Skip to main content
Log in

Super twisting sliding mode network congestion control based on disturbance observer

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A robust super-twisting sliding mode control (SMC) based on a disturbance observer is firstly investigated for transmission control protocol (TCP) network systems with unknown disturbance in this paper. To reject chattering from SMC, a super-twisting algorithm (STA) based on integral SMC is introduced to TCP/AQM systems. Meanwhile, to improve the estimation accuracy of the model, a disturbance observer is designed. By selecting the appropriate sliding surface coefficients, the stability of the closed-loop control system is achieved. At last, simulation comparison results are given to illustrate the feasibility and the superiority of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Adams R (2013) Active queue management: a survey. IEEE Commun Surv Tutor 15:1425–1476

    Article  Google Scholar 

  2. Wang K, Liu Y, Liu X et al (2019) Adaptive fuzzy funnel congestion control for TCP/AQM network. ISA Trans 95:11–17

    Article  Google Scholar 

  3. Floyd S, Jacobson V (1993) Random early detection gateways for congestion avoidance. IEEE/ACM Trans Network 1:397–413

    Article  Google Scholar 

  4. Liu S, Basar T, Srikant S (2005) Exponential-RED: a stabilizing AQM scheme for low-and high-speed TCP protocols. IEEE/ACM Trans Network 13(5):1068–1081

    Article  Google Scholar 

  5. Zhou K, Yeung KL, Li VO (2006) Nonlinear RED: a simple yet efficient active queue management scheme. Comput Netw 50:3784–3794

    Article  Google Scholar 

  6. Pei LJ, Mu XW, Wang RM et al (2011) Dynamics of the Internet TCP-RED congestion control system. Nonlinear Anal-Real World Appl 12:947–955

    Article  MathSciNet  Google Scholar 

  7. Woo S, Kim K (2010) Tight upper bound for stability of TCP/RED systems in AQM routers. IEEE Commun Lett 14(7):682–684

    Article  Google Scholar 

  8. Low S (2003) A duality model of TCP and queue management algorithms. IEEE/ACM Trans Netw 11(4):525–36

    Article  Google Scholar 

  9. Ajmone MM, Garetto M, Giaccone P et al (2005) Using partial differential equations to model TCP mice and elephants in large IP networks. IEEE/ACM Trans Netw 13(6):1289–301

    Article  Google Scholar 

  10. Misra V, Gong WB, Towsley D (2000) Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. In: Proceedings. of the 19th IEEE international conference on SIGCOMM. Stockholm, Sweden, 30(4) (2000) 151–160

  11. Hollot CV, Misra V, Towsley D et al. (2001) On designing improved controllers for AQM routers supporting TCP flows. In: Proceedings of IEEE INFOCOM. 1726–1734

  12. Fridman E, Gil MM (2007) Stability of linear systems with time-varying delays: a direct frequency domain approach. J Comput Appl Math 200(1):61–66

    Article  MathSciNet  Google Scholar 

  13. Kim KB (2006) Design of feedback controls supporting TCP based on the state-space approach. IEEE Trans Autom Control 51(7):1086–1099

    Article  MathSciNet  Google Scholar 

  14. Ryu S, Rump C, Qiao C (2003) A predictive and robust active queue management for Internet congestion control. In: Proceedings of the eighth IEEE symposium on computers and communications. ISCC 2003. IEEE, 991–998

  15. Liu Y, Liu XP, Jing YW, Zhang ZY, Chen XP (2019) Congestion tracking control for uncertain TCP/AQM network based on integral backstepping. ISA Trans 89:131–138

    Article  Google Scholar 

  16. Cui Y Y, Fei M M, Du D (2016) Design of a robust observer-based memoryless \(H_{\infty }\) control for internet congestion. Int J Robust Nonlinear Control 26(8):1732–1747

    Article  MathSciNet  Google Scholar 

  17. Li F, Sun J, Zukerman M et al (2014) A comparative simulation study of TCP/AQM systems for evaluating the potential of neuron-based AQM schemes. J Netw Comput Appl 41:274–299

    Article  Google Scholar 

  18. Wang K, Jing Y, Liu Y et al (2020) Adaptive finite-time congestion controller design of TCP/AQM systems based on neural network and funnel control. Neural Comput Appl 32(13):9471–9478

    Article  Google Scholar 

  19. Wang K, Liu L, Liu XP et al (2019) Study on TCP/AQM network congestion with adaptive neural network and barrier Lyapunov function. Neurocomputing 363:27–34

    Article  Google Scholar 

  20. Xu Q, Li F, Sun J, Zukerman M (2015) A new TCP/AQM system analysis. J Netw Comput Appl 57:43–60

    Article  Google Scholar 

  21. Alaoui SB, Tissir EH, Chaibi C (2018) Active queue management based feedback control for TCP with successive delays in single and multiple bottleneck topology. Comput Commun 117:58–70

    Article  Google Scholar 

  22. Ma L, Liu X, Wang H et al (2020) Congestion tracking control for multi-router TCP/AQM network based on integral backstepping. Comput Netw 175(5):107278

    Article  Google Scholar 

  23. Wang K, Liu XP, Jing YW. Robust finite-time \( H_{\infty }\) congestion control for a class of AQM network systems. (2020) https://doi.org/10.1007/s00521-020-05168-z

  24. Wang K, Liu XP, Jing YW (2021) Command filtered finite-time control for nonlinear systems with state constraints and its application to TCP network. Inf Sci 550:189–206

