Skip to main content
Log in

Improved graph-regularized deep belief network with sparse features learning for fault diagnosis

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Vibration signals are widely used in fault diagnosis of rotating machinery in real-world situations. However, it is very challenging to extract effective fault features from noisy signals and construct an accurate diagnosis model. In this paper, we propose a novel Gaussian–Bernoulli deep belief network (GDBN) model for intelligent fault diagnosis, where improved graph regularization and sparse features learning are embedded in the GDBN smoothly. In particular, the improved graph regularization is added to the hidden layer of original and reconstructed data. Therefore, our model can not only transform the original data into features with improved separability, but also generate discriminant features from vibration signal. An unsupervised pre-training learning process followed by a supervised fine-tuning is implemented in proposed model to contribute the classification capabilities. The effectiveness and superiority of the proposed model have been validated by gearbox and bearing cases studies. The results illustrate that our model can learn effective discriminative features and the extracted features are more separable. Furthermore, the proposed model achieves the better diagnosis accuracy in comparison with that of other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yu JB (2019) Evolutionary manifold regularized stacked denoising autoencoders for gearbox fault diagnosis. Knowl Based Syst 178:111–122

    Article  Google Scholar 

  2. Jin X, Zhao M, Chow TWS, Pecht M (2014) Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Trans Ind Electron 61(5):2441–2451

    Article  Google Scholar 

  3. Yu J, Liu G (2020) Knowledge-based deep belief network for machining roughness prediction and knowledge discovery. Comput Ind 121:103262

    Article  Google Scholar 

  4. Zuev A, Zhirabok A, Filaretov V (2020) Fault identification in underwater vehicle thrusters via sliding mode observers. Int J Appl Math Comput Sci 30(4):679–688

    MathSciNet  MATH  Google Scholar 

  5. Shao S, McAleer S, Yan R, Baldi P (2019) Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans Ind Inf 15(4):2446–2455

    Article  Google Scholar 

  6. Cui L, Yao T, Zhang Y, Gong X, Kang C (2017) Application of pattern recognition in gear faults based on the matching pursuit of a characteristic waveform. Measurement 104:212–222

    Article  Google Scholar 

  7. Precup RE, Angelov P, Costa BSJ, Sayed-Mouchaweh M (2015) An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Comput Ind 74:75–94

    Article  Google Scholar 

  8. Straka O, Punčochář I (2020) Decentralized and distributed active fault diagnosis: multiple model estimation algorithms. Int J Appl Math Comput Sci 30(2):239–249

    MathSciNet  MATH  Google Scholar 

  9. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  Google Scholar 

  10. Hinton GE (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  Google Scholar 

  11. Shin HC, Orton R, Collins DJ, Doran SJ, Leach MO (2013) Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans Pattern Anal Mach Intell 35(8):1930–1943

    Article  Google Scholar 

  12. Ince T, Kiranyaz S, Eren L, Askar M, Gabbouj M (2016) Real-time motor fault detection by 1D convolutional neural networks. IEEE Trans Ind Electron 63(11):7067–7075

    Article  Google Scholar 

  13. Lin FJ, Sun IF, Yang KJ, Chang JK (2016) Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive. IEEE Trans Fuzzy Syst 24(1):153–167

    Article  Google Scholar 

  14. Liu J, Xu Z, Zhou L, Yu W, Shao Y (2019) A statistical feature investigation of the spalling propagation assessment for a ball bearing. Mech Mach Theory 131:336–350

    Article  Google Scholar 

  15. Chen Y, Schmidt S, Heyns PS, Zuo MJ (2021) A time series model-based method for gear tooth crack detection and severity assessment under random speed variation. Mech Syst Signal Process 156:107605

    Article  Google Scholar 

  16. Zhu H, Cheng J, Zhang C, Wu J, Shao X (2020) Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings. Appl Soft Comput 88:106060

    Article  Google Scholar 

  17. Chen Z, Gryllias K, Li W (2020) Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network. IEEE Trans Ind Inf 16(1):339–349

    Article  Google Scholar 

  18. Cheng Y, Zhu H, Wu J, Shao X (2019) Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks. IEEE Trans Ind Inf 15(2):987–997

    Article  Google Scholar 

  19. Xing S, Lei Y, Wang S, Jia F (2021) Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new working conditions. IEEE Trans Ind Electron 68(3):2617–2625

    Article  Google Scholar 

  20. Che C, Wang H, Ni X, Fu Q (2020) Domain adaptive deep belief network for rolling bearing fault diagnosis. Comput Ind Eng 143:106427

    Article  Google Scholar 

  21. Shi M, Zhang F, Wang S, Zhang C, Li X (2021) Detail preserving image denoising with patch-based structure similarity via sparse representation and SVD. Comput Vis Image Underst 206:103173

    Article  Google Scholar 

  22. Zhang J, Shao M, Yu L, Li Y (2020) Image super-resolution reconstruction based on sparse representation and deep learning. Signal Process Image Commun 87:115925

