Skip to main content
Log in

A systematic review on emperor penguin optimizer

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Emperor Penguin Optimizer (EPO) is a recently developed metaheuristic algorithm to solve general optimization problems. The main strength of EPO is twofold. Firstly, EPO has low learning curve (i.e., based on the simple analogy of huddling behavior of emperor penguins in nature (i.e., surviving strategy during Antarctic winter). Secondly, EPO offers straightforward implementation. In the EPO, the emperor penguins represent the candidate solution, huddle denotes the search space that comprises a two-dimensional L-shape polygon plane, and randomly positioned of the emperor penguins represents the feasible solution. Among all the emperor penguins, the focus is to locate an effective mover representing the global optimal solution. To-date, EPO has slowly gaining considerable momentum owing to its successful adoption in many broad range of optimization problems, that is, from medical data classification, economic load dispatch problem, engineering design problems, face recognition, multilevel thresholding for color image segmentation, high-dimensional biomedical data analysis for microarray cancer classification, automatic feature selection, event recognition and summarization, smart grid system, and traffic management system to name a few. Reflecting on recent progress, this paper thoroughly presents an in-depth study related to the current EPO’s adoption in the scientific literature. In addition to highlighting new potential areas for improvements (and omission), the finding of this study can serve as guidelines for researchers and practitioners to improve the current state-of-the-arts and state-of-practices on general adoption of EPO while highlighting its new emerging areas of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ABC:

Artificial Bee Colony

ACLD:

Adaptive Cross-Layer Design

ACO:

Ant Colony Optimizer

ADTF:

Adaptive Dual Threshold Filter

AFD:

Adaptive Fourier Decomposition

ASMF:

Adaptive Switching Mean Filter

BA:

Bat Algorithm

CFA:

Cultural Firework Algorithm

CGAMO:

Chaotic Multi-objective GA

CMOPSO:

Chaotic Multi-objective PSO

CMSaVD:

Chaotic Map and Sample Value Difference

CSA:

Crow Search Algorithm

DS:

Differential Search Algorithm

DWT:

Discrete Wavelet Transform

EIWO:

Improved Invasive Weed Optimization

EMD:

Empirical Mode Decomposition

EEMD:

Ensemble EMD

EPO:

Emperor Penguin Optimization

EPOSH:

EPO Self-Healing

EPOUA:

EPO User Association

EPSEO:

Emperor Penguin and Social Engineering Optimizer

FIDM:

Fuzzy Intelligent Decision Making

FLC:

Fuzzy Logic Controller

FPA:

Flower Pollination Algorithm

GA:

Genetic Algorithm

GenClustMOO:

Multi-objective Clustering Technique

GSA:

Gravitational Search Algorithm

GWO:

Grey Wolf Optimizer

HDEPO:

Hybrid Deep Emperor Penguin Optimizer

HDNN:

Hybrid Deep Neural Network

IDSA:

Improved Differential Search Algorithm

IWO:

Invasive Weed Optimization

LMVO:

Multiverse Optimization Algorithm based on Lévy flight

MABC:

Modified ABC

MFO:

Moth-Flame Optimization

MO-:

Multi-objective

MOCK:

MO clustering with automatic K determination

MOEA/D:

MO Evolutionary Algorithm based on Decomposition

MVO:

Multi-verse Optimizer

NN:

Neural Network

NSGA-II:

Non-dominated Sorting Genetic Algorithm

PESA-II:

Pareto Envelope Selection Algorithm

QEPO:

Quantum-based EPO

RETP-:

Reliable ECG Transmission Protocol-

FD1/2/3:

Doppler Frequency 1/2/3

SA:

Simulated Annealing

SCA:

Sine Cosine Algorithm

SHO:

Spotted hyena Optimizer

SPEA2:

Strength Pareto Evolutionary Algorithm

SSA:

Salp Swarm Algorithm

SVD:

Singular Value Decomposition

SVM:

Support Vector Machine

TDQ:

Time-Domain Quantizer

TLBO:

Teaching-Learning-Based Optimization

WCO:

World Cup Optimization

WOA:

Whale Optimization Algorithm

References

  1. Zamli KZ, Kader A, Din F, Alhadawi HS (2021) Selective chaotic maps tiki-taka algorithm for the s-box generation and optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06260-8

