
ORIGINAL ARTICLE

Joint design and compression of convolutional neural networks
as a Bi-level optimization problem

Hassen Louati1,2 • Slim Bechikh2 • Ali Louati1,2 • Abdulaziz Aldaej1 • Lamjed Ben Said2

Received: 2 January 2022 / Accepted: 18 April 2022 / Published online: 17 May 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Over the last decade, deep neural networks have shown great success in the fields of machine learning and computer vision.

Currently, the CNN (convolutional neural network) is one of the most successful networks, having been applied in a wide

variety of application domains, including pattern recognition, medical diagnosis and signal processing. Despite CNNs’

impressive performance, their architectural design remains a significant challenge for researchers and practitioners. The

problem of selecting hyperparameters is extremely important for these networks. The reason for this is that the search space

grows exponentially in size as the number of layers increases. In fact, all existing classical and evolutionary pruning

methods take as input an already pre-trained or designed architecture. None of them take pruning into account during the

design process. However, to evaluate the quality and possible compactness of any generated architecture, filter pruning

should be applied before the communication with the data set to compute the classification error. For instance, a medium-

quality architecture in terms of classification could become a very light and accurate architecture after pruning, and vice

versa. Many cases are possible, and the number of possibilities is huge. This motivated us to frame the whole process as a

bi-level optimization problem where: (1) architecture generation is done at the upper level (with minimum NB and NNB)

while (2) its filter pruning optimization is done at the lower level. Motivated by evolutionary algorithms’ (EAs) success in

bi-level optimization, we use the newly suggested co-evolutionary migration-based algorithm (CEMBA) as a search engine

in this research to address our bi-level architectural optimization problem. The performance of our suggested technique,

called Bi-CNN-D-C (Bi-level convolution neural network design and compression), is evaluated using the widely used

benchmark data sets for image classification, called CIFAR-10, CIFAR-100 and ImageNet. Our proposed approach is

validated by means of a set of comparative experiments with respect to relevant state-of-the-art architectures.

Keywords Deep CNN architecture design � Deep CNN architecture compression � Evolutionary algorithms �
Bi-level optimization

1 Introduction

CNNs are currently among the most widely used machine

learning models for object recognition and computer vision

[1–3]. Despite the fact that CNN with several layers have

been in use for a long time, they gained widespread interest

in the scientific community in 2006 following the work of

several researchers, such as Bengio et al. 2007 [4] and

LeCun et al. 2015 [5]. In fact, when dealing with extremely

complex classification problems or for specific purposes,

CNN has become increasingly used, especially at a high

level of precision. CNNs architecture is defined by a large

number of hyperparameters, which should be fine-tuned to

optimize the architecture. Previous works in the literature

& Ali Louati

a.louati@psau.edu.sa

Hassen Louati

hassen.louati@stud.acs.upb.ro

Slim Bechikh

slim.bechikh@fsegn.rnu.tn

Abdulaziz Aldaej

a.aldaej@psau.edu.sa

Lamjed Ben Said

lamjed.bensaid@isg.rnu.tn

1 Department of Information Systems, College of Computer

Engineering and Sciences, Prince Sattam bin Abdulaziz

University, Al-Kharj 11942, Saudi Arabia

2 SMART Lab, University of Tunis,ISG, Tunis, Tunisia

123

Neural Computing and Applications (2022) 34:15007–15029
https://doi.org/10.1007/s00521-022-07331-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-7088-3919
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07331-0&domain=pdf
https://doi.org/10.1007/s00521-022-07331-0

have been proposed with the goal of optimizing architec-

tures such as ResNet [6] and VGGNet [7]. Unfortunately,

the majority of these architectures are either defined

manually by experts or automatically created using greedy

induction techniques. Despite the impressive performance

of the CNN design, experts in the disciplines of opti-

mization and machine learning proposed that improved

structures may be discovered using automated approaches.

Evolutionary computation researchers proposed modeling

this task as an optimization problem and then solving it

with an appropriate search algorithm [8]. Indeed, selecting

the blocks’ number, nodes per block and the graph’s

topology within each CNN block is similar to solving a

problem of optimization within a large search space. Due

to the fact that EAs are capable of approximating the global

optimum and thus avoiding local optimal solutions (ar-

chitectures), authors in [9] proposed recently the use of

such metaheuristic techniques to handle the challenge of

optimizing the CNN architecture.

Efficient model designs [10, 11] focus on acceleration

over compression through the use of optimized convolu-

tional operations or network architectures. Recently, as a

means of improving accuracy, deepening on CNN models

has become a popular trend, as demonstrated by ResNet

[6], VGGNet [7] and Xception [12]. Indeed, it is chal-

lenging to deploy these deep models on low-resource

devices such as smartphones and mobile robots. However,

billions of network parameters represent a significant

storage overhead for embedded devices, such as the

VGG16 deep learning model, which has over 138 million

parameters and requires over 500MB of memory space to

classify a 224 224 image. Obviously, such a large model

cannot be directly deployed in on-board devices. Deep

compression process is a critical technique for resizing a

deep learning model by consolidating and removing inad-

equate components. However, compressing deep models

without significant loss of precision is a critical issue.

Several techniques for CNN pruning have been presented,

including neurons, filters and channel pruning approaches

[13], which reduce model weight by removing unimportant

connections.

Due to the fact that EAs are capable of approximating

the global optimum and thus avoiding locally optimal

solutions, recent works [9, 14, 15] recommend that similar

metaheuristic algorithms be employed to address the CNN

architectural optimization challenge in the field of network

compression. To do so successfully, the solution encoding,

the fitness function and the variation operators must all be

defined. In fact, all previous work focuses on compressing

manual architectures and their nonexistent compression for

automated CNN architecture. We notice that in our previ-

ous works, the problematic of compression is not tackled.

Motivated by recent survey papers [9, 14, 16] on deep

neural networks pruning and the reported interesting

results, we decided to tackle the problem of filter pruning.

As any CNN architecture could be pruned in different

ways, we framed the problem of ‘‘joint design and prun-

ing’’ as a bi-level optimization problem. The upper-level

goal is to search for good architectures, while the lower-

level one is to apply filter pruning on the considered

architecture. Indeed, the evaluation of an upper-level

architecture requires sending this architecture to the lower

level to execute the fitter pruning on it by deactivating

some filters. The filters that should be deactivated could not

be known before hand as the number of possibilities is

huge and corresponds to a whole search space. For this

reason, the filter pruning task is executed at the upper level

as an evolutionary optimization (search) process. In this

way, the fitness evaluation of each upper-level solution

(architecture) requires the (near) optimal filter pruning

decision (encoded as a binary vector where 0 means that

the corresponding filter is deactivated) found at the lower

level. By following such as a bi-level optimization process,

the final output of our approach is an CNN architecture

with minimum number of filters and optimized topology.

Figure 1 illustrates an example of a Bi-CNN-D-C (bi-level

convolution neural network design and compression) sce-

nario. To our knowledge, this is the first study to model and

solve the CNN architecture design and compression prob-

lem as bi-level method. Each upper-level solution neces-

sitates solving a separate lower-level optimization

problem; the computational cost intends to be prohibitively

expensive. We address this issue by solving combinatorial

BLOPs using CEMBA [17]. Indeed, each upper-level

population collaborates with its corresponding lower-level

population. This fact enables a significant reduction in the

number of evaluations performed during the lower-level

search process. The main contributions of our paper could

be summarized as follows:

• For the first time, an evolutionary method that combines

CNN architecture generation with filter pruning within

the optimization process is developed. This is motivated

by the fact that any generated architecture should be

first pruned before evaluating its classification

performance.

• The joint design and filter pruning is modeled as a bi-

level optimization problem where architectures are

generated through crossover and mutation at the upper

level with minimum NB and NNB, while filter pruning

of each architecture is applied at the lower level.

• The bi-level optimization modeling is solved using a bi-

level co-evolutionary algorithm to ensure the effective

collaboration between the architecture generation (at

15008 Neural Computing and Applications (2022) 34:15007–15029

123

the upper level) and the filter pruning at (the lower

level).

• Detailed experiments on CIFAR and ImageNet data sets

in addition to a COVID-19 case study are conducted in

comparison with several recent and prominent peer

works. The merits of our proposed algorithm, Bi-CNN-

D-C, are demonstrated based on several metrics

including the classification error, the number of GPU-

Days and the number of parameters.

The rest of this paper is structured as follows. Section 2

summarizes the review of the literature on CNN pruning.

Section 3 details our proposed approach. Section 4 details

the experimental design and performance analysis results.

Finally, in Sect. 5, the paper is concluded and some future

research directions are suggested.

2 Related work

2.1 CNN design based on evolutionary
optimization

Recently, some researchers have taken an interest in EAs

as a means of evolving deep neural network architectures.

A survey on applications of swarm intelligence and evo-

lutionary computing based optimization of deep learning

models has been published by Darwish et al. [9]. Based on

this survey, we selected the most representative:

• Cheung and Sable [18] optimized the architecture

hyperparameters using a hybrid EA on the basis of

the diagonal Levenberg Marquardt technique with rapid

convergence and a low computing cost of fitness

assessments number. They established the critical role

of architectural choices in convolutional layer net-

works. Their findings demonstrate that even the

simplest evolution strategies can yield significant gains.

When variation effects are present, the employment of

evolved parameters in combination with local contrast

normalization preprocessing and absolute value across

layers has proven a compulsive performance on the

MNIST data sets [19].

