Skip to main content
Log in

Protection of image ROI using chaos-based encryption and DCNN-based object detection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Images always contain sensitive information, e.g., a clear face on a photo, which needs to be protected. The simple way is to encrypt the whole image for hiding “everything” securely, but it brings huge amounts of unnecessary encryption operations. Considering the most sensitive regions of an image, this paper focuses on protecting the important regions, thus reducing the redundant encryption operations. This paper employs the latest DCNN-based object detection model (YOLOv4) for choosing regions (i.e., multiple objects) and chaos-based encryption for fast encryption. We analyze object detection algorithm from a security perspective and modify YOLOv4 to guarantee that all areas of the detected objects are contained in the output regions of interest (ROI). Later, we propose a multi-object-oriented encryption algorithm to protect all the detected ROI at one go. We also encrypt the ROI coordinates and embed them into the whole image, relieving the burden of distributing ROI coordinates separately. Experimental results and security analyses show that all the detected objects are well protected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In response to an anonymous reviewer: Authors at CUHK and NEU thanks him/her for motivating their discussion on potentially-further works, i.e., protecting detectable-and-sensitive objects with reasonable access control and fast 2D chaotic encryption.

References

  1. Zhang W, Yu H, Yl Zhao, Zl Zhu (2016) Image encryption based on three-dimensional bit matrix permutation. Sign Process 118:36–50

    Article  Google Scholar 

  2. Fridrich J (1998) Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifurc chaos 8(06):1259–1284

    Article  MathSciNet  Google Scholar 

  3. Murillo-Escobar MA, Cruz-Hernández C, Abundiz-Pérez F, López-Gutiérrez RM, Del Campo OA (2015) A rgb image encryption algorithm based on total plain image characteristics and chaos. Sign Process 109:119–131

    Article  Google Scholar 

  4. Chen J, Zhang Y, Qi L, Fu C, Xu L (2018a) Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression. Optics Laser Technol 99:238–248

    Article  Google Scholar 

  5. Chen J, Zhu Z, Zhang L, Zhang Y, Yang B (2018b) Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image encryption. Sign Process 142:340–353

    Article  Google Scholar 

  6. Alawida M, Teh JS, Samsudin A, Alshoura WH (2019) An image encryption scheme based on hybridizing digital chaos and finite state machine. Sign Process 164:249–266

    Article  Google Scholar 

  7. Xingyuan W, Suo G (2020) Image encryption algorithm for synchronously updating boolean networks based on matrix semi-tensor product theory. Inf Sci 507:16–36

    Article  MathSciNet  Google Scholar 

  8. Song W, Zheng Y, Fu C, Shan P (2020) A novel batch image encryption algorithm using parallel computing. Inf Sci 518:211–224

    Article  MathSciNet  Google Scholar 

  9. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105

    Google Scholar 

  10. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vision 115(3):211–252

    Article  MathSciNet  Google Scholar 

  11. Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. In: Adv Neural Inf Process Syst, 2553–2561

  12. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587

  13. Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448

  14. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788

  15. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox detector. In: European conference on computer vision, Springer, pp 21–37

  16. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 2961–2969

  17. Wen W, Zhang Y, Fang Z, Jx Chen (2015) Infrared target-based selective encryption by chaotic maps. Optics Commun 341:131–139

    Article  Google Scholar 

  18. Kanso A, Ghebleh M (2015) An efficient and robust image encryption scheme for medical applications. Commun Nonlinear Sci Numer Simul 24(1–3):98–116

    Article  MathSciNet  Google Scholar 

  19. Xiao D, Fu Q, Xiang T, Zhang Y (2016) Chaotic image encryption of regions of interest. Int J Bifurc Chaos 26(11):1650193

    Article  Google Scholar 

  20. Sun J, Liao X, Chen X, Guo S (2017) Privacy-aware image encryption based on logistic map and data hiding. Int J Bifurc Chaos 27(05):1750073

    Article  MathSciNet  Google Scholar 

  21. Xue Hw DuJ, Sl Li, Wj Ma (2018) Region of interest encryption for color images based on a hyperchaotic system with three positive lyapunov exponets. Optics Laser Technol 106:506–516

    Article  Google Scholar 

  22. Liu Y, Zhang J, Han D, Wu P, Sun Y, Moon YS (2020) A multidimensional chaotic image encryption algorithm based on the region of interest. Multimed Tools Appl 79:1–37

