Skip to main content
Log in

Self-adaptive mobile web service discovery approach based on modified negative selection algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a self-adaptive mobile web service (MWS) discovery approach based on the modified negative selection algorithm (M-NSA) to improve the effectiveness and accuracy of MWS discovery in dynamic mobile environment. The main contributions of this work are the service relevance learning model and a MWS matchmaking algorithm that it is capable of changing as soon as the discovery demonstrates the feasibility of attaining improved effectiveness or accuracy. This is achieved by transforming the two stages of modified negative selection algorithm (M-NSA) into service relevance and self-adaptive matchmaking, respectively. The proposed approach is evaluated in terms of both binary and graded relevance. After an experiment with the largest MWS dataset, the proposed approach records better results in comparison with the state-of-the-art approaches. This is owing to the self/nonself discrimination mechanism, in addition to the decent parameter analysis, and the use of more comprehensive information that covers the entire discovery space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bawazir A, Alhalabi W, Mohamed M, Sarirete A (2018) A formal approach for matching and ranking trustworthy context-dependent services. Appl Soft Comput J 73:306–315. https://doi.org/10.1016/j.asoc.2018.07.062

    Article  Google Scholar 

  2. Elgazzar K, Hassanein H, Martin P (2014) Daas: cloud-based mobile web service discovery. Pervasive Mob Comput 13:67–84. https://doi.org/10.1016/j.pmcj.2013.10.015

    Article  Google Scholar 

  3. Ruta M, Scioscia F, Di Sciascio E (2015) A mobile matchmaker for resource discovery in the ubiquitous semantic web. In: Proc—2015 IEEE 3rd Int Conf Mob Serv MS 2015 pp 336–343. https://doi.org/10.1109/MobServ.2015.76

  4. Sivakumaran M, Iacopino P (2018) The mobile economy. GSMA Intell pp 11–11

  5. Bobek S, Nalepa GJ (2017) Uncertain context data management in dynamic mobile environments. Future Gener Comput Syst 66:110–124. https://doi.org/10.1016/j.future.2016.06.007

    Article  Google Scholar 

  6. Verma R, Srivastava A (2018) A dynamic web service registry framework for mobile environments. Peer-to-Peer Netw Appl 11:409–430. https://doi.org/10.1007/s12083-016-0540-6

    Article  Google Scholar 

  7. Barakat L, Miles S, Luck M (2018) Adaptive composition in dynamic service environments. Future Gener Comput Syst 80:215–228. https://doi.org/10.1016/j.future.2016.12.003

    Article  Google Scholar 

  8. Mezni H, Sellami M (2016) AWS-Ont: an ontology for the self-management of service-based systems. In: Proc—2015 IEEE 8th Int Conf Serv Comput Appl SOCA 2015 pp 85–92. https://doi.org/10.1109/SOCA.2015.17

  9. Xiong R, Wang J, Zhang N, Ma Y (2018) Deep hybrid collaborative filtering for web service recommendation. Expert Syst Appl 110:191–205. https://doi.org/10.1016/j.eswa.2018.05.039

    Article  Google Scholar 

  10. Zhang N, Wang J, Ma Y et al (2018) Web service discovery based on goal-oriented query expansion. J Syst Softw 142:73–91. https://doi.org/10.1016/j.jss.2018.04.046

    Article  Google Scholar 

  11. Xie F, Wang J, Xiong R et al (2019) An integrated service recommendation approach for service-based system development. Expert Syst Appl 123:178–194. https://doi.org/10.1016/j.eswa.2019.01.025

    Article  Google Scholar 

  12. Vargas-Santiago M, Morales-Rosales L, Pomares-Hernandez S, Drira K (2018) Autonomic web services enhanced by asynchronous checkpointing. IEEE Access 6:5538–5547. https://doi.org/10.1109/ACCESS.2017.2756867