• Fujino et al. [20] presented evolutionary Deep Learn-

ing, called evoDL, as a technique for discovering

unique architectural designs. This technique is intended

to be used to investigate the development of hyperpa-

rameters in deep convolutional neural networks, called

DCNNs. Additionally, authors proposed AlexNet as a

fundamental framework of the CNN and optimize both

the parameters tuning and activation functions using

evoDL.

• Real et al. [21] used the CIFAR-10 and CIFAR-100

data sets to develop the CNN structure in order to

identify the classification model. They presented a

mutation operator that may be used to avoid locally

optimum models. They demonstrated that neuro-evolu-

tion is capable of constructing highly accurate

networks.

• Xie et al. [22] maximized the recognition accuracy by

representing the network topology as a binary string.

The primary constraint was the high computing cost,

which compelled the authors to conduct the tests on

small-scale data sets.

• Mirjalili et al. [23] developed an adaption for solving

bi-objective models, called NSGA-Net. The image

classification and object alignment results obtained

demonstrate that NSGA-Net is capable of providing the

user with less than complicated correct designs.

• Alejandro et al. [24] developed EvoDEEP to optimize

network characteristics by calculating the probability of

Fig. 1 Bi-CNN-D-C scenario

Neural Computing and Applications (2022) 34:15007–15029 15009

123

layer transitions based on the finite state machines

concept. The goal was reducing classification error rates

and preserving the layer sequence.

• Real et al. [25] provided a GA with an updated

tournament selection operator that takes into account

the age of the chromosomes while selecting youngest

chromosomes. The architectures are described as small

directed graphs with edges and vertices representing

common network actions and hidden states. They

developed novel mutation operators connecting the

edges’ origin to other vertices and rename the edges

arbitrarily in order to cover the entire search space.

• Sun et al. [26] developed an evolutionary technique for

improving convolutional neural network designs and

initializing their weights for image classification prob-

lems. This aim was realized by developing a unique

approach for initializing weight, a novel encoding

variable-length chromosomes strategy, a slacked binary

tournament selection methodology and an efficient

fitness evaluation technique. Experiments indicated that

the EvoCNN methodology surpasses clearly a wide

number of existing approaches in terms of classification

performance on practically all data sets investigated.

• Lu et al. [26] established a multi-objective modeling of

the architectural search problem for the first time by

minimizing two potentially conflicting objectives: clas-

sification error rate and computational complexity, as

measured by the number of floating point operations

(FLOPS). In order to execute a multi-objective EA, they

updated the non-dominated sorting GA-II (NSGA-II)

algorithm.

• Jing et al. [27] developed a multi-objective model

aiming to maximize classification accuracy while

keeping the tuning parameters to a minimum. The

proposed model was solved based on a hybrid binary

encoding representing component layers and network

connections using multi-objective particle swarm opti-

mization with Decomposition, called MOPSO/D. The

architectures discovered are considered to be excep-

tionally competitive when compared to models created

manually and automatically.

2.2 CNN compression

Deep network compression is one of the most significant

strategies for resizing a deep learning model by combining

the removal of ineffective components [14]. However,

compressing deep models without considerable loss of

precision is a key challenge. Recently, many studies have

been focused on discovering new techniques to minimize

the computational complexity of CNNs based on EAs

while retaining their performance [14]. We divide the

network compression techniques into three categories

depending on the existing work: filter pruning [29–32],

quantization [33–37] and Huffman encoding [38–40].

The convolutional operation in the CNN model inte-

grates a large number of filters to improve its performance

under various classification and prediction processes [41].

Recently, various pruning-based filter pruning techniques

[29–32] have been suggested. The addition of filters

enhances the defining features of the spatial characteristics

generated by the CNN model [9, 42]. However, this

increment results in a significant increase in the DNN

model’s FLOPs. As a result, removing superfluous filters is

critical for reducing the computational requirements of the

DCNN model. Figure 2 illustrates a scenario using filter-

level pruning. We summarize the most important works on

filter pruning currently available:

• Luo et al. [31] introduced an efficient framework named

ThiNet for accelerating the operation of the CNN model

through the use of compression during the training and

testing phases. They implemented filter-level pruning,

in which a filter that is no longer necessary is deleted

based on statistical information generated from the

following layer. The authors proposed pruning filters at

the filter level as an optimization issue for determining

which filters to prune. They solve the optimization

problem with a greedy method which is defined as

follows:

argmin
E

Xi¼1

N

yi �
X

j�E

Xij

 !2

Subject to; Ej j ¼ k � crate

E � 1; 2; :::; kf g;

ð1Þ

where N represents the training example number

(Xi,Yi), Ej j represents the subset element number, k

represents the channel number within the CNN model

and crate represents the channels number retrained after

compression.

• Bhattacharya and Lane [43] developed a technique for

CNN compression that removes sparsification in con-

volutional filters and the fully connected layer. The

primary goal was to minimize the amount of storage

required by devices throughout the training and infer-

ence processes. By utilizing layer separation and

convolutional filters, the computational and spatial

complexity of the DCNN model can be significantly

expanded.

• Zhou et al. [44] suggested a multi-objective optimiza-

tion problem for filter pruning, followed by a knee-

guided approach. They proposed a trade-off between

performance degradation and parameter count. The

fundamental concept is to remove parameters that

15010 Neural Computing and Applications (2022) 34:15007–15029

123

contribute to performance degradation. They used the

performance loss criteria to determine the significance

of a parameter. To produce a tiny compressed model,

the number of filters should be limited to a minimum

while yet achieving a high degree of precision. The

challenge can be handled by identifying a compact

binary representation capable of pruning the maximum

number of filters while maintaining a reasonable level

of performance. This work has the advantage of

lowering the number of parameters and processing

overhead.

• Huynh et al. [45] presented the DeepMon approach for

developing deep learning inference on mobile devices.

They assert that they can do inference in a short period

of time and with minimal power consumption by using

the graphics processing unit on the mobile device. They

presented a method for convolutional processes on

mobile graphics processing units to be optimized. The

technique repurposes the results by utilizing CNN’s

internal processing structure, which includes filters and

a network of connections. Thus, deleting filters and

superfluous connections demonstrates faster inference.

• Denton et al. [32] significantly reduce the time required

to evaluate a large CNN model developed for object

recognition. The authors used insignificant convolu-

tional filters to develop approximations that signifi-

cantly minimize the necessary computation. They

began by compressing each convolutional layer using

an appropriate low-rank approximation and then fine-

tuning until prediction performance was recovered.

Weight quantization decreases both the storage and

computing requirements of the CNNs model [33–37], Han

et al. [34] suggested a weight quantization approach for

compressing deep neural networks by reducing the number

of bits needed to encode weight matrices. The authors

attempt to decrease the number of weights which should be

stored in memory. The identical weights are removed as a

result, and numerous connections are derived from a single

remaining weight. The authors used integer arithmetic for

inference and floating point computations for training.

Jacob et al. [37] presented a quantization technique based

on integer arithmetic for inference. Integer arithmetic is

more efficient than floating point arithmetic and requires

fewer bits to represent. Additionally, the authors construct

a training step that mitigates the accuracy penalty associ-

ated with the conversion of floating point operations to

integer operations. As a result, the suggested technique

eliminates the trade-off between on-device latency and

accuracy degradation caused by integer operations. The

authors performed inference using integer arithmetic and

training using floating point operations. Quantization is a

technique that creates an affine mapping between integers

Q and real numbers R, i.e., of the type

R ¼ WðQ� TÞ ð2Þ

where Eq. 2 denotes the quantization method with the

parameters W and T. For instance, Q is set to 8 for 8-bit

quantization. W is an arbitrary positive real number, and

T has the same type as variable Q. The quantization

strategy for compressing DNN models is explored in the

Fig. 2 An illustration of how filter-level pruning works [28]

Neural Computing and Applications (2022) 34:15007–15029 15011

123

current literature [33–37]. The strategies cover model

reduction by arranging weight matrices optimally. How-

ever, the previous work does not address the negative

repercussions of weight quantization or its estimation

complexity.

A Huffman encode is a lossless data compression

algorithm that is frequently used [46]. Schmidhuber et al.

[39] utilized Huffman coding to compress text files gen-

erated by a neural prediction network. Han et al. [40] used

a three-stage compression strategy to encode the quantized

weights, which included pruning, quantization and finally

Huffman coding [9]. Ge et al. [47] proposed a hybrid

model compression technique based on Huffman coding to

capture the sparse nature of trimmed weights. Huffman

codes are superior to all other variable-length prefix cod-

ings. However, Elias and Golomb. 1975 encoding [48] can

take advantage of various intriguing characteristics, such as

the recurrence of specific sequences, to achieve greater

average code lengths.

Despite the interesting findings of design and compres-

sion work on optimizing deep learning architectures, all

researchers believed architecture optimization was a sin-

gle-level problem. Therefore, We show that CNN design

can be improved if two optimization levels are considered,

where a search space is assigned to each level.

3 The proposed approach

3.1 Bi-CNN-efficient and compression overview

The two following questions motivate our bi-level model:

• How can we design a less complex architecture with the

minimum possible convolution blocks (NB) and con-

volution nodes per block (NNB) while achieving high

performance, which is highly dependent on the topolo-

gies of the convolution blocks’ graphs?

• For any CNN architecture, there are a large number of

filters per layer; how could we determine the optimal

number of filters per layer?

For the following reasons, a bi-level modeling of the

design and compression architecture is necessary to solve

these two research problems. On the one hand, optimizing

the design and compression of hyperparameters requires

intelligent sampling of the entire high-level search space.