    Article  Google Scholar 

  2. Abualigah LM, Khader AT, Hanandeh ES (2018) Hybrid clustering analysis using improved krill herd algorithm. Appl Intell 48(11):4047–4071. https://doi.org/10.1007/s10489-018-1190-6

    Article  Google Scholar 

  3. Abualigah LM, Khader AT, Hanandeh ES (2018) A combination of objective functions and hybrid Krill herd algorithm for text document clustering analysis. Eng Appl Artif Intell 73:111–125. https://doi.org/10.1016/j.engappai.2018.05.003

    Article  Google Scholar 

  4. Zamli KZ, Ahmed BS, Mahmoud T, Afzal W (2018) Fuzzy adaptive tuning of a particle swarm optimization algorithm for variable-strength combinatorial test suite generation. Swarm Intell Volume 3 Appl. https://doi.org/10.1049/PBCE119H_ch22

    Article  Google Scholar 

  5. Zainal NA, Azad S, Zamli KZ (2020) An adaptive fuzzy symbiotic organisms search algorithm and its applications. IEEE Access 8:225384–225406. https://doi.org/10.1109/ACCESS.2020.3042196

    Article  Google Scholar 

  6. Dhiman G, Kumar V (2018) Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50. https://doi.org/10.1016/j.knosys.2018.06.001

    Article  Google Scholar 

  7. Zamli KZ (2021) Optimizing S-box generation based on the adaptive agent heroes and cowards algorithm. Expert Syst Appl 182:1–12. https://doi.org/10.1016/j.eswa.2021.115305

    Article  Google Scholar 

  8. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  9. Chakraborty A, Kar AK (2017) Swarm intelligence: a review of algorithms. Nature-Inspired Comput Opt 10:475–494. https://doi.org/10.1007/978-3-319-50920-4_19

    Article  Google Scholar 

  10. Vahidi B, Foroughi Nematolahi A (2019) Physical and physic-chemical based optimization methods: a review. J Soft Comput Civil Eng 3(4):12–27. https://doi.org/10.22115/scce.2020.214959.1161

  11. Eiben AE, Schippers CA (1998) On evolutionary exploration and exploitation. Fund Inform 35:35–50. https://doi.org/10.3233/FI-1998-35123403

    Article  MATH  Google Scholar 

  12. Almufti SM, Marqas RB, Othman PS, Sallow AB (2021) Single-based and population-based metaheuristics for solving NP-hard problems. Iraqi J Sci 62(5):1–11. https://doi.org/10.24996/10.24996/ijs.2021.62.5.34

    Article  Google Scholar 

  13. Kashani AR, Camp CV, Rostamian M, Azizi K, Gandomi AH (2021) Population-based optimization in structural engineering: a review. Artif Intell Rev. https://doi.org/10.1007/s10462-021-10036-w

    Article  Google Scholar 

  14. Baliarsingh SK, Ding W, Vipsita S, Bakshi S (2019) A memetic algorithm using emperor penguin and social engineering optimization for medical data classification. Appl Soft Comput 85:1–15. https://doi.org/10.1016/j.asoc.2019.105773

    Article  Google Scholar 

  15. Dhiman G (2020) MOSHEPO: A hybrid multi-objective approach to solve economic load dispatch and micro grid problems. Appl Intell 50(1):119–137. https://doi.org/10.1007/s10489-019-01522-4

    Article  Google Scholar 

  16. Dhiman G (2019) ESA: A hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng Comput. https://doi.org/10.1007/s00366-019-00826-w

    Article  Google Scholar 

  17. Dhiman G, Garg M (2020) MoSSE: A novel hybrid multi-objective meta-heuristic algorithm for engineering design problems. Soft Comput 24:18379–18398. https://doi.org/10.1007/s00500-020-05046-9

    Article  Google Scholar 

  18. Kaur H, Rai A, Bhatia SS, Dhiman G (2020) MOEPO: A novel multi-objective emperor penguin optimizer for global optimization: special application in ranking of cloud service providers. Eng Appl Artif Intell 96:1–21. https://doi.org/10.1016/j.engappai.2020.104008