    Article  MathSciNet  Google Scholar 

  25. Song J, Wang Z, Niu Y, Dong H (2020) Genetic-algorithm-assisted sliding-mode control for networked state-saturated systems over hidden Markov fading channels. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.2980109

    Article  Google Scholar 

  26. Song J, Niu Y (2020) Co-design of 2-D event generator and sliding mode controller for 2-D Roesser model via genetic algorithm. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2019.2959139

    Article  Google Scholar 

  27. Zhang Z, Niu Y, Cao Z et al (2021) Security sliding mode control of interval type-2 fuzzy systems subject to cyber attacks: the stochastic communication protocol case. IEEE Trans Fuzzy Syst 29(2):240–251

    Article  Google Scholar 

  28. Song J, Daniel WC, Ho, Y. Niu (2021) Model-based event-triggered sliding-mode control for multi-input systems: performance analysis and optimization. IEEE Trans Cybern

  29. Li J, Niu Y, Song J (2020) Finite-time boundedness of sliding mode control under periodic event-triggered strategy. Int J Robust Nonlinear Control 1:2. https://doi.org/10.1002/rnc.5298

    Article  Google Scholar 

  30. Xu L, Yu X, Feng Y et al. (2015) A fast terminal sliding mode observer for TCP/IP network anomaly traffic detection. In: 2015 IEEE international conference on industrial technology (ICIT). IEEE, 28–33

  31. Zhong T, Jing YW, Ye CY (2014) Global sliding mode control based on observer for TCP network. The 26th Chinese control and decision conference, et al (2014) CCDC). IEEE 4946–4950

  32. Utkin V, Shi J (1996) Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of 35th IEEE conference on decision and control. IEEE 4:4591–4596

  33. Sam YM, Osman JHS, Ghani MRA (2004) A class of proportional integral sliding model control with application to active suspension system. Syst Control Lett 51(3/4):217–223

    Article  Google Scholar 

  34. Hu Q (2007) Robust integral variable structure controller and pulse-width pulse-frequency modulated input shaper design for flexible spacecraft with mismatched uncertainty/disturbance. ISA Trans 46(4):505–518

    Article  Google Scholar 

  35. Hu Q, Xie L, Wang Y, Du C (2008) Robust tracking-following control of hard disk drives using improved integral sliding mode combined with phase lead peak filter. Int J Adapt Control Signal Process 22(4):413–430

    Article  Google Scholar 

  36. Levant A (1993) Sliding order and sliding accuracy in sliding mode control. Int J Control 58(6):1247–1263

    Article  MathSciNet  Google Scholar 

  37. Levant A (1998) Robust exact differentiation via sliding mode technique. Automatica 34(3):379–384

    Article  MathSciNet  Google Scholar 

  38. Davila J, Fridman L, Levant A (2005) Second-order sliding-mode observer for mechanical systems. IEEE Trans Autom Control 50(11):1785–1789

    Article  MathSciNet  Google Scholar 

  39. Moreno JA, Osorio M (2008) A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE conference on decision and control. IEEE, 2856–2861

  40. Derafa L, Benallegue A, Fridman L (2012) Super twisting control algorithm for the attitude tracking of a four rotors UAV. J Frankl Inst 349(2):685–699

    Article  MathSciNet  Google Scholar 

  41. Shtessel Y, Taleb M, Plestan F (2012) A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48(5):759–769

    Article  MathSciNet  Google Scholar 

  42. Chen WH, Ballance DJ, Gawthrop PJ et al (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Trans Industr Electron 47(4):932–938

    Article  Google Scholar 

  43. Li Z, Su CY, Wang L et al (2015) Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation. IEEE Trans Industr Electron 62(9):5763–5775

    Article  Google Scholar 

  44. Huang J, Zhang M, Ri S et al (2019) High-order disturbance-observer-based sliding mode control for mobile wheeled inverted pendulum systems. IEEE Trans Industr Electron 67(3):2030–2041

    Article  Google Scholar 

  45. Sariyildiz E, Oboe R, Ohnishi K (2019) Disturbance observer-based robust control and its applications: 35th anniversary overview. IEEE Trans Industr Electron 67(3):2042–2053

    Article  Google Scholar 

  46. Kubo R, Kani J, Fujimoto Y (2008) Internet advanced, congestion control using a disturbance observer. In: IEEE GLOBECOM, (2008) IEEE Global Telecommunications Conference. IEEE, 1–5

  47. Wang P, Zhu CJ, Yang XP (2018) A novel AQM algorithm based on feedforward model predictive control. Int J Commun Syst 31(12):e3711

    Article  Google Scholar 

  48. Yang J, Li SH, Yu XH (2012) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Industr Electron 60(1):160–169

    Article  Google Scholar 

  49. Wei XJ, Guo L (2009) Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances. Int J Control 82(6):1082–1098

    Article  MathSciNet  Google Scholar 

  50. Moreno JA, Osorio M (2012) Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans Autom Control 57(4):1035–1040

    Article  MathSciNet  Google Scholar 

  51. Huang SJ, Zhang DQ, Guo LD et al. (2018) Adaptive estimation and output feedback FTC for nonlinear systems with unknown nonlinearities and faults. Int J Robust Nonlinear Control 28

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China under Grant (61773108) and China Scholarship Council (201806080067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanwei Jing.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, X. & Jing, Y. Super twisting sliding mode network congestion control based on disturbance observer. Neural Comput & Applic 34, 9689–9699 (2022). https://doi.org/10.1007/s00521-022-06957-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-06957-4

Keywords

Navigation