On the other hand, in order to assess the upper-level quality

solution (NB, avgNNB, NF, Err), we must pass the vector

(TOP, NF) to the lower level as a fixed parameter, with the

intention of finding the best selected filters (NF) from the

lower-level search space. Once the lower-level process is

completed, each architecture is passed through the process

of quantization of 32-bit floating point values into 5-bit

integer levels. This process is used to further reduce the

stored size of the weights file. These strategies approached

the problem as a bi-level optimization problem, evaluating

each pair of hyperparameters independently. This obser-

vation demonstrates a significant inconvenience of present

approaches and is the paper’s key research gap. The bi-

level modeling of the CNN architecture design and com-

pression optimization problem illustrated in Fig. 3

demonstrates our approach.

In fact, the upper-level optimization process is con-

cerned with optimizing the (NB, NNB) and determining the

optimal topology sequence in terms of classification

accuracy while the lower level focused on the CNN

pruning filters. As we are in the case of bi-level opti-

mization, we have two kinds of solutions: (1) an upper-

level solution and (2) a lower-level one. Indeed, the upper-

level solution is encoded as a vector containing two sub-

vectors: (1) the first one contains integer values expressing

the NB and the NNB and (2) the second one is a binary

sequence expressing the topology (encoding adopted from

Genetic-CNN [49]). This encoding is chosen to reduce as

possible the chromosome length at the upper level. The

lower-level is a sequence of sub-vectors each expressing

the filter pruning decision of the corresponding convolution

node. Modeling such a bi-level problem with the goal of

finding better architectures with less complexity would be a

better idea. It would be wiser to model such a bi-level

problem with the goal of identifying more complex

architectures.

3.2 Bi-CNN-D-C: adaptation of CEMBA to the bi-
level model

To solve the proposed bi-level optimization model using

CEMBA’s adaptation, the following upper-level processes

should be detailed:

3.3 Upper level: CNN design

– Upper-level solution encoding: It is constructed by

concatenating the number of blocks NB with an integer

sequence NNB representing the node numbers in every

block and with a sequence of graph topology of the

convolution layer. A possible directed graph is repre-

sented by this object.

– Upper-level fitness function: Aim to evaluate an upper-

level solution, we must reduce the complexity of the

CNN architecture as much as possible by optimizing

the (NB,NNB) while achieving high performance. In

order to accomplish this, we propose the following

fitness function:

15012 Neural Computing and Applications (2022) 34:15007–15029

123

FðNB; avgNNB;NF;ERRÞ ¼ ðNB=NBmaxÞ
þ ðAvgNNB=NNBmaxÞ
þ ðNF=NFmaxÞ þ ðErrÞ

To differ the population at the upper level, the uniform

crossover operator [50] has been considered, which allows

for variation across all chromosomal segments. To guar-

antee the diversity of solution variation, every parent

solution is converted into a binary sequence based on the

Gray encoding [51]. This encoding technique is inspired by

the fact that neighboring integer values vary by just one bit,

which is not true for the conventional binary encoding [52].

This has been shown to help prevent premature conver-

gence at so-called Hamming walls [53], where too many

simultaneous mutations (or crossover events) are required

to change the chromosome to a more advantageous solu-

tion. A uniform crossover procedure randomly selects a

recombination mask from a uniform distribution. This

mask represents a binary vector of 0 and 1. The first off-

spring is formed by extracting the bit from both parents in

case that the corresponding mask bit is equal to 0 and from

both parents if the corresponding mask bit is equal to 1.

The second offspring is generated using the inverse mask.

Finally, each offspring is encoded into an integer vector

and the value of its fitness function is calculated. Due to the

fact that the proposed solution represents a vector of inte-

gers, the length of the binary chromosome is a multiple of

four (we mean that each integer is encoded using 4 bits). If

this is not the case for a created offspring, the last bits are

removed to maintain a multiple of four length. It is crucial

to remember that the NB value of a created offspring may

vary from the length of the NNB sequence. The offspring

solution is rectified in this example by changing the

sequence length value from NNB to NB. Then, in order to

optimize accuracy, we must look for the optimum topolo-

gies. Then, in order to maximize accuracy, we must

determine the optimal topologies. As seen in Fig. 4, the

answer will be encoded as a squared binary matrices

sequence, one for each conceivable directed network. A

value of 1 indicates that the row node is the column node

predecessor; a value of 0 indicates that there is no rela-

tionship between the two nodes. Due to the fact that this

work is concerned with the CNN model, the following

constraints must be respected:

• Each active convolution node should have a predeces-

sor node. The latter may be a previous convolution node

or the convolution node at the input.

• Each active convolution node should have a successor

node. The latter may be a convolutional successor node

or the output successor node.

• Any active convolution node should have predecessors

in its preceding layers. For instance, node 4 may have

predecessors in the form of nodes 3, 2, 1 and the input

node.

• The initial convolutional node should have a single

preceding node that acts as the input node.

• The last convolution node’s output node should have

only one successor node.

The goal of mutation is to inject abrupt changes within the

population to ensure its diversity and thus its ability to

explore other regions of the search space (e.g., non-visited

Fig. 3 Design and prune the

CNN architecture using a bi-

level model

Neural Computing and Applications (2022) 34:15007–15029 15013

123

Fig. 4 Upper level: Crossover

operator [4]

15014 Neural Computing and Applications (2022) 34:15007–15029

123

ones so far). Among these operators, we cite one-point

mutation, random reset, inversion mutation, just to name a

few. As we adopted binary encoding as both levels (NB

integer, NNB integer, topology, filter activation decision

vector), the one-point mutation allowed us a progressive

change of the subject solution. In this way, diversity is

slightly incorporated within the evolutionary process. As

with the crossover operator, the solution of mutation

operator is converted to a binary string using Gray

encoding before applying the one-point mutation. Due to

the possibility that the variation will alter the NB field, the

consistency is achieved by using the following repair

technique. (assumes LNS = length (NNB sequence)).

• If (NB\ LNS), then delete the chromosome’s final

(LNS-(LNS-NB)) integers.

• If (NB[LNS), then at the end of the chromosome, add

(NB-LNS) randomly generated integers. These two

conditionals guarantee that NB will always equal LNS.

On the basis of prior work [1], we suppose that the quantity

of NB must be in the interval [9, 11] while the quantity of

NNB within the interval [32, 49] in this research. The Acc

is computed using the holdout validation method [54] by

80% of data records are randomly selected for training and

20% for testing.

3.4 Lower level: CNN compression

• Encoding the solution of the Upper level: It resembles

the selected filters number (NF) to be pruned in the

convolutional layer. The filter subset of the binary

vector represented by a bit sequence of 0, 1.

• Fitness function of the lower level : To assess the

lower-level solutions, the complexity of the CNN

architecture must be reduced by minimizing the NF

while preserving or improving the high precision. To do

so, we provide the following fitness function:

FðNFðArchÞÞ ¼ ðNF=NFmaxÞ þ ðErrÞ ð3Þ

In the proposed lower-level deep pruning filters, a binary

strings is adopted for representing the filters of a CNN

model. It is essential to know that the suggested algorithm

prunes convolution layers. DCNNs are constructed basi-

cally by stacking multiple convolution, pooling and fully

connected layers. The goal of this paper is the automated

joint design and filter pruning of CNN architectures. As

filters are located only within convolution layers, only

these latter are pruned. Our approach considers each bit as

one single filter, e.g., if we are looking to represent two

layers of convolution, 16 filters for one layer and 32 filters

for the other one, we will require a string of 48-bit, while a

bit with a zero assigned indicates the elimination of the

corresponding filter. Furthermore, during pruning simple of

CNN models, uniquely one bit string is needed, with every

bit representing a model filter. Figure 5 shows the binary

representation of a CNN before and after pruning. The two-

point crossover operator is used to vary the population [50]

since it enables chromosome parts to change. Each parent

solution in this operation is a set of binary strings [51]. A

couple of cutting points are chosen for each couple of

parent in this process, after which the bits between the cuts

will be exchanged to produce a couple of offspring solu-

tions. In fact, the two-point crossover is adopted to allow

the variation of all parts of the chromosomes. Indeed, if the

one-point crossover is used, the extreme regions (extreme

genes) of the chromosomes are likely to still unchanged.

This could significantly reduce the exploitation ability of

the crossover and the population diversity. To mitigate this

issue, researchers proposed the use of two cut points

instead of a single one to allow the variation of the entire

chromosome.

Similar to crossover, the solution of mutation operator is

encoded as a binary string, followed by a random mutation

of one point. A point on the chromosomes of both parents

is chosen at random and referred to as a ‘‘crossing point.’’

The bits to the right of this point are exchanged between

the two parent chromosomes.

A quantization of 32-bit floating point values into 5-bit

integer levels is used to further reduce the stored size of the

weights file. The quantization part are spread linearly

between Wmin and Wmax because it produces higher

accuracy results than density-based quantization; thus,

even if a weight occurs with a low probability, it may have

a high value and therefore a high influence, and if quan-

tized to be less than its real value. This stage produces a

compressed sparse row of quantized weights.

Due to the statistical characteristics of the quantization

output, Huffman compression might be used to further

reduce the weights file. However, this adds the additional

hardware needs of a Huffman decompressor and a com-

pressed sparse row to weights matrix converter.

The test error is computed using the holdout validation

technique [55], which randomly selects 70% of the data

records for training and 30% for testing. To deal with this

the over-fitting issue, the training data (70%) is divided

into 5 folds, and thus, fivefold cross-validation is applied

during training. The classification performance is averaged

over the 5 folds of the training partitions. Figure 6 illus-

trates the adopted validation strategy in this work [56].

Eventually, in the experiments, we report the classification

error on the test data (30%).