    Article  Google Scholar 

  13. Vinh PC (2016) Concurrency of self-∗in autonomic systems. Future Gener Comput Syst 56:140–152. https://doi.org/10.1016/j.future.2015.04.017

    Article  Google Scholar 

  14. Klusch M, Kapahnke P, Schulte S et al (2016) Semantic web service search: a brief survey. KI—Künstliche Intell 30:139–147. https://doi.org/10.1007/s13218-015-0415-7

    Article  Google Scholar 

  15. Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature 521:452–459. https://doi.org/10.1038/nature14541

    Article  Google Scholar 

  16. Muda NA, Muda AK, Huoy CY (2018) Recognizing music features pattern using modified negative selection algorithm for songs genre classification. In: Abraham A, Muhuri PK, Muda AK, Gandhi N (eds) Advances in intelligent systems and computing. Springer International Publishing, Cham, pp 242–251

    Google Scholar 

  17. Forrest S, Perelson AS, Allen L, Cherukuri R (1994) Self-nonself discrimination in a computer. In: Proc 1994 IEEE Comput Soc Symp Res Secur Priv pp 202–212. https://doi.org/10.1109/RISP.1994.296580

  18. Dong H, Hussain FK, Chang E (2013) Semantic Web Service matchmakers: state of the art and challenges. Concurr Comput Pract Exp 25:961–988. https://doi.org/10.1002/cpe.2886

    Article  Google Scholar 

  19. Gmati FE, Chakhar S, Ayadi NY, et al (2018) Efficient versus accurate algorithms for computing a semantic logic-based similarity measure. In: International conference on industrial, engineering and other applications of applied intelligent systems. Springer, Cham, pp 808–820

  20. Pal K (2018) Ontology-based web service architecture for retail supply chain management. Procedia Comput Sci 130:985–990. https://doi.org/10.1016/j.procs.2018.04.101

    Article  Google Scholar 

  21. Sambasivam G, Amudhavel J, Vengattaraman T, Dhavachelvan P (2018) An QoS based multifaceted matchmaking framework for web services discovery. Future Comput Inform J 3:371–383. https://doi.org/10.1016/j.fcij.2018.10.007

    Article  Google Scholar 

  22. Abid A, Messai N, Rouached M, et al (2017) Semantic similarity based web services composition framework. In: Proceedings of the symposium on applied computing—SAC ’17. ACM, New York, NY, USA, pp 1319–1325

  23. Corbellini A, Godoy D, Mateos C, et al (2017) Mining social web service repositories for social relationships to aid service discovery. In: IEEE international working conference on mining software repositories. IEEE Press, Piscataway, NJ, USA, pp 75–79

  24. Stavropoulos TG, Andreadis S, Bassiliades N et al (2016) The tomaco hybrid matching framework for SAWSDL semantic web services. IEEE Trans Serv Comput 9:954–967. https://doi.org/10.1109/TSC.2015.2430328

    Article  Google Scholar 

  25. Tripathy AK, Tripathy PK (2018) Fuzzy QoS requirement-aware dynamic service discovery and adaptation. Appl Soft Comput J 68:136–146. https://doi.org/10.1016/j.asoc.2018.03.038

    Article  Google Scholar 

  26. Cheng B, Zhao S, Li C, Chen J (2017) A web services discovery approach based on mining underlying interface semantics. IEEE Trans Knowl Data Eng 29:950–962. https://doi.org/10.1109/TKDE.2016.2645769

    Article  Google Scholar 

  27. Saadon NA, Mohamad R (2015) Semantic-based discovery framework for web services in mobile computing environment. J Teknol 77:25–38. https://doi.org/10.11113/jt.v77.6183

    Article  Google Scholar 

  28. Cheng B, Li C, Zhao S, Chen J (2018) Semantics Mining & Indexing-based Rapid Web Services Discovery Framework. IEEE Trans Serv Comput 14:864–875. https://doi.org/10.1109/TSC.2018.2831678