    Article  Google Scholar 

  19. Yang J, Gao H (2020) Cultural emperor penguin optimizer and its application for face recognition. Math Probl Eng 2020:1–16. https://doi.org/10.1155/2020/9579538

    Article  Google Scholar 

  20. Xing Z (2020) An improved emperor penguin optimization based multilevel thresholding for color image segmentation. Knowl-Based Syst 194:1–20. https://doi.org/10.1016/j.knosys.2020.105570

    Article  Google Scholar 

  21. Kumar D, Kumar V, Kumari R (2019) Automatic clustering using quantum-based multi-objective emperor penguin optimizer and its applications to image segmentation. Mod Phys Lett A 34(24):1–18. https://doi.org/10.1142/S0217732319501931

    Article  MathSciNet  Google Scholar 

  22. Jia H, Sun K, Song W, Peng X, Lang C, Li Y (2019) Multi-strategy emperor penguin optimizer for RGB histogram-based color satellite image segmentation using masi entropy. IEEE Access 7:134448–134474. https://doi.org/10.1109/ACCESS.2019.2942064

    Article  Google Scholar 

  23. Baliarsingh SK, Vipsita S, Muhammad K, Bakshi S (2019) Analysis of high-dimensional biomedical data using an evolutionary multi-objective emperor penguin optimizer. Swarm Evol Comput 48:262–273. https://doi.org/10.1016/j.swevo.2019.04.010

    Article  Google Scholar 

  24. Shingrakhia H, Patel H (2020) Emperor penguin optimized event recognition and summarization for cricket highlight generation. Multimedia Syst Lett 26(6):745–759. https://doi.org/10.1007/s00530-020-00684-3

    Article  Google Scholar 

  25. Cheena K, Amgoth T, Shankar G (2020) Emperor penguin optimised self-healing strategy for WSN based smart grids," (in English). Int J Sensor Netw 32(2):87–95.

    Article  Google Scholar 

  26. Shrivastava P (2020) EPO: An optimization technique for urban traffic management while limiting the pollution using WSN. Int J Commun Syst 33(5):1–14. https://doi.org/10.1002/dac.4246

    Article  Google Scholar 

  27. Waters A, Blanchette F, Kim AD (2012) Modeling huddling penguins. PLoS ONE 7(11):1–8.

    Google Scholar 

  28. Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering, vol 5, Technical Report, Ver. 2.3 EBSE Technical Report. EBSE

  29. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):1–6. https://doi.org/10.1371/journal.pmed.1000097

    Article  Google Scholar 

  30. Min S, Tang Z, Daneshvar Rouyendegh B (2020) Inspired-based optimisation algorithm for solving energy-consuming reduction of chiller loading. Int J Ambient Energy. https://doi.org/10.1080/01430750.2020.1730954

    Article  Google Scholar 

  31. Tang F, Li J, Zafetti N (2020) Optimization of residential building envelopes using an improved Emperor Penguin Optimizer. Eng Comput. https://doi.org/10.1007/s00366-020-01112-w

    Article  Google Scholar 

  32. Bhuyar DL, Kureshi AK (2020) EPOWT: A denoising technique of the electrocardiography signal transmission via 5G wireless communications. Trans Emerging Telecommun Technol 31(3):1–17. https://doi.org/10.1002/ett.3851

    Article  Google Scholar 

  33. Zamli KZ (2016) A chaotic teaching learning based optimization algorithm for optimizing emergency flood evacuation routing. Adv Sci Lett 22(10):2927–2931. https://doi.org/10.1166/asl.2016.7075

    Article  Google Scholar 

  34. Baliarsingh SK, Vipsita S (2020) Chaotic emperor penguin optimised extreme learning machine for microarray cancer classification. IET Syst Biol 14(2):85–95. https://doi.org/10.1049/iet-syb.2019.0028

    Article  Google Scholar 

  35. Cao Y, Wu Y, Fu L, Jermsittiparsert K, Razmjooy N (2019) Multi-objective optimization of a PEMFC based CCHP system by meta-heuristics. Energy Rep 5:1551–1559. https://doi.org/10.1016/j.egyr.2019.10.029