Neural Computing and Applications (2022) 34:15007–15029 15015

123

4 Experimental study

4.1 Benchmarks and research questions

We compared the performance of the suggested strategy to

earlier work using the two frequently used benchmark data

sets: CIFAR-10, CIFAR-100 and ImageNet. The first batch

of data contains 60,000 32 � 32 RGB images that are

grouped into ten groups of 6000 images each. Indeed, the

test sample size is 10,000, but the training set sample size is

50,000. The other data set is similar to CIFAR-10, but

differs in terms of class count; it comprises 100 classes and

each class contains 600 images. Both data sets present

significant challenges due to factors like as noise, image

size and image rotation. The photographs are incremented

during the processing stage to ensure that the comparisons

are fair. Indeed, four zero pixels are added to each image,

resulting in the modification of a 32 � 32 image. Following

that, the clipped image is arbitrarily compressed with a

probability of 0.5. This technique was influenced by [57].

Due to the enormous number of classes, the most of current

studies do not conduct experiments using CIFAR 100 data

sets. To demonstrate our Bi-CNN-D-C performance, we

carry out a series of tests on CIFAR-10 and CIFAR-100.

Finally, the ImageNet The third batch of collection con-

tains 14,197,122 images that have been annotated using the

WordNet hierarchy. Since 2010, the ImageNet Large-Scale

Visual Recognition Challenge (ILSVRC) has used the data

set as a benchmark for image classification and object

recognition. The freely available data set provides a

Fig. 5 CNN model’s binary representation before and after pruning half of the filters from every layer

Fig. 6 Adopted nested

validation strategy in our work

15016 Neural Computing and Applications (2022) 34:15007–15029

123

collection of training images that have been hand labeled.

Additionally, a set of test images is released without the

associated manual annotations. Our examination study will

address the following main questions:

• How do the architectures generated by Bi-CNN-D-C

compare to previous work on CIFAR-10 image

classification?

• Is it possible for Bi-CNN-D-C to maintain its efficacy

on CIFAR-100 and ImageNet, that is, when the number

of classes is increased to 100?

• Is Bi-CNN-D-C capable of producing high-quality

designs in spite of its high computational cost?

To solve these RQs, we compare the best architecture

developed by Bi-CNN-D-C to previously generated and

current designs.

4.2 Performance indicators

According to previous work, the most used performance

measures in image classification using DNN are error rate

and floating point operations (FLOPs). Equation (8) gives

the error rate (Test error), where FP stands for false posi-

tives, FN stands for false negatives and NE stands for the

total number of samples.

test error ¼ ðFPþ FNÞ=NE ð4Þ

#Params is the sum of the weights and biases in the con-

volution layer, and is given by Eq. (4), where Wc, Bc, pc

and K are the weights, biases, parameters and the convo-

lution layer size, respectively; N represents the kernels

number; and C represents the channels number in the input

image [1].

Pc ¼ Wcþ Bc

Bc ¼ N

Wc ¼ K2 � C � N

ð5Þ

The GPUDays metric is the number of GPU day units

where a unit means that the algorithm has performed one

day on one GPU.

FLOPs represent the number of floating point operations

per second, which is accredited as the computation speed,

which is a measure of hardware performance, and is given

by Eq. (7) where W, H and Cin represent, respectively, the

width, height and number of channels of the input char-

acteristics map. K is the core width, and Cout is the number

of output channels.

Each method is executed 20 times, and then, the per-

formance values of the best 20 outputted architectures of

each method are averaged (for each metric).

FLOPs ¼ 2HWðCink
2 þ 1ÞCout ð6Þ

4.3 Peer algorithms and parameters setup

The most representative previous studies from both cate-

gories of CNN generation methods are compared to our Bi-

CNN-D-C methodology. From the evolutionary approach

based on CNN Design, we selected BLOP-CNN, Genetic-

CNN, LargeScale-Evo, AE-CNN, CNN-GA and NSGA-

Net. From the pruning approaches, we selected

DeepPruningES, Channel-Evo and Classical-Pruning [58]

which are added to the experimental comparisons. The

parameters of the compared algorithms are established on

the basis of the commonly used trial-and-error strategy [59]

in order to achieve as much impartiality as possible in the

comparisons. The parameter settings used in our studies are

summarized in Tables 1 and 2. The TensorFlow framework

and Python (version 3.5) are used for implementation. In

addition, 8 Nvidia 2080Ti GPU cards are used to assess the

CNN architectures obtained from the testing data.

4.4 Comparative results

4.4.1 Comparisons to evolutionary design methods

Tables 3, 4 and 5 sum up the comparative results obtained

for the various architectures generated by the various

methods of CNN design on CIFAR-10, CIFAR-100 and

ImageNet. We detail and clarify these results for each

category and metric in the sections that follow. We detail

and clarify these results for each category and metric in the

sections that follow. In fact, evolutionary methods have the

ability to escape local optima and cover the entire search

space because of their global search capability. They also

have the capability of accepting less performing architec-

tures on a probabilistic basis through the use of the mating

selection operator, which allows them to cover the entire

search space. Indeed, The Acc of EA ranges from 92.90%

to 94.12% for CIFAR-10 and from 70.97% to 88.42%

percent for CIFAR-100. We noticed also that BLOP-CNN

provided the highest performance with an Acc value of

98.12% for CIFAR-10 and 88.42% for CIFAR-100, where

the Acc of Large-Scale-Evo, Genetic-CNN, CNN-GA, AE-

CNN-NSGA-3, NSGA-4 and BLOP-CNN, are 94.60%,

92.90%, 95.22%, 95.70%, 97.78%, 97.98% and 98.12%,

respectively. Always referring to Tables 3 and 4, we see

that Bi-CNN-D-C is the optimal method, with a slight

increase in terms of Acc value of 98.24% for CIFAR-10

and 88.83% for CIFAR-100. From the perspective of

solution encoding methods, Large-Scale-Evo solution

encoding and generation are constrained by a large number

of constraints, whereas NSGA-Net, BLOP-CNN and Bi-

CNN-D-C are not. This decrease the search space for

Neural Computing and Applications (2022) 34:15007–15029 15017

123

Large-Scale-Evo; however, it may have a detrimental

effect on the diversity factor, which is a critical component

of EAs. Therefore, NSGA-Net, BLOP-CNN and Bi-CNN-

D-C outperforms Large-Scale-Evo on both data sets. Based

on previous works, the NB and NNB values are predefined

manually.

This practice helps to constrain the search space, as we

can obtain more complex architectures with varying block

counts and sizes. Indeed, the algorithm could produce a

large number of architectures having multiple topologies

for each pair NB, NNB. This behavior distinguishes BLOP-

CNN and Bi-CNN-D-C as the first algorithms in the lit-

erature that simultaneously vary and optimize various

components as bi-level design. However, efficient model

designs such as BLOP-CNN focus more on acceleration

than compression by optimizing convolution operations or

network architectures. That is the reason, we are driving

the compression research process more effectively and

efficiently.

We will now proceed to the analysis of the #Params.

These metrics are used to represent the number of param-

eters. Due to the reduction blocks and minimization of NB

and NNB at the upper level, and compression convolution

layer hyperparameters (FSi,Nbits of quantized weights) at

the lower level, the #Params of Bi-CNN-D-C are less than

those of NSGA-Net-4 and BLOP-CNN, as shown in

Tables 3 and 4. Notably, the CIFAR-10 and CIFAR-100

images are identical in size (i.e., the images are identical in

both data sets, except that the number of classes increases

from ten (CIFAR-10) to one hundred (CIFAR-100)). The

final fully connected layer for CIFAR-100 takes longer to

compute theoretically, but this is irrelevant because it is so

small in comparison with the rest of the model.

Table 1 Summary of peer algorithms’ parameters settings

Search method Method

type

Parameters Value

CNN-GA EA Epochs

Learning rate

Momentum

Population size

Of generations

Crossover probability

Mutation probability

350

0.1

0.9

300

3000

0.9

0.2

NSGA-NET EA Batch size

Weight decay

Epochs

Learning rate

Population size

Of generations

Crossover probability

Mutation probability

128

5.00E-04

36/600

Cosine

Annealing

300

3000

0.9

0.1

Genetic-CNN EA Epochs

Learning rate

Population size

Of generations

Crossover probability

Mutation probability

20

0.001

300

3000

0.2

0.005

Large-Scale

Evo

EA Learning rate

SGD with momuntum

Batch size

Weight decay

Population size

Of generation

0.1

0.9

50

0.0001

300

3000

DeepPruningES EA Epochs

Learning rate

Population size

Of generations

Mutation probability

Offspring size

50

0.01

300

3000

0.1

20

ChannelPruning EA Epochs

Learning rate

Batch size

Crossover probability

Mutation probability

Population size

Of generation

200

0.1

128

0.1

0.1

300

3000

Classical-

Pruning

EA Epochs

Learning rate

Batch size

Weight decay

200

0.001

128

0.9

Table 1 (continued)

Search method Method

type

Parameters Value

BLOP-CNN EA Upper Level : # Of

generation

Population size

Crossover probability

Mutation probability

Lower Level: Batch

size

Epochs

SGD Learning rate

Momentum

Of generation

Population size

Crossover probability

Mutation probability

50

30

0.9

0.1

128

50/350

0.1

0.9

30

20

0.9

0.1

15018 Neural Computing and Applications (2022) 34:15007–15029

123

In what follows, we analyze the computation time of our

algorithm in terms of the number of GPUDays, which

mainly depends on the number of function evaluations and

the population architectures’ number of parameters

(params). We agree that the bi-level optimization process

computational cost is very important (31 GPUDays as

shown in Tables 3, 4 and 5), but acceptable with respect to

evolutionary NAS methods. This could be explained by the

low population size and number of generations defined

from the start, which are both equal to 30. Despite these

low values, Bi-CNN-D-C is able to generate pruned

architectures with minimum number of filters and thus

much reduced number of parameters. It is worth noting that

our algorithm is the first one that applies filter pruning to

evolved architectures within the evolution process, because

existing methods apply such pruning to existing

architectures that are passed as inputs to the pruning

method. The considerable reduction in terms of the NF

makes the GPUDays metric decreasing from one genera-

tion to another, as the time required to compute the

architecture classification error is dropping with the

advance of the optimization process.