    Article  Google Scholar 

  29. Win NNH, Jianmin B, Gang C, Rehman SU (2019) Self-adaptive qos-aware web service discovery using ontology approach. In: Information Resources Management Association (IRMA) (ed) Web services: concepts, methodologies, tools, and applications. IGI Global, USA, pp 822–841. https://doi.org/10.4018/978-1-5225-7501-6

  30. Athanasopoulos D (2017) Self-adaptive service organization for pragmatics-aware service discovery. In: Proceedings—2017 IEEE 14th international conference on services computing, SCC 2017. pp 164–171

  31. Nabli H, Cherif S, Djmeaa R Ben, Amor IA Ben (2018) SADICO: self-adaptive approach to the web service composition. In: International conference on intelligent interactive multimedia systems and services. pp 254–267

  32. Kafaf DAL, Kim DK (2017) A web service-based approach for developing self-adaptive systems. Comput Electr Eng 63:260–276. https://doi.org/10.1016/j.compeleceng.2017.06.030

    Article  Google Scholar 

  33. Moreno GA, Cámara J, Garlan D, Klein M (2018) Uncertainty reduction in self-adaptive systems. In: 2018 IEEE/ACM 13th international symposium on software engineering for adaptive and self-managing systems (SEAMS). IEEE, pp 51–57

  34. Paz A, Arboleda H (2016) A model to guide dynamic adaptation planning in self-adaptive systems. Electron Notes Theor Comput Sci 321:67–88

    Article  MathSciNet  Google Scholar 

  35. Di Nitto E, Ghezzi C, Metzger A et al (2008) A journey to highly dynamic, self-adaptive service-based applications. Autom Softw Eng 15:313–341. https://doi.org/10.1007/s10515-008-0032-x

    Article  Google Scholar 

  36. He X, Liao L, Zhang H, et al (2017) Neural collaborative filtering. In: 26th Int World Wide Web Conf WWW 2017 pp 173–182. https://doi.org/10.1145/3038912.3052569

  37. Cao B, Liu J, Wen Y et al (2019) QoS-aware service recommendation based on relational topic model and factorization machines for IoT Mashup applications. J Parallel Distrib Comput 132:177–189. https://doi.org/10.1016/j.jpdc.2018.04.002

    Article  Google Scholar 

  38. Klusch M, Kapahnke P (2012) The iSeM matchmaker: a flexible approach for adaptive hybrid semantic service selection. J Web Semant 15:1–14. https://doi.org/10.1016/j.websem.2012.07.003

    Article  Google Scholar 

  39. Ramdane C, Chikhi S (2017) Negative selection algorithm: recent improvements and its application in intrusion detection system. Int J Comput Acad Res 6:20–30

    Google Scholar 

  40. Liu Z, Li TAO, Yang JIN, Yang TAO (2017) An improved negative selection algorithm based on subspace density seeking. IEEE Access 5:12189–12198

    Article  Google Scholar 

  41. Mohi-Aldeen SM, Mohamad R, Deris S (2016) Application of negative selection algorithm (NSA) for test data generation of path testing. Appl Soft Comput J 49:1118–1128. https://doi.org/10.1016/j.asoc.2016.09.044

    Article  Google Scholar 

  42. Ji Z, Dasgupta D (2004) Real-valued negative selection algorithm with variable-sized detectors. Lect Notes Comput Sc 3102:287–298. https://doi.org/10.1007/978-3-540-24854-5_30

    Article  Google Scholar 

  43. Fouladvand S, Osareh A, Shadgar B et al (2017) DENSA: an effective negative selection algorithm with flexible boundaries for self-space and dynamic number of detectors. Eng Appl Artif Intell 62:359–372. https://doi.org/10.1016/j.engappai.2016.08.014

    Article  Google Scholar 

  44. Zeng J, Liu X, Li T et al (2009) A self-adaptive negative selection algorithm used for anomaly detection. Prog Nat Sci 19:261–266. https://doi.org/10.1016/j.pnsc.2008.06.008