    Article  Google Scholar 

  23. Shao Y, Sang N, Li Y, Li W, Gao C (2020) Joint image restoration and matching method based on distance-weighted sparse representation prior. Pattern Recogn Lett 135:160–166

    Article  Google Scholar 

  24. An F, Li S, Ma X, Bai L (2021) Image fusion algorithm based on unsupervised deep learning-optimized sparse representation. Biomed Signal Process Control 71:103140

    Article  Google Scholar 

  25. Ding X, He Q (2016) Time-frequency manifold sparse reconstruction: a novel method for bearing fault feature extraction. Mech Syst Signal Process 80:392–413

    Article  Google Scholar 

  26. Xiao Z, Wang H, Zhou J (2016) Robust dynamic process monitoring based on sparse representation preserving embedding. J Process Control 40:119–133

    Article  Google Scholar 

  27. Lee H, Ekanadham C, Ng AY (2007) Sparse deep belief net model for visual area v2. In: Conference on advances in neural information processing systems p 873–880

  28. Ji N, Zhang J, Zhang C, Yin Q (2014) Enhancing performance of restricted Boltzmann machines via log-sum regularization. Knowl Based Syst 63:82–96

    Article  Google Scholar 

  29. Sankaran A, Goswami G, Vatsa M, Singh R, Majumdar A (2017) Class sparsity signature based restricted Boltzmann machine. Pattern Recogn 61:674–685

    Article  Google Scholar 

  30. Rozin B, Pereira-Ferrero VH, Lopes LT, Guimarães Pedronette DC (2021) A rank-based framework through manifold learning for improved clustering tasks. Inform Sci 580:202–220

    Article  MathSciNet  Google Scholar 

  31. Li Q, Ding X, Huang W, He Q, Shao Y (2019) Transient feature self-enhancement via shift-invariant manifold sparse learning for rolling bearing health diagnosis. Measurement 148:106957

    Article  Google Scholar 

  32. Chen D, Lv J, Yi Z (2018) Graph regularized restricted Boltzmann machine. IEEE Trans Neural Netw Learn Syst 29(6):2651–2659

    Article  MathSciNet  Google Scholar 

  33. Yang J, Bao W, Liu Y, Li X, Wang J, Niu Y (2021) A pairwise graph regularized constraint based on deep belief network for fault diagnosis. Digit Signal Prog 108:102868

    Article  Google Scholar 

  34. Choo S, Lee H (2017) Learning framework of multimodal Gaussian–Bernoulli RBM handling real-value input data. Neurocomputing 275:1813–1822

    Article  Google Scholar 

  35. Yang J, Bao W, Liu Y, Li X, Wang J, Niu Y, Li J (2021) Joint pairwise graph embedded sparse deep belief network for fault diagnosis. Eng Appl Artif Intell 99:104149

    Article  Google Scholar 

  36. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  Google Scholar 

  37. Zhu X (2006) Semi-supervised learning literature survey. Neural Comput 2(3):4

    Google Scholar 

  38. Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  39. Yuan Y, Mou L, Lu X (2015) Scene recognition by manifold regularized deep learning architecture. IEEE Trans Neural Netw Learn Syst 26(10):2222–2233

    Article  MathSciNet  Google Scholar 

  40. Cotter Shane F, Rao Bhaskar D, Kjersti E, Kenneth KD (2005) Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process 53(7):2277–2488

    Article  MathSciNet  Google Scholar 

  41. Zhang S, Tang J (2018) Integrating angle-frequency domain synchronous averaging technique with feature extraction for gear fault diagnosis. Mech Syst Signal Process 99:711–729

    Article  Google Scholar 

  42. (2015) Case western reserve university bearing data center website. https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China, under Grant No. 61627901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

My Appendix

My Appendix

From the energy function defined by Eq. (8), we can obtain the joint probability distribution of the states \(({\mathbf {v}},{\mathbf {h}})\) [10]:

$$\begin{aligned} P({\mathbf {v}},{\mathbf {h}})=\frac{e^{-E({\mathbf {v}},{\mathbf {h}})}}{\mathop {\sum }\limits _{{\mathbf {v}}}\mathop {\sum }\limits _{{\mathbf {h}}}e^{-E({\mathbf {v}},{\mathbf {h}})}} \end{aligned}$$
(18)

where \(Z=\mathop {\sum }\limits _{{\mathbf {v}}}\mathop {\sum }\limits _{{\mathbf {h}}}e^{-E({\mathbf {v}},{\mathbf {h}})}\).

When calculating the features of the original data, the features of the reconstruction layer data can be regarded as constants. Denote \(\mathbf{{h}}_{ - m}^k\mathrm{{ = }}\left( {h_1^k,h_2^k, \cdots ,h_{m - 1}^k,h_{m + 1}^k, \cdots ,h_{{n_h}}^k} \right)\) is the removed vector of components from \({\mathbf{{h}}^k}\).