4.4.2 Evolution trajectory at the upper level

When evolutionary algorithms are employed to solve real-

world issues, we typically looking to realize whether or not

they have converged. In this section, the evolutionary tra-

jectories of the suggested method in terms of the bench-

mark data sets are studied. We analyze the convergence

behavior of BLOP-CNN on CIFAR-10

Over the evolutionary search process, the NB quantity is

decreased from 15 to 9. Additionally, the interval extent is

minimized over generations, resulting in architectures with

similar NB values at the conclusion of the optimization

process. Due to the fact that NB and NNB are mutually

exclusive objectives, minimizing the NNB is not easy.

Indeed, the AVG NNB’s slope decrease is notably less than

NB’s. This fact could be explicated by the fact that these

two quantities may have a conflicting connection. Indeed,

reducing the number of blocks NB may result in an

increase in the number of nodes per block NNB, with the

goal of maximizing or preserving the classification Acc.

We believe that the EA at the top is attempting to strike a

favorable trade-off between NB and NNB. Moreover, We

find that the upper level is progressively maximized from

generation to generation with a degree of convergence

toward the maximum attained value. The quantity of Acc is

increased from 40 to 98%. The first 15 generations have a

rather steep maximization slope in comparison with the

latter 15 generations. This could be explained by the fact

that the search space of the possible CNN architecture is

well explored during the first phase of the evolution pro-

cess. During this phase, the huge search space contains

low-, medium- and high-quality architectures. Thus, during

the first phase the population is distributed over the entire

search space. For this reason, a high number of low- and

Table 2 Summary of Bi-CNN-D-C parameters settings

Categories Parameters Value

Upper-level

Search space

–

Of generation

Population size

Crossover probability

Mutation probability

Batch size

Epochs

SGD Learning rate

Momentum

Of generation

Population size

50

30

0.9

0.1

128

50/350

0.1

0.9

30

20

Lower-level

Search space

–

Of generation

Population size

Crossover probability

Mutation probability

Batch size

Epochs

SGD Learning rate

Momentum

Of generation

Population size

30

30

0.9

0.1

128

50/350

0.1

0.9

30

20

Table 3 Obtained results for

Err, #Params, and GPUDays on

CNN Design’s CIFAR-10

Architecture Search method Err

CIFAR-10

#Params GPUDays

Large-Scale Evo EA 5.40 5.4 M 2.750

Genetic-CNN EA 7.10 – 17

CNN-GA EA 4.78 2.9 M 39

NSGA-3 EA 2.22 2.2 M 27

NSGA-4 EA 2.02 4.0 M 27

BLOP-CNN EA 1.88 4.1 M 29

Bi-CNN-D-C EA 1.76 1.8 M 31

Neural Computing and Applications (2022) 34:15007–15029 15019

123

medium-quality architectures are visited and even desig-

nated as best found architectures at that stage so far. After

that the evolutionary process was able to focus the popu-

lation on the promising regions of the search space, where

most architectures have similar respectful classification

performance values. This focus makes the algorithm sam-

pling well-performing architectures that are similar in

terms of classification accuracy, which explains the alle-

viation of the maximization slope. This phenomenon could

be observed also in many other applications of genetic

algorithms [49, 60].

The evolution trajectory analysis provides good

interection between NB, NNB, NF and Err at the upper

level, with the goal of developing effective CNN archi-

tectures with an optimum block and nodes per block size.

4.4.3 Comparisons to pruning methods

The most representative previous studies compressed the

already-existing CNN manual architecture. There is no

existing work that compresses an architecture that is gen-

erated automatically. For this reason, Bi-CNN-D-C is the

first work to compress an evolving CNN architecture

automatically. Table 10 summarizes the CNN manual

architectures that were used to compare the proposed

approach. In fact, the results using the CIFAR-10 and

CIFAR-100 data sets are presented in Tables 6 and 7,

respectively. For each DCNN architecture, the best test

error and number of FLOPs are shown. Based on Table 6,

the average test error of the DeepPruningES algorithm is

between 7.43 and 8.91%, where for the VGG16 and

VGG19, they obtain similar results of 8.21% with a

32.01% and 32.56% diminution in the FLOPs number, and

for ResNet56, ResNet110, DenseNet50 and DenseNet100,

they obtain values lying between 7.43% and 8.91% with a

16.72% and 32.56% reduction in the FLOPs number. In

Table 6, the average test error of the Channel-Evo algo-

rithm is between 5.85 and 7.91%, with the VGG16 and

VGG19 achieving similar results of 7.26% with a respec-

tive 52% and 53.05% reduction in the number of FLOPs,

and the ResNet56, ResNet110, DenseNet5 and Dense-

Net100 values lying between [5.85 and 7.91%] and a

[16.02% and 17.35%] reduction in the number of FLOPs.

Always on Table 6, the average test error of the auto-bal-

anced filter is between 8.27 and 9.32%, whereas the

VGG16, VGG19, ResNet56, ResNet110, DenseNet50 and

DenseNet110 obtain values between 8.27% and 9.32% and

a [36.5% and 57%] reduction in FLOPs. The average test

error of Classical-Pruning is laying between [6.46 and

9.09%]. In fact, the proposed Bi-CNN-D-C algorithm

provide 1.98 � 107 and 2:21 � 107 of #Flops, with 32.5%,

28.9% pruned percentages. Bi-CNN-D-C is capable of

reducing FLOPs while maintaining acceptable test errors.

4.4.4 Further analysis and discussion

The main reason that could explain the outperformance of

Bi-CNN-D-C over considered peer works corresponds to

the principal motivation of this work. From the start of this

paper, we have mentioned that the main shortcoming of

existing pruning methods including evolutionary ones

consists in the fact that these methods take as input an

existing (already designed) architecture, and then, the

algorithm searches for the best possible pruning decision.

This drastically limits the performance of such kind of

methods. From a metamorphic vision, we could say that

such an algorithm remains paralyzed in a single point of the

Table 4 Obtained results for

Err, #Params, and GPUDays on

CNN Design’s CIFAR-100

Architecture Search method Err

CIFAR-100

#Params GPUDays

Large-Scale Evo EA 23.00 40.4 M 2.750

Genetic-CNN EA 29.03 6.2 M 17

CNN-GA EA 22.03 4.1 M 40

NSGA-3 EA 17.23 2.2 M 27

NSGA-4 EA 14.38 4.1 M 27

BLOP-CNN EA 11.58 4.1 M 29

Bi-CNN-D-C EA 11.17 1.8 M 31

Table 5 Obtained results for Err, #Params, and GPUDays on CNN

Design’s ImageNet

Architecture Search method Err

ImageNet

#Params GPUDays

AmoebaNet-C EA 7.60 6.4 M 3.150

AmoebaNet-A EA 9.00 4.9 M 3.150

NSGA-2 EA 8.05 4.1 M 27

NSGA-3 EA 6.9 5.0 M 27

BLOP-CNN EA 6.66 4.7 M 29

Bi-CNN-D-C EA 7.17 2.1 M 31

15020 Neural Computing and Applications (2022) 34:15007–15029

123

architecture search space, which is not the case for our

algorithm.

By allowing the joint design and pruning of architec-

tures, our algorithm is able not only to move from an

architecture to another but also to (near) optimally prune

each generated architecture. In this way, our algorithm is

not still paralyzed in a single point of the architecture space

(i.e., it has the freedom search space sampling). Moreover,

the collaborative interaction of the two optimization levels

(upper and lower) ensures the narrowing of the search

process toward high-performing architectures with mini-

mum number filters (and also minimum NB and NNB). To

the best of the authors’ knowledge, Bi-CNN-D-C is the first

EA capable of compression automatically designing CNN

architectures and providing bi-level interaction between

convolutional layers and their hyperparameters.

4.5 Case study on COVID-19 diagnosis

4.5.1 Benchmarks

Chest X-ray and CT are two of the most commonly

available radiological tests for the diagnosis of several lung

diseases. Chest X-ray and CT are two of the most

Table 6 Compression results obtained on CIFAR10

Method Architecture Pruned (%) Test error (%) #FLOPs

DeepPruningES VGG16 32.01 8.21 2:15 � 108

VGG19 32.56 8.21 2:7 � 108

ResNet56 21.31 8.11 1:01 � 108

ResNet110 16.72 7.43 2:14 � 108

DenseNet50 19.16 8.91 0:779 � 108

DenseNet100 19.33 8.34 2:49 � 108

Channel-Evo VGG16 52 7.26 2:74 � 108

VGG19 53.05 7.26 3:13 � 108

ResNet56 20 5.85 1:62 � 109

Resnet110 21.01 7.72 1:02 � 109

DenseNet50 16.02 7.91 0:86 � 108

DenseNet100 17.35 7.88 2:97 � 108

Classical-Pruning VGG16 34.2 6.75 3:82 � 108

VGG19 34.9 7.05 3:45 � 108

ResNet56 27.6 9.09 9:10 � 108

ResNet110 38.6 6.46 1:20 � 108

Table 7 Compressed results obtained on CIFAR100

Method Architecture Pruned (%) Test error (%) #FLOPs

DeepPruningES VGG16 19.93 32.94 2:531 � 108

VGG19 19.09 33.11 3:246 � 108

ResNet56 16.19 42.19 1:072 � 108

ResNet110 17.73 50.97 2:117 � 108

DenseNet50 19.05 41.59 7:569 � 107

DenseNet100 19.05 35.344 2:469 � 108

Channel-Evo VGG16 37 27.99 3:82 � 108

VGG19 36.1 29.88 3:76 � 109

ResNet56 16 25.90 1:74 � 109

ResNet110 16.78 29.2 2:81 � 109

DenseNet50 20 39.4 2:01 � 108

DenseNet100 21 32.2 2:77 � 108

Neural Computing and Applications (2022) 34:15007–15029 15021

123

commonly available radiological tests for the diagnosis of

several lung diseases. In our study, we acquired chest

X-rays belonging to 50 COVID-19 patients from [61] by

Dr. Joseph Cohen. In these data, a number of individuals

having intense respiratory distress sickness, serious respi-

ratory problem, pneumonia, COVID-19 have chest X-ray

along with computed tomography images in this archive.