    Article  Google Scholar 

  36. Naresh M, Reddy DV, Reddy KR (2020) Multi-objective emperor penguin handover optimisation for IEEE 802.21 in heterogeneous networks, (in En). IET Commun 14(18):3239–3246. https://doi.org/10.1049/iet-com.2019.1228

    Article  Google Scholar 

  37. Sofia Priya Dharshini J, Subramanyam MV (2020) Emperor penguin optimized user association scheme for MMWAVE wireless communication. Wireless Personal Commun 113(2):1097–1113. https://doi.org/10.1007/s11277-020-07269-3

    Article  Google Scholar 

  38. Mehta D, Saxena S (2020) Hierarchical WSN protocol with fuzzy multi-criteria clustering and bio-inspired energy-efficient routing (FMCB-ER). Multimedia Tools Appl. https://doi.org/10.1007/s11042-020-09633-8

    Article  Google Scholar 

  39. Tade SL, Vyas V (2020) Hybrid deep emperor penguin classifier algorithm-based image quality assessment for visualisation application in HDR environments. IET Image Proc 14(11):2579–2587. https://doi.org/10.1049/iet-ipr.2019.1371

    Article  Google Scholar 

  40. Pandey D, Pandey BK, Wairya S (2020) Hybrid deep neural network with adaptive galactic swarm optimization for text extraction from scene images. Soft Comput. https://doi.org/10.1007/s00500-020-05245-4

    Article  Google Scholar 

  41. Singh M, Mehtre BM, Sangeetha S (2020) Insider threat detection based on user behaviour analysis. Commun Computd Inform Sci 1241:559–574. https://doi.org/10.1007/978-981-15-6318-8_45sss

  42. Ganesh S, Vengatesan V, Richard Jimreeves J, Ramasubramanian B (2020) Simultaneous network reconfiguration and PMU placement in the radial distribution system. Adv Math Sci J 9(10):8143–8151. https://doi.org/10.37418/amsj.9.10.44

    Article  Google Scholar 

  43. Ji Y et al (2020) An adaptive chaotic sine cosine algorithm for constrained and unconstrained optimization. Complexity 2020:1–36. https://doi.org/10.1155/2020/6084917

    Article  Google Scholar 

  44. Zhang Y (2020) Backtracking search algorithm with specular reflection learning for global optimization. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2020.106546

    Article  Google Scholar 

  45. Zhang G, Xiao C, Razmjooy N (2020) Optimal parameter extraction of PEM fuel cells by meta-heuristics. Int J Ambient Energy. https://doi.org/10.1080/01430750.2020.1745276

    Article  Google Scholar 

  46. Yanda L, Yuwei Z, Razmjooy N (2020) Optimal arrangement of a micro-CHP system in the presence of fuel cell-heat pump based on metaheuristics. Int J Ambient Energy. https://doi.org/10.1080/01430750.2020.1758779

    Article  Google Scholar 

  47. Dehghani M, Montazeri Z, Malik OP (2019) DGO: Dice game optimizer. Gazi Univ J Sci 32(3):871–882. https://doi.org/10.35378/gujs.484643

    Article  Google Scholar 

  48. Dehghani M, Mardaneh M, Malik OP (2020) Foa: ‘following’ optimization algorithm for solving power engineering optimization problems. J Oper Automat Power Eng 8(1):57–64. https://doi.org/10.22098/joape.2019.5522.1414

    Article  Google Scholar 

  49. Dehghani M, Mardaneh M, Guerrero JM, Malik OP, Kumar V (2020) Football game based optimization: An application to solve energy commitment problem. Int J Intell Eng Syst 13(5):514–523. https://doi.org/10.22266/ijies2020.1031.45

    Article  Google Scholar 

  50. Dehghani M, Montazeri Z, Dehghani A, Malik OP (2020) GO: Group optimization. Gazi Univ J Sci 33(2):381–392. https://doi.org/10.35378/gujs.567472

    Article  Google Scholar 

  51. Dehghani M et al (2020) HOGO: Hide objects game optimization. Int J Intell Eng Syst 13(4):216–225. https://doi.org/10.22266/IJIES2020.0831.19