Considering the energy function of (14), Derive \(p(v_{m}^{k}=v\mid {\mathbf {h}}^{k})\)

$$\begin{aligned}&p\left( {\mathbf {v}}_{m}^{k}\mid {\mathbf {h}}^{k}\right) =\frac{e^{-\mathop \sum \limits _{i=1}^{n_{v}}\frac{\left( v_{i}^{k}-b_{i}\right) ^{2}}{2\sigma _{i}^{2}} +\mathop \sum \limits _{i=1}^{n_{v}}\mathop \sum \limits _{j=1}^{n_{h}}\frac{v_{i}^{k}}{\sigma _{i}^{2}}w_{ij}h_{i}^{k}}}{\mathop \prod \limits _{i=1}^{n_{v}}\sqrt{2\pi }\sigma _{i} e^{\frac{2b_{i}\mathop \sum \limits _{j=1}^{n_{h}}w_{ij}h_{j}^{k}+\left( \mathop \sum \limits _{j=1}^{n_{h}}w_{ij}h_{j}^{k}\right) ^{2}}{2\sigma _{i}^{2}}}} \nonumber \\&=\mathop \prod \limits _{i=1}^{n_{v}}\frac{1}{\sqrt{2\pi }\sigma _{i}}e^{-\frac{\left( v_{i}^{k}-b_{i}-\sigma _{i}\mathop \sum \limits _{j=1}^{n_{h}}\right) ^{2}}{2\sigma _{i}^{2}}}. \end{aligned}$$
(19)

Therefore,

$$\begin{aligned} p\left( v_{m}^{k}\mid {\mathbf {h}}^{k}\right) =\frac{1}{\sqrt{2\pi }\sigma _{m}}e^{-\frac{\left( v_{m}^{k}-b_{m}-\sigma _{m}\mathop \sum \limits _{j=1}^{n_{h}}w_{mj}h_{m}^{k}\right) ^{2}}{2\sigma _{m}^{2}}}. \end{aligned}$$
(20)

Derivate \(p(h_{m}^{k}=1\mid {\mathbf {v}}^{k})\) :

$$\begin{aligned} p\left( {h_{m}^{k} = 1{\mid }{\mathbf{v}}^{k} } \right) & = & p\left( {h_{m}^{k} = 1{\mid }{\mathbf{h}}_{{ - m}}^{k} ,{\mathbf{v}}^{k} } \right) = \frac{{p\left( {h_{m}^{k} = 1,{\mathbf{h}}_{{ - m}}^{k} ,{\mathbf{v}}^{k} } \right)}}{{p\left( {{\mathbf{h}}_{{ - m}}^{k} ,{\mathbf{v}}^{k} } \right)}} \\ & = \frac{{\frac{1}{Z}e^{{ - E\left( {h_{m}^{k} = 1,{\mathbf{h}}_{{ - m}}^{k} ,{\mathbf{v}}^{k} } \right)}} }}{{\frac{1}{Z}e^{{ - E\left( {h_{m}^{k} = 1,{\mathbf{h}}_{{ - m}}^{k} ,{\mathbf{v}}^{k} } \right)}} + \frac{1}{Z}e^{{ - E\left( {h_{m}^{k} = 0,{\mathbf{h}}_{{ - m}}^{k} ,{\mathbf{v}}^{k} } \right)}} }} \\ & = \frac{1}{{1 + e^{{ - b_{m} - \sum\limits_{{i = 1}}^{{n_{v} }} {\frac{{v_{i}^{k} }}{{2\sigma _{i}^{2} }}} w_{{im}} + \left( {\frac{{\lambda _{2} }}{2}\mathop \sum \limits_{l} W_{{intra,kl}} \left( {1 - 2h_{m}^{l} } \right) - \frac{{\lambda _{2} }}{2}\mathop \sum \limits_{l} W_{{inter,kl}} \left( {1 - 2h_{m}^{l} } \right)} \right)}} }} \\ & = s\left( {b_{m} + \sum\limits_{{i = 1}}^{{n_{v} }} {\frac{{v_{i}^{k} }}{{2\sigma _{i}^{2} }}} w_{{im}} - } \right.\;\;\left. {\left( {\frac{{\lambda _{2} }}{2}\mathop \sum \limits_{l} W_{{intra,kl}} \left( {1 - 2h_{m}^{l} } \right) - \frac{{\lambda _{2} }}{2}\mathop \sum \limits_{l} W_{{inter,kl}} \left( {1 - 2h_{m}^{l} } \right)} \right)} \right) \\ \end{aligned}$$
(21)

The derivation process of reconstructed data is similar to the original data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Bao, W., Li, X. et al. Improved graph-regularized deep belief network with sparse features learning for fault diagnosis. Neural Comput & Applic 34, 9885–9899 (2022). https://doi.org/10.1007/s00521-022-06972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-06972-5

Keywords

Navigation