We also choose normal chest X-ray photographs from the

Kaggle library that have been labeled as chest X-ray ima-

ges (pneumonia) https://www.kaggle.com/paultimothy

mooney/chest-xray-pneumonia. This study uses a chest

X-ray images database divided into 2 separated groups:

COVID-19 patient images and normal patient images. We

scaled all images within the data set into 224 by 224 pixels.

Then, the data set is randomly separated into 2 distinct data

sets where 80% is considered for training and 20% for

testing. Figures 8 and 9 show uninfected and infected

people’s chest X-ray pictures, respectively.

4.5.2 Existing works

Many computational intelligence strategies for COVID-19

detection using computed tomography (CT) and X-ray

images have been proposed recently [62–64]. Fei et al. [65]

have proposed VB-Net, an interactive approach for CT

images that is an extended version of V-Net. It is divided

into two sections. The first is a contractual approach that

uses downsampling and convolution to obtain the image’s

general features. The second is a broad approach that

incorporates fine-grained image features through upsam-

pling and convolution processes. The work’s main dis-

tinctive feature is the addition of a human expert into the

loop in order to lead the segmentation of the infection

procedure. Prabira et al. [66] extracted a deep features set

using nine pre-trained CNN models, which were then given

to the support vector machine (SVM) classifier. In the

comparison studies, manually constructed DCNNs archi-

tectures were used. Based on X-ray images, the suggested

method was found to have superior detection accuracy. Xu

et al. [67] developed an approach called in-depth screening

strategy to identify pneumonia due to COVID-19 among

both, viral Influenza-A healthy and cased of pneumonia. A

3D deep learning algorithm was used to segment candidate

infection locations first. Individual images categorized as

pneumonia due to Influenza-A viral, COVID-19, without

being linked to infection categories, in addition to confi-

dence ratings, through a classification model based on

location attention. Eventually, the noisy or Bayesian

function was used to calculate the kind of infection and the

total confidence score. Shuai et al. [68] presented an

Inception model based on transfer learning It is possible to

divide the latter into two halves. To transform the input of

the image and convert it into vectors of one-dimensional

feature for the classification challenge, the first half used a

pre-trained starter network, whereas a fully connected

network is used by the second half used.

4.5.3 Experiment

The resulting test error findings on X-ray image an CT are

summarized in Tables 8 and 9, respectively, using the

identical computer configuration and implementation

environment as the previous section’s experiments (fourth).

We notice that Bi-CNN-D-C outperforms the peer

approaches in terms of results. In reality, it is worth men-

tioning that the suggested algorithm’s primary purpose is to

reduce architecture complexity. Manual architecture, from

the standpoint of optimization, is a wide search space that

must be carefully sampled in order to build an effective and

efficient design. Bi-CNN-D-C might be justified in the

same manner that images of both, CIFAR-100 and CIFAR-

10 were. We recall the aim of our approach which is about

focusing on the CNN design and compression. Bi-CNN-D-

C shows its ability to provide end users successful designs

capable to detect COVID-19 from X-ray and CT images,

while taking into consideration the hierarchical structure of

the CNN architecture design challenge. This case study, we

believe, will encourage researchers and practitioners to use

the scalable computational approach for X-ray image

analysis utilizing DNN in the future.

5 Conclusions and future work

Deep neural networks have demonstrated outstanding

performance in a wide range of machine learning tasks,

including classification and clustering [69, 70], for real-life

applications of soft computing techniques in different fields

Fig. 7 Acc evolution of the best found NB and NNB values on

CIFAR-10

15022 Neural Computing and Applications (2022) 34:15007–15029

123

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

[2, 71–73]. In fact, Designing an architecture for the Deep

CNN is an extremely interesting, challenging and timely

subject. Recently, several works have concentrated on

developing novel methods for reducing the computational

complexity of CNNs using EAs. Indeed, recent research

[14] suggests that such metaheuristic algorithms could be

used to solve the CNN architecture optimization problem

in the field of network compression and acceleration.

Nevertheless, none of the previous works took the bi-level

nature of neural architecture design and compression into

account. Following the CNN architecture design, there are

an infinite number of alternative architectures with various

network topologies for any set of blocks of various sizes.

Following the CNN architecture compression, the search

space expands exponentially in size as the number of layers

increases, we must reduce network complexity and elimi-

nate redundancy in order to achieve a small compressed

model. Based on this observation, we suggest a bi-level

model of the CNN architecture design and compression

problem in this study, where the upper level seeks to

minimize network complexity primarily in terms of the NB

and NNB, and maximizes classification Acc with regard to

Fig. 8 Chest X-ray images

appertaining to regular patients

[1]

Fig. 9 Chest X-ray images

appertaining to patients having

COVID-19 [1]

Table 8 Obtained Acc values on CT images

Detection method Test Acc (%) #Params GPUDays

Transfer learning-based inception 87.0 138 M 4.125

Location attention-based ResNet 86.7 7.6 M 11

Genetic-CNN 96.31 9.0 M 12

NSGA-4 96.98 7.2 M 9

BLOP-CNN 97.12 5.0 M 7

Bi-CNN-D-C 96.81 2.1 M 2.5

Neural Computing and Applications (2022) 34:15007–15029 15023

123

block network topologies, and the lower level minimizes

the complexity of the network by minimizing the number

of filter. CEMBA [17] is then used to solve the bi-level

model. According to the results analysis, the suggested

approach BI-CNN-D-C demonstrated its effectiveness and

superior performance on the CIFAR-10 and -100 bench-

mark data sets when compared to several representative

architectures as well as some additional ones generated by

recent prominent from design and compression CNN

architectures. Finally, we’d like to draw attention to some

interesting perspectives. The first is directly related to our

work and entails developing an interaction model that

enables users to interact with Bi-CNN-D-C via the evolu-

tion process by examining some generated architectures,

mining their common patterns and then making recom-

mendations in the form of soft and/or hard constraints to

generate CNN architectures that satisfy the expert’s pref-

erences and knowledge. The second objective is to extend

our work to the field of real-time federated learning, in

which multiple local devices collaborate to train a shared

global model, while training data remains on edge devices.

This enables the resolution of critical issues such as data

privacy, data security, data access rights and access to

heterogeneous data, all of which are critical in a wide

variety of domains, including defense, telecommunica-

tions, the Internet of Things and pharmaceutics. The third

one is directly related to future work. In fact, pure filter

pruning can lead to the removal of important channels and

could cause a considerable loss of interesting channels. Our

future work will solve this issue by preserving important

channels even if their corresponding filters contain a very

small number of channels. Finally, it would be interesting

to extend our approach to the case of dynamic environment

(incremental learning) [74] and thus dynamic evolutionary

algorithms could represent an interesting alternative to deal

with such a challenge.

Appendix A Manually designed CNN
architectures used for compression

The most evocative examples of manual architecture are

VGG16, VGG19, ResNet50, DenseNet50 and ResNet110.

The details of the CNN architectures used to compare the

proposed approach are summarized in Table 10.

Appendix B Bi-level optimization’s main
definitions

In the academic and real-world optimization problems, the

majority uses a single level of optimization. Multiples

problems, however, are designed as two levels, referred to

as BLOP [75]. We uncover a problem of optimization

nested within external optimization constraints in such

Table 9 Obtained Acc values on chest X-ray images

Detection method Test Acc (%) #Params GPUDays

ResNet101 89.26 11.7 M 14

Inceptionv3 91.08 24 M 12

VGG16 92.76 7.0 M 9

VGG19 92.91 7.0 M 9

XceptionNet 93.92 24 M 11

AlexNet 93.32 5.5 M 7

DenseNet201 93.88 6.2 M 13

Genetic-CNN 96.11 9.2 M 12

NSGA-4 96.98 7.5 M 9

BLOP-CNN 96.42 5.2 M 7

Bi-CNN-D-C 96.81 2.2 M 2.5

Table 10 CNN architectures overview for comparing the suggested approach

Architecture Description # layers Test error

CIFAR10

Test error

CIFAR100 (%)

%FLOPs

VGG16 Built in 2014, which has performed well in complex image

classification data sets.

16 6.06% 32.33 3:15 � 108

VGG19 19 6.18% 32.57 4:01 � 108

DenseNet50 Proposed architectures provided by DenseNet authors that

classifies the data set of CIFAR10.

50 6.92 41.25 0:93 � 108

DenseNet100 100 5.66% 33.06 3:05 � 108

ResNet56 Are the first ones proposed by He et al (2016) to be use

with the data set of CIFAR 10.

