Skip to main content
Log in

Classification of thermal image of clinical burn based on incremental reinforcement learning

  • Special Issue on Multi-modal Information Learning and Analytics on Big Data
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

A Correction to this article was published on 16 May 2021

This article has been updated

Abstract

At present, the judgment of the burn depth is mainly based on the experience of doctors, so the accuracy of judgment is low, which will affect the follow-up treatment and nursing. In order to improve the diagnostic effect of clinical burns, based on incremental reinforcement learning algorithms, this paper constructs a classification model of clinical burn thermal images based on machine learning algorithms. Moreover, this paper proposes an adaptive network algorithm and uses the structure of the network to implement a reinforcement learning algorithm. In this algorithm, in order to reduce the computational complexity under the premise of ensuring sample utilization, the parameters are updated in the form of increments. In addition, this paper uses the value function approximator to linearly approximate the value function and TD error. Finally, this paper constructs the basic structure of the model based on the functional requirements and constructs experiments to verify the performance of the model. The research results show that the algorithm has good convergence and the image classification effect is very obvious, so it has certain practical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

References

  1. Baco E, Ukimura O, Rud E et al (2015) Magnetic resonance imaging–transectal ultrasound image-fusion biopsies accurately characterize the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135 patients[J]. Eur Urol 67(4):787–794

    Article  Google Scholar 

  2. Banerjee A, Maji P (2015) Rough sets and stomped normal distribution for simultaneous segmentation and bias field correction in brain MR images[J]. IEEE Trans Image Process 24(12):5764–5776

    Article  MathSciNet  Google Scholar 

  3. Bao S, Chung ACS (2018) Multi-scale structured CNN with label consistency for brain MR image segmentation[J]. Comput Methods Biomech Biomed Eng Imaging Vis 6(1):113–117

    Article  Google Scholar 

  4. Chuang YH, Ou HY, Lazo MZ et al (2018) Predicting post-hepatectomy liver failure by combined volumetric, functional MR image and laboratory analysis[J]. Liver Int 38(5):868–874

    Article  Google Scholar 

  5. Gao Z, Li Y, Sun Y et al (2017) Motion tracking of the carotid artery wall from ultrasound image sequences: a nonlinear state-space approach[J]. IEEE Trans Med Imaging 37(1):273–283

    Article  Google Scholar 

  6. Gatter M, Kimport K, Foster DG et al (2014) Relationship between ultrasound viewing and proceeding to abortion[J]. Obstet Gynecol 123(1):81–87

    Article  Google Scholar 

  7. Hansen N, Patruno G, Wadhwa K et al (2016) Magnetic resonance and ultrasound image fusion supported transperineal prostate biopsy using the Ginsburg protocol: technique, learning points, and biopsy results[J]. Eur Urol 70(2):332–340

    Article  Google Scholar 

  8. Harward S, Farber SH, Malinzak M et al (2018) T2-weighted images are superior to other MR image types for the determination of diffuse intrinsic pontine glioma intratumoral heterogeneity[J]. Child’s Nervous Syst 34(3):449–455

    Article  Google Scholar 

  9. Hu Y, Gibson E, Ahmed HU et al (2015) Population-based prediction of subject-specific prostate deformation for MR-to-ultrasound image registration[J]. Med Image Anal 26(1):332–344

    Article  Google Scholar 

  10. Janaki SD, Geetha K (2017) Automatic segmentation of lesion from breast DCE-MR image using artificial fish swarm optimization algorithm[J]. Pol J Med Phys Eng 23(2):29–36

    Article  Google Scholar 

  11. Ji Z, Liu J, Cao G et al (2014) Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation[J]. Pattern Recogn 47(7):2454–2466

    Article  Google Scholar 

  12. Kim Y (2015) Advances in MR image-guided high-intensity focused ultrasound therapy[J]. Int J Hyperth 31(3):225–232

    Article  Google Scholar 

  13. Knoll F, Holler M, Koesters T et al (2016) Joint MR-PET reconstruction using a multi-channel image regularizer[J]. IEEE Trans Med Imaging 36(1):1–16

    Article  Google Scholar 

  14. Kuo CC, Chuang HC, Teng KT et al (2016) An autotuning respiration compensation system based on ultrasound image tracking[J]. J X-ray Sci Technol 24(6):875–892

    Article  Google Scholar 

  15. Madhukumar S, Santhiyakumari N (2015) Evaluation of k-Means and fuzzy C-means segmentation on MR images of brain[J]. Egypt J Radiol Nuclear Med 46(2):475–479

    Article  Google Scholar 

  16. Mitsouras D, Lee TC, Liacouras P et al (2017) Three-dimensional printing of MRI-visible phantoms and MR image-guided therapy simulation[J]. Magn Reson Med 77(2):613–622

    Article  Google Scholar 

  17. Moeskops P, Viergever MA, Mendrik AM et al (2016) Automatic segmentation of MR brain images with a convolutional neural network[J]. IEEE Trans Med Imaging 35(5):1252–1261

    Article  Google Scholar 

  18. Portela NM, Cavalcanti GDC, Ren TI (2014) Semi-supervised clustering for MR brain image segmentation[J]. Expert Syst Appl 41(4):1492–1497

    Article  Google Scholar 

  19. Qin C, Schlemper J, Caballero J et al (2018) Convolutional recurrent neural networks for dynamic MR image reconstruction[J]. IEEE Trans Med Imaging 38(1):280–290

    Article  Google Scholar 

  20. Qiu W, Yuan J, Ukwatta E et al (2014) Dual optimization based prostate zonal segmentation in 3D MR images[J]. Med Image Anal 18(4):660–673

    Article  Google Scholar 

  21. Rivaz H, Chen SJS, Collins DL (2014) Automatic deformable MR-ultrasound registration for image-guided neurosurgery[J]. IEEE Trans Med Imaging 34(2):366–380

    Article  Google Scholar 

  22. Schlemper J, Caballero J, Hajnal JV et al (2017) A deep cascade of convolutional neural networks for dynamic MR image reconstruction[J]. IEEE Trans Med Imaging 37(2):491–503

    Article  Google Scholar 

  23. Siddiqui MM, Rais-Bahrami S, Turkbey B et al (2015) Comparison of MR/ultrasound fusion–guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer[J]. JAMA 313(4):390–397

    Article  Google Scholar 

  24. Song YT, Ji ZX, Sun QS (2014) Brain MR image segmentation algorithm based on Markov random field with image patch[J]. Acta Autom Sin 40(8):1754–1763

    MATH  Google Scholar 

  25. Tian Z, Liu L, Zhang Z et al (2015) Superpixel-based segmentation for 3D prostate MR images[J]. IEEE Trans Med Imaging 35(3):791–801

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by High-level Hospital Construction Research Project of Maoming People’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbo Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests, and Xianjun Wu and Wendong Huang are co-first authors of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Huang, W., Wu, X. et al. Classification of thermal image of clinical burn based on incremental reinforcement learning. Neural Comput & Applic 34, 3457–3470 (2022). https://doi.org/10.1007/s00521-021-05772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05772-7

Keywords

Navigation