Article  Google Scholar 

  32. Wang J, Wang Y, Zhang D, Wang F, Xiong H, Chen C, Lv Q, Qiu Z (2018) Multi-task allocation in mobile crowd sensing with individual task quality assurance. IEEE Trans Mob Comput 17(9):2101–2113

    Article  Google Scholar 

  33. Wang Y, Liu X, Wei H, Forman G, Chen C, Zhu Y (2013) Crowdatlas: self-updating maps for cloud and personal use. In: Proceedings of the MobiSys, pp 27–40

  34. Wang Y, Tan R, Xing G, Wang J, Tan X (2014) Profiling aquatic diffusion process using robotic sensor networks. IEEE Trans Mob Comput 13(4):880–893

    Article  Google Scholar 

  35. Weimer J, Sinopoli B, Krogh B (2009) Multiple source detection and localization in advection–diffusion processes using wireless sensor networks. In: Proceedings of the RTSS, pp 333–342

  36. Xiang C, Li X, Yang P, Tian C, Li, Q (2013) Feeling sensors’ pulse: accurate noise quantification in participatory sensing network. In: Proceedings of the MSN, pp 212 – 219

  37. Xiang C, Yang P, Fan X, Gong L (2017) Quantifying sensing quality of crowd sensing networks with confidence interval. In: Proceedings of the UIC, pp 1–6

  38. Xiang C, Yang P, Tian C, Cai H, Liu Y (2015) Calibrate without calibrating: an iterative approach in participatory sensing network. IEEE Trans Parallel Distrib Syst 26(2):351–361

    Article  Google Scholar 

  39. Xiang C, Yang P, Tian C, Zhang L, Lin H, Xiao F, Zhang M, Liu Y (2016) CARM: crowd-sensing accurate outdoor RSS maps with error-prone smartphone measurements. IEEE Trans Mob Comput 15(11):2669–2681

    Article  Google Scholar 

  40. Xiang C, Zhang Z, Qu Y, Lu D, Fan X, Yang P, Wu F (2020) Edge computing-empowered large-scale traffic data recovery leveraging low-rank theory. IEEE Trans Netw Sci Eng 2020:1

    MathSciNet  Google Scholar 

  41. Xing G, Tan R, Liu B, Wang J, Jia X, Yi CW (2009) Data fusion improves the coverage of wireless sensor networks. In: Proceedings of the Mobicom, pp 157–168

  42. Xing G, Wang J, Yuan Z, Tan R, Sun L, Huang Q, Jia X, So HC (2010) Mobile scheduling for spatiotemporal detection in wireless sensor networks. IEEE Trans Parallel Distrib Syst 21(12):1851–1866

    Article  Google Scholar 

  43. Yang D, Xue G, Fang X, Tang J (2012) Crowdsourcing to smartphones: incentive mechanism design for mobile phone sensing. In: Proceedings of the MobiCom, pp 173–184

  44. Yang Q, Li Z, Liu Y, Long H, Huang Y, He J, Xu T, Zhai E (2019) Mobile gaming on personal computers with direct android emulation. In: Proceedings of the MobiCom, pp 1–15

  45. Zhang X, Yang Z, Liu Y, Tang S (2016) On reliable task assignment for spatial crowdsourcing. IEEE Trans Emerg Top Comput 7(1):174–186

    Article  Google Scholar 

  46. Zhang Z, Zhou X, Zhang W, Zhang Y, Wang G, Zhao BY, Zheng, H (2011) I am the antenna: accurate outdoor AP location using smartphones. In: Proceedings of the Mobicom, pp 109–120

  47. Zhao T, Nehorai A (2006) Detecting and estimating biochemical dispersion of a moving source in a semi infinite medium. IEEE Trans Signal Process 54(6):2213–2225

    Article  Google Scholar 

  48. Zhou P, Zheng Y, Li M (2012) How long to wait?: Predicting bus arrival time with mobile phone based participatory sensing. In: Proceedings of the MobiSys, pp 379–392

Download references

Acknowledgements

This research is supported by the NSF of China Projects: Grants No. 61872447, and the Natural Science Foundation of Chongqing (No. CSTC2018JCYJA1879).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaocan Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, C., Fan, X., Chen, C. et al. Fisher information-empowered sensing quality quantification for crowdsensing networks. Neural Comput & Applic 33, 7563–7574 (2021). https://doi.org/10.1007/s00521-020-05501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05501-6

Keywords

Navigation