50 6.90% 41.86 1:23 � 108

ResNet110 110 6.2% 50.47 2:57 � 108

15024 Neural Computing and Applications (2022) 34:15007–15029

123

scenarios. The upper-level problem, often known as the

leader problem, is considered as an external task of opti-

mization. The nested internal optimization work called also

a follower problem or a lower level, and the two-level

problem is referred to as a leader–follower problem or a

Stackelberg game [76]. The follower problem looks like a

constraint at the upper level; therefore, uniquely the best

solution with regard to the follower optimization problem

could be considered as a leader candidate.

Definition: Assuming <n � <n ! < to be the leader

problem and f : <n � <n ! < to be the follower one,

analytically, a BLOP could be stated as follows:

Minxu2XU ;xl2XL
Lðxu; xlÞ

subject to
xl 2 ArgMin f ðxu; xlÞ; gjðxu; xlÞÞ� 0; j ¼ 1; . . .; Jf g

Gkðxu; xlÞ� 0; k ¼ 1; . . .;K:

�

ðB1Þ

There are two types of variables in a BLOP: variables of

the upper-level variables and variables of the lower level.

The optimization work for the follower problem is done

against the xl variables, with the xu variables acting as fixed

parameters. As a result, each xu represents a new follower

issue, the optimal solution of which is a function of xu and

must be found. In the leader problem, all variables (xu, xl)

are examined, with the exception of xl. The formal defi-

nition of BLOP is provided below:

Single-level problems are intrinsically more complex to

solve than BLOPs. It is not unexpected that the majority of

previous research has focused on the more straightforward

situations of BLOP, such as problems with good features

like linear objectives, constraint functions, convexity or

quadraticity [77]. Despite the fact that it was the first study

on bi-level optimization originates from the 1970s, the

utility of these mathematical programs in representing

hierarchical decision-making engineering and processes

challenges were not realized until the early 1980s. BLOPs

have encouraged researchers to devote special attention to

them. Kolstad [75] compiled the first bibliographic survey

on the subject (1985) in the mid-1980s.

Existing BLOP-solving methods can be divided into two

groups: (1) classical methods while (2) evolutionary

methods. Number one family preserves extreme point-

based approaches such as [78], branch-and-bound [79],

penalty function methods [80], complementary pivoting

[81] and methods of trust region [82]. These strategies have

a disadvantage which is that they are significantly reliant to

the mathematical properties of the BLOP in question.

Metaheuristic algorithms, which are mostly evolutionary

algorithms, belong to the second family (EA). Several EAs

have recently proved their efficacy in addressing such

problems due to their insensitivity to the mathematical

properties of the problem, as well as their capacity to

handle enormous problem instances by offering satisfac-

tory answers in a fair amount of time. Here are a few

examples of notable works [80, 81].

Appendix C Main principle of CEMBA

As for each upper-level architecture there exists a whole

search space of possible filter pruning decisions, the joint

neural architecture search and (filter) compression are

framed as a bi-level optimization problem. Motivated by

the recent emergence of the field of EBO (evolutionary bi-

level optimization) and the related achieved interesting

results in many application fields, we decided to use the

evolutionary algorithm as a search engine to solve our bi-

level optimization problem. The main difficulty faced in

EBO is the important computational cost it needs. This is

because each the fitness evaluation of each upper-level

solution requires running a whole lower-level evolutionary

process to approximate the optimal corresponding lower-

level solution. Through the literature there exist many EBO

algorithms [83], but most of them focus on problems with

continuous variables (using approximation techniques and

gradient information). The number of algorithms that were

designed for the discrete case is much reduced with regard

to the continuous case. Examples of discrete EBO algo-

rithms are NBEA, BLMA, CODBA, CODCRO and

CEMBA [84]. As the majority of algorithms deal with the

continuous situation, CEMBA among the most effective bi-

level EAs for dealing with discrete scenarios that has been

demonstrated [17]. Every upper-level solution is evaluated

using 2 stages: first, the variables of the upper-level are

directed to the lower level; and second, the indicator-based

multi-objective local search gets closer to the solution with

the maximum marginal contribution in terms of multi-ob-

jective quality indicator and sends it to the next level to

complete the evaluation of the quality of the consideration.

To summarize how it works, we will go over the research

processes of its upper and lower levels:

• Upper and lower population initialization Create the

upper-level population and the lower-level population

from scratch. Two starting populations were obtained

by using the Discrete Space Decomposition Method

twice. The goal of utilizing a decomposition approach is

to produce uniform coverage of the decision space and,

to the extent possible, a collection of solutions that are

evenly dispersed over every level decision space.

• Lower-level fitness assignment To assess an upper-

level solution in BLOP, a bi-level optimization problem

necessitates to execute of an entire lower-level method,

which is the BLOP’s fundamental challenge. As a

result, we dissect each problem level using 2

Neural Computing and Applications (2022) 34:15007–15029 15025

123

populations for solving it. The lower-level algorithm of

each lower population employs the higher solutions of

the matching upper population to evaluate the lower-

level solutions.

• Local search procedure The local search is applied for

each lower-level population using the IBMOLS princi-

ple for the lower-level method. In fact, we begin by

calculating the objective function’s normalized values.

As a result, for each lower solution, we create a

neighborhood and then calculate its fitness value using

an indicator I and the objective function’s normalized

values. An update of the fitness values is then

performed, the worst-case solution is removed, and

the fitness values are updated again. It is worth noting

that neighborhood generation comes to a halt in one of

two situations: (1) whenever entire solution neighbor-

hood has been examined, or (2) in case an adjacent

solution that improves (with regard to I) is discovered.

In case that all lower-level members have been visited,

the entire local search procedure comes to an end.

• Best indicator contribution lower-level solution

determination Because evaluating the upper-level

population’s leader solutions necessitates approximat-

ing each matching lower-level population’s follower

solution, the lower-level solutions are compared to the

members of the upper-level.

• Upper-level indicator-based procedure Each higher-

level population performs its algorithm based on the

IBEA after obtaining the lower-level solutions with the

best indicator contribution of the follower problem.

This is because we find the person with the lowest

fitness value, delete him or her and then update the

fitness values of the remaining people until we reach the

stop criterion. After that, mating selection and variation

are used. We should remark that using IBEA aids the

algorithm in approximating the best upper front.

• Migration strategy (each a generations) After a

certain number of generations, use a migration strategy.

As a result, we use the parameter b to select a set of

solutions that includes b objective follower space

Fig. 10 An example of a single-objective BLOP with two levels is illustrated [1]

Fig. 11 Signal to noise

15026 Neural Computing and Applications (2022) 34:15007–15029

123

solutions. The migration step employs this pre-selected

collection of solutions.

Appendix D Tuning of parameters

The Taguchi method [85] is a sophisticated case of the

trial-and-error one [86]. In order to clarify more and verify

the proposed parameter tuning values, we have applied the

Taguchi method in which the signal-to-noise ratio (SNR)

parameter is calculated as follows:

SNR ¼ �log10

1

N

XN

i¼1

(objective function)2
i

 !
ðD2Þ

where N represents the number of performed runs. The

SNR parameter reflects the variability and the mean of the

experimental data. The used parameters for tuning are the

following: (1) population size (Pop. size), (2) upper gen-

eration number (UGen. nb) and (3) lower generation

number (LGen. nb). The considered levels for each

parameter, while the corresponding orthogonal array

(L27(33) where we have 27 experiments, 3 variables and 2

levels. Figure 11 displays the obtained SNR results for IB-

CEMBA. Moreover, Fig. 12 displays computed results for

Bi-CNN-D-C in terms of mean fitness values of the upper-

level in Taguchi experimental analysis, which confirmed

the achieved optimal levels using SNR parameter. In fact,

the computed mean upper-level fitness values confirmed

the achieved optimal level using SNR parameter.

Acknowledgements The authors thank the Deanship of Scientific

Research at Prince Sattam bin Abdulaziz University for supporting

this work.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

1. Louati H, Bechikh S, Louati A, Hung C-C, Ben Said L (2021)

Deep convolutional neural network architecture design as a bi-

level optimization problem. Neurocomputing 439:44–62

2. Louati A (2020) A hybridization of deep learning techniques to

predict and control traffic disturbances. Artif Intell Rev

53(8):5675–5704

3. Louati A, Louati H, Li Z (2021) Deep learning and case-based

reasoning for predictive and adaptive traffic emergency man-

agement. J Supercomput 77(5):4389–4418

4. Bengio Y, Lamblin P, Popovici D, Larochelle H (2006) Greedy

layerwise training of deep networks. In: Scholkopf B, Platt JC,

Hofmann T (eds) Advances in neural information processing

systems 19, Proceedings of the twentieth annual conference on

neural information processing systems, pp 153–160

5. LeCun YY, Bengio H (2015) Deep learning. Neurocomputing

521:7553–436444

6. Zhen X, Chakraborty R, Singh V(2021) Simpler certified radius

maximization by propagating covariances. In: Proceedings of the

IEEE computer society conference on computer vision and pat-

tern recognition, pp 770–778

7. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. CoRR, arXiv: abs/1409.

1556

8. Lopez-Rincon A, Tonda A, Elati M, Schwander O, Piwowarski

B, Gallinari P (2018) Evolutionary optimization of convolutional

neural networks for cancer mirna biomarkers classification. Appl

Soft Comput 65:91–100

9. Darwish A, Hassanien AE, Das S (2020) A survey of swarm and

evolutionary computing approaches for deep learning. Artif Intell

Rev 53(3):1767–1812

10. Chauhan J, Rajasegaran J, Seneviratne S, Misra A, Seneviratne A

(2018) Performance characterization of deep learning models for

breathing based authentication on resource-constrained devices.