    Article  Google Scholar 

  45. Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18. https://doi.org/10.1016/j.swevo.2013.11.003

    Article  Google Scholar 

  46. Dasgupta D, Yu S, Nino F (2011) Recent advances in artificial immune systems: Models and applications. Appl Soft Comput J 11:1574–1587. https://doi.org/10.1016/j.asoc.2010.08.024

    Article  Google Scholar 

  47. Cui L, Pi D, Chen C (2015) BIORV-NSA: bidirectional inhibition optimization r-variable negative selection algorithm and its application. Appl Soft Comput J 32:544–552. https://doi.org/10.1016/j.asoc.2015.03.031

    Article  Google Scholar 

  48. Zhu F, Chen W, Yang H et al (2017) A quick negative selection algorithm for one-class classification in big data era. Math Probl Eng. https://doi.org/10.1155/2017/3956415

    Article  MathSciNet  MATH  Google Scholar 

  49. Idris I, Selamat A, Thanh Nguyen N et al (2015) A combined negative selection algorithm-particle swarm optimization for an email spam detection system. Eng Appl Artif Intell 39:33–44. https://doi.org/10.1016/j.engappai.2014.11.001

    Article  Google Scholar 

  50. Dong L, Liu S, Zhang H (2016) A boundary-fixed negative selection algorithm with online adaptive learning under small samples for anomaly detection. Eng Appl Artif Intell 50:93–105. https://doi.org/10.1016/j.engappai.2015.12.014

    Article  Google Scholar 

  51. Dong L, Liu S, Zhang H (2017) A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples. Pattern Recognit 64:374–385. https://doi.org/10.1016/j.patcog.2016.11.026

    Article  Google Scholar 

  52. Zhao X, Wen Z, Li X (2014) QoS-aware web service selection with negative selection algorithm. Knowl Inf Syst 40:349–373. https://doi.org/10.1007/s10115-013-0642-x

    Article  Google Scholar 

  53. Zhao X, Li R, Zuo X (2019) Advances on QoS-aware web service selection and composition with nature-inspired computing. CAAI Trans Intell Technol 4:159–174. https://doi.org/10.1049/trit.2019.0018

    Article  Google Scholar 

  54. Garba S, Mohamad R, Saadon NA (2020) Search space reduction approach for self-adaptive web service discovery in dynamic mobile environment. In: Saeed F, Mohammed F, Gazem N (eds) Emerging trends in intelligent computing and informatics. Springer International Publishing, Cham, pp 1111–1121

    Chapter  Google Scholar 

  55. Abid A, Khan MT, de Silva CW (2017) Layered and real-valued negative selection algorithm for fault detection. IEEE Syst J. https://doi.org/10.1109/JSYST.2017.2753851

    Article  Google Scholar 

  56. Garba S, Mohamad R, Saadon NA (2020) Self-adaptive MWS matchmaker. GitHub Repos

  57. Cao B, Frank Liu X, Liu J, Tang M (2017) Domain-aware Mashup service clustering based on LDA topic model from multiple data sources. Inf Softw Technol 90:40–54. https://doi.org/10.1016/j.infsof.2017.05.001

    Article  Google Scholar 

  58. Xu Y, Goodacre R (2018) On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J Anal Test 2:249–262. https://doi.org/10.1007/s41664-018-0068-2

    Article  Google Scholar 

  59. Tian G, Zhao S, Wang J et al (2019) Semantic sparse service discovery using word embedding and Gaussian LDA. IEEE Access 7:88231–88242. https://doi.org/10.1109/ACCESS.2019.2926559

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salisu Garba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garba, S., Mohamad, R. & Saadon, N.A. Self-adaptive mobile web service discovery approach based on modified negative selection algorithm. Neural Comput & Applic 34, 2007–2029 (2022). https://doi.org/10.1007/s00521-021-06486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06486-6

Keywords

Navigation