    Article  Google Scholar 

  52. Li D, Deng L, Su Q, Song Y (2020) Providing a guaranteed power for the BTS in telecom tower based on improved balanced owl search algorithm. Energy Rep 6:297–307. https://doi.org/10.1016/j.egyr.2020.01.006

    Article  Google Scholar 

  53. Yang Z, Liu Q, Zhang L, Dai J, Razmjooy N (2020) Model parameter estimation of the PEMFCs using improved barnacles mating optimization algorithm. Energy 212:1–10. https://doi.org/10.1016/j.energy.2020.118738

    Article  Google Scholar 

  54. Zheng L, Wang G, Zhang F, Zhao Q, Dai C, Yousefi N (2020) Breast cancer diagnosis based on a new improved Elman neural network optimized by meta-heuristics. Int J Imaging Syst Technol 30(3):513–526. https://doi.org/10.1002/ima.22388

    Article  Google Scholar 

  55. Yang Y, Zhang H, Yan P, Jermsittiparsert K (2020) Multi-objective optimization for efficient modeling and improvement of the high temperature PEM fuel cell based micro-CHP system. Int J Hydrogen Energy 45(11):6970–6981. https://doi.org/10.1016/j.ijhydene.2019.12.189

    Article  Google Scholar 

  56. Cao Z, Kui D, Ashourian M (2020) Improved owl search algorithm for optimal capacity determination of the gas engine in a CCHP system using 4E analysis. Int Trans Elect Energy Syst 30(10):1–18. https://doi.org/10.1002/2050-7038.12552 (Art no. e12552)

  57. Xu L, Si Y, Jiang S, Sun Y, Ebrahimian H (2020) Medical image fusion using a modified shark smell optimization algorithm and hybrid wavelet-homomorphic filter. Biomed Signal Process Control 59:1–9. https://doi.org/10.1016/j.bspc.2020.101885

    Article  Google Scholar 

  58. Kahraman HT, Aras S (2020) Investigation of the most effective meta-heuristic optimization technique for constrained engineering problems. In: Proceedings of the artificial intelligence and applied mathematics in engineering problems. Lecture notes on data engineering and communications technologies, vol 43. Springer, Cham, pp 484–501. https://doi.org/10.1007/978-3-030-36178-5_38

  59. Chen S, Wang F, Yildizbasi A (2020) A new technique for optimising of a PEMFC based CCHP system. Int J Ambient Energy. https://doi.org/10.1080/01430750.2020.1758781

    Article  Google Scholar 

  60. Dehghani M, Montazeri Z, Malik OP, Givi H, Guerrero JM (2020) Shell game optimization: a novel game-based algorithm. Int J Intell Eng Syst 13(3):246–255. https://doi.org/10.22266/IJIES2020.0630.23

    Article  Google Scholar 

  61. Dehghani M et al (2020) A spring search algorithm applied to engineering optimization problems. Appl Sci (Switzerland) 10(18):1–21. https://doi.org/10.3390/APP10186173

    Article  Google Scholar 

  62. Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A (2019) Trader as a new optimization algorithm predicts drug-target interactions efficiently. Sci Report 9(1):1–14. https://doi.org/10.1038/s41598-019-45814-8 (Art no 9348)

  63. Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:1–29. https://doi.org/10.1016/j.engappai.2020.103541

    Article  Google Scholar 

  64. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  65. Rela M, Nagaraja Rao S, Ramana Reddy P (2021) Optimized segmentation and classification for liver tumor segmentation and classification using opposition based spotted hyena optimization. Int J Imaging Syst Technol 31:627–656. https://doi.org/10.1002/ima.22519

  66. Zamli KZ, Din F, Baharom S, Ahmed BS (2017) Fuzzy adaptive teaching learning-based optimization strategy for the problem of generating mixed strength t-way test suites. Eng Appl Artif Intell 59:35–50. https://doi.org/10.1016/j.engappai.2016.12.014

    Article  Google Scholar 

  67. Cheng M-Y, Prayogo D (2018) Fuzzy adaptive teaching–learning-based optimization for global numerical optimization. Neural Comput Appl 29(2):309–327. https://doi.org/10.1007/s00521-016-2449-7

    Article  Google Scholar 

  68. Nasser AB, Zamli KZ (2018) Comparative study of adaptive elitism and mutation operators in flower pollination algorithm for combinatorial testing problem. Adv Sci Lett 24(10):7470–7475. https://doi.org/10.1166/asl.2018.12961