    Article  Google Scholar 

  23. Asgari-Chenaghlu M, Feizi-Derakhshi MR, Nikzad-Khasmakhi N, Feizi-Derakhshi AR, Ramezani M, Jahanbakhsh-Nagadeh Z, Rahkar-Farshi T, Zafarani-Moattar I, (2021) Cy: chaotic yolo for user intended image encryption and sharing in social media. Inf Sci 542:212–227

    Article  Google Scholar 

  24. Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:200410934

  25. Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2814–2821

  26. Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint arXiv:180402767

  27. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, Springer, pp 234–241

  28. Redmon J, Farhadi A (2017) Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7263–7271

  29. Ali W, Abdelkarim S, Zidan M, Zahran M, El Sallab A (2018) Yolo3d: end-to-end real-time 3d oriented object bounding box detection from lidar point cloud. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops

  30. Huang R, Pedoeem J, Chen C (2018) Yolo-lite: a real-time object detection algorithm optimized for non-gpu computers. In: 2018 IEEE International Conference on Big Data (Big Data), IEEE, pp 2503–2510

  31. Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  32. Ma K, Zhang W, Zhao X, Yu N, Li F (2013) Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans Inf Forensics Secur 8(3):553–562

    Article  Google Scholar 

  33. Cao X, Du L, Wei X, Meng D, Guo X (2015) High capacity reversible data hiding in encrypted images by patch-level sparse representation. IEEE Trans Cybernet 46(5):1132–1143

    Article  Google Scholar 

  34. Puteaux P, Puech W (2018) An efficient msb prediction-based method for high-capacity reversible data hiding in encrypted images. IEEE Trans Inf Forensics Secur 13(7):1670–1681

    Article  Google Scholar 

  35. Puyang Y, Yin Z, Qian Z (2018) Reversible data hiding in encrypted images with two-msb prediction. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS), IEEE, pp 1–7

  36. Yi S, Zhou Y (2018) Separable and reversible data hiding in encrypted images using parametric binary tree labeling. IEEE Trans Multimed 21(1):51–64

    Article  Google Scholar 

  37. Yin Z, Xiang Y, Zhang X (2019) Reversible data hiding in encrypted images based on multi-msb prediction and huffman coding. IEEE Trans Multimed 22(4):874–884

    Article  Google Scholar 

  38. Wu Y, Xiang Y, Guo Y, Tang J, Yin Z (2019) An improved reversible data hiding in encrypted images using parametric binary tree labeling. IEEE Trans Multimed 22(8):1929–1938

    Article  Google Scholar 

  39. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  40. Jia Q (2007) Hyperchaos generated from the lorenz chaotic system and its control. Phys Lett A 366(3):217–222

    Article  Google Scholar 

  41. Robert Matthews (1989) On the derivation of a chaotic encryption algorithm. Cryptologia 8(1):29–41

    MathSciNet  Google Scholar 

  42. Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos 16(08):2129–2151

    Article  MathSciNet  Google Scholar 

  43. Hua Z, Jin F, Xu B, Huang H (2018) 2d logistic-sine-coupling map for image encryption. Signal Process 149:148–161

    Article  Google Scholar 

  44. Hua Z, Zhang Y, Zhou Y (2020) Two-dimensional modular chaotification system for improving chaos complexity. IEEE Trans Signal Process 68:1937–1949

    Article  MathSciNet  Google Scholar 

  45. Han J, Bei M, Chen L, Xiang Y, Cao J, Guo F, Meng W (2019) Attribute-based information flow control. Comput J 62(8):1214–1231

    Article  MathSciNet  Google Scholar 

  46. Wang X, Chow SS (2021) Cross-domain access control encryption: arbitrary-policy, constant-size, efficient. In: IEEE Symposium on Security and Privacy (S&P), pp 388–401

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61773068), the National Key R&D Program of China (No. 2021YFF0306405), and the Fundamental Research Funds for the Central Universities (No. N2024005-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Fu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Fu, C., Zheng, Y. et al. Protection of image ROI using chaos-based encryption and DCNN-based object detection. Neural Comput & Applic 34, 5743–5756 (2022). https://doi.org/10.1007/s00521-021-06725-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06725-w

Keywords

Navigation