    Article  Google Scholar 

  69. Ting TO, Yang X-S, Cheng S, Huang K (2015) Hybrid Metaheuristic Algorithms: Past, Present, and Future. In: Yang X-S (ed) Recent Advances in Swarm Intelligence and Evolutionary Computation. Springer, Cham, pp 71–83

    Google Scholar 

  70. Zamli KZ, Kader A, Azad S, Ahmed BS (2021) Hybrid Henry gas solubility optimization algorithm with dynamic cluster-to-algorithm mapping. Neural Comput Appl 33:8389–8416. https://doi.org/10.1007/s00521-020-05594-z

    Article  Google Scholar 

  71. Mohmmadzadeh H, Gharehchopogh FS (2021) An efficient binary chaotic symbiotic organisms search algorithm approaches for feature selection problems. J Supercomput. https://doi.org/10.1007/s11227-021-03626-6

    Article  Google Scholar 

  72. Pierezan J, dos Santos Coelho L, Cocco Mariani V, Hochsteiner de Vasconcelos Segundo E, Prayogo D (2021) Chaotic coyote algorithm applied to truss optimization problems. Comput Struct 242:1–10. https://doi.org/10.1016/j.compstruc.2020.106353

  73. Yıldız BS, Pholdee N, Panagant N, Bureerat S, Yildiz AR, Sait SM (2021). Eng Comput. https://doi.org/10.1007/s00366-020-01268-5

    Article  Google Scholar 

  74. Gagnon I, April A, Abran A (2021) An investigation of the effects of chaotic maps on the performance of metaheuristics. Eng Rep. https://doi.org/10.1002/eng2.12369

    Article  Google Scholar 

  75. Talatahari S, Azizi M (2020) Chaos game optimization: A novel metaheuristic algorithm. Artif Intell Rev. https://doi.org/10.1007/s10462-020-09867-w

    Article  Google Scholar 

  76. Ma H, Shen S, Yu M, Yang Z, Fei M, Zhou H (2019) Multi-population techniques in nature inspired optimization algorithms: A comprehensive survey. Swarm Evol Comput 44:365–387. https://doi.org/10.1016/j.swevo.2018.04.011

    Article  Google Scholar 

  77. Xu H, Pu P, Duan F (2018) Dynamic vehicle routing problems with enhanced ant colony optimization. Discret Dyn Nat Soc 2018:1–14. https://doi.org/10.1155/2018/1295485

    Article  MATH  Google Scholar 

  78. Sahoo D, Pham Q, Lu J, Hoi S (2018) Online deep learning: learning deep neural networks on the fly. Int Joint Conf Artif Intell. https://doi.org/10.24963/ijcai.2018%2F369

    Article  Google Scholar 

  79. Beringer J, Hüllermeier E (2006) Online clustering of parallel data streams. Data Knowl Eng 58(2):180-2s04. https://doi.org/10.1016/j.datak.2005.05.009

    Article  Google Scholar 

  80. Wang FY, Bahri P, Lee PL, Cameron IT (2007) A multiple model, state feedback strategy for robust control of non-linear processes. Comput Chem Eng 31(5):410–418. https://doi.org/10.1016/j.compchemeng.2006.05.008

    Article  Google Scholar 

  81. Birge JR (2007) Optimization methods in dynamic portfolio management, Chap 20. In: Birge JR, Linetsky V (eds) Handbooks in operations research and management science, vol 15. Elsevier, pp 845–865

Download references

Funding

The work reported in this paper is funded by the Trans-Disciplinary Research Grant Scheme from the Ministry of Higher Education Malaysia titled: An Artificial Neural Network Sine Cosine Algorithm-based Hybrid Prediction Model for the Production of Cellulose Nanocrystals from Oil Palm Empty Fruit Bunch (RDU1918014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Z. Zamli.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kader, M.A., Zamli, K.Z. & Ahmed, B.S. A systematic review on emperor penguin optimizer. Neural Comput & Applic 33, 15933–15953 (2021). https://doi.org/10.1007/s00521-021-06442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06442-4

Keywords

Navigation