In: IMWUT, pp 1–24

11. Perenda E, Rajendran S, Bovet G, Pollin S, Zheleva M (2021)

Evolutionary optimization of residual neural network architec-

tures for modulation classification. IEEE Trans Cogn Commun

Netw. https://doi.org/10.1109/TCCN.2021.3137519

12. Chollet F (2017) Xception: deep learning with depthwise sepa-

rable convolutions. In: IEEE conference on computer vision and

pattern recognition CVPR, pp 1251–1258

13. Hu H, Peng R, Tai Y-W, Tang C-K (2016) Network trimming: a

datadriven neuron pruning approach towards efficient deep

architectures. arXiv: 1607.03250 13(3):1–18

14. Mishra R, Gupta HP, Dutta T (2020) A survey on deep neural

network compression: Challenges, overview, and solutions.

arXiv:2010.03954

15. Abd Elaziz M, Dahou A, Abualigah L, Yu L, Alshinwan M,

Khasawneh AM, Lu S (2021) Advanced metaheuristic opti-

mization techniques in applications of deep neural networks: a

review. Neural Comput Appl 33(21):14079–14099

16. Ünal HT, Başçiftçi F (2022) Evolutionary design of neural net-

work architectures: a review of three decades of research. Artif

Intell Rev 55:1723–1802

17. Said R, Bechikh S, Louati A, Aldaej A, Said LB (2020) Solving

combinatorial multi-objective bi-level optimization problems

using multiple populations and migration schemes. IEEE Access

8:141674–141695

Fig. 12 Mean of means

Neural Computing and Applications (2022) 34:15007–15029 15027

123

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/TCCN.2021.3137519
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/2010.03954

18. Cheung B, Sable C (2011) Hybrid evolution of convolutional

networks. In: In 2011 10th international conference on machine

learning and applications and workshops, pp 293–297

19. Deng L (2012) The mnist database of handwritten digit images

for machine learning research. IEEE Signal Process Mag

29:141–142

20. Fujino S, Mori N, Matsumoto K (2012) The mnist database of

handwritten digit images for machine learning research. IEEE

Signal Process Mag 29:141–142

21. Real E, Moore S, Selle A, Saxena S, Suematsu Y.L, Tan J, Le Q,

Kurakin A (2017) Large-scale evolution of image classifiers. In:

In 34th international conference on machine learning,

pp 2902–2911

22. Xie S, Girshick R, Dollar P, Tu Z, He K (2017) Aggregated resid-

’ual transformations for deep neural networks. In: In 34th inter-

national conference on machine learning, pp 1492–1500

23. Mirjalili S (2019) Evolutionary algorithms and neural networks.

In: Studies in computational intelligence, ISBN:978-3-319-

93025-1

24. Martı́n A, Lara-Cabrera R, Fuentes-Hurtado F, Naranjo V,

Camacho D (2012) Evodeep: a new evolutionary approach for

automatic deep neural networks parametrisation. J Parallel Dis-

trib Comput 117:180–191

25. Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized

evolution for image classifier architecture search. In: In Aaai

conference on artificial intelligence, pp 4780–4789

26. Sun Y, Xue B, Zhang M, Yen GG (2020) Completely automated

CNN architecture design based on blocks. IEEE Trans Neural

Netw Learn Syst 31(4):1242–1254

27. Liang J, Guo Q, Yue C, Qu B, Yu K (2018) A self-organizing

multiobjective particle swarm optimization algorithm for multi-

modal multi-objective. In: In international conference on swarm

intelligence, pp 550–560

28. Rahul M, Gupta HP, Dutta T (2020) A survey on deep neural

network compression: challenges, overview, and solutions, arXiv:

2010.03954

29. Francisco E, Fernandes J, Yen GG (2021) Pruning deep convo-

lutional neural networks architectures with evolution strategy. Inf

Sci 552(4):29–47

30. Hao L, Kadav A, Durdanovic I, Samet H, Graf HP (2016)Pruning

deep convolutional neural networks architectures with evolution

strategy. Inform Sci, arXiv:1608.08710

31. Luo J, Wu J, Lin W (2017) Thinet: a filter level pruning method

for deep neural network compression. In: ICCV, pp 5058–5066

32. Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R (2014)

Exploiting linear structure within convolutional networks for

efficient evaluation. In: NIPS, pp 1269–1277

33. Hu H, Peng R, Tai YW, Tang CK (2016) Network trimming: a

datadriven neuron pruning approach towards efficient deep

architectures. arXiv: 1607.03250

34. Han S, Mao H, Dally WJ (2015) Deep compression: compressing

deep neural networks with pruning, trained quantization and

huffman coding. arXiv:1510.00149

35. Qin Q, Ren J, Yu J, Wang H, Gao L, Zheng J, Feng Y, Fang J,

Wang Z (2018) To compress, or not to compress: characterizing

deep learning model compression for embedded inference. In:

2018 IEEE international conference on parallel, pp 729–736

36. Chauhan J, Rajasegaran J, Seneviratne S, Misra A, Seneviratne A,

Lee Y (2018) Performance characterization of deep learning

models for breathing-based authentication on resource-con-

strained devices. Proc ACM Interact Mob Wearable Ubiquitous

Technol 2(4):1–24

37. Jacob B, Kligys S, Chen B, Zhu M, Tang M, Howard A, Adam H,

Kalenichenko D (2018) Quantization and training of neural net-

works for efficient integer-arithmetic-only inference. In: CVPR,

pp 2704–2713

38. Han S, Mao H, Dally, WJ (2016) Deep compression: Com-

pressing deep neural networks with pruning, trained quantization

& huffman coding. In: ICLR

39. Schmidhuber J, Heil, S (1995) Predictive coding with neural nets:

application to text compression. In: NeurIPS, pp 1047–1054

40. Han S, Mao H, Dally WJ (2015) Deep compression: compressing

deep neural networks with pruning, trained quantization and

huffman coding, arXiv:1510.00149

41. Louati A, Louati H, Nusir M, Hardjono B (2020) Multi-agent

deep neural networks coupled with LQF-MWM algorithm for

traffic control and emergency vehicles guidance. J Ambi Intell

Humanized Comput 11(11):5611–5627

42. Liang F, Tian Z, Dong M, Cheng S, Sun L, Li H, Chen Y, Zhang

G (2021) Efficient neural network using pointwise convolution

kernels with linear phase constraint. Neurocomputing

423:572–579

43. Bhattacharya S, Lane ND (2016) Sparsification and separation of

deep learning layers for constrained resource inference on

wearables. In: SenSys, pp 176–189

44. Zhou Y, Yen GG, Yi Z (2021) A knee-guided evolutionary

algorithm for compressing deep neural networks. IEEE Trans

Cybern 51(3):1626–1638

45. Huynh LN, Lee Y, Balan RK (2017) Deepmon: Mobile gpu-

based deep learning framework for continuous vision applica-

tions. In: SenSys, pp 82–95

46. Song Han HM, Dally, WJ (2016) Deep compression: compress-

ing deep neural networks with pruning, trained quantization and

huffman coding. In: ICLR

47. Elias P (1975) Universal codeword sets and representations of the

integers. IEEE Trans Cybern 21(2):194–203

48. Gallager R, van Voorhis D (1975) Optimal source codes for

geometrically distributed integer alphabets (corresp.). IEEE Trans

Inf Theory 21(2):228–230

49. Xie L, Yuille A (2017) Genetic cnn. In: Proceedings of the IEEE

international conference on computer vision, pp 1379–1388

50. Spears VM, Jong KAD (1991) On the virtues of parameterized

uniform crossover. In: In fourth international conference on

genetic algorithms, pp 230–236

51. Settle TF, Krauss TP, Ramaswamy K (2006) U.S. Patent No.

7,079,585. Washington, DC: U.S. Patent and Trademark Office

52. Chakraborty UK, Janikow CZ (2003) An analysis of gray versus

binary encoding in genetic search. US Patent 156:253–269

53. Chakraborty UK, Janikow CZ (2003) An analysis of gray versus

binary encoding in genetic search. Inf Sci 156(3–4):253–269

54. Lu Z, Whalen I, Dhebar Y, Deb K, Goodman E, Banzhaf W,

Boddeti VN (2019) Multi-criterion evolutionary design of deep

convolutional neural networks, arXiv:abs/1912.01369

55. Dwork C, Feldman V, Hardt M, Pitassi T, Reingold O, Roth A

(2015) STATISTICS the reusable holdout: preserving validity in

adaptive data analysis. Science 349(6248):636–638

56. Kohavi R, John GH (1997) Wrappers for feature subset selection.

Artif Intell 97(1–2):273–324

57. Shinozaki T, Watanabe S (2015) Structure discovery of deep

neural network based on evolutionary algorithms. In: 2015 IEEE

international conference on acoustics, speech and signal pro-

cessing (ICASSP), pp 4979–4983

58. Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2016) Pruning

filters for efficient convnets. arXiv:1608.08710

59. Eiben AE, Smit SK (2011) Parameter tuning for configuring and

analyzing evolutionary algorithms. Swarm Evol Comput

1(1):19–31

60. Lu Z, Whalen I, Dhebar Y, Deb K, Goodman E, Banzhaf W,

Boddeti VN (2019) Nsga-net: neural architecture search using

multi-objective genetic algorithm. In: In Genetic and evolution-

ary computation conference, pp 419–427

15028 Neural Computing and Applications (2022) 34:15007–15029

123

http://arxiv.org/abs/2010.03954
http://arxiv.org/abs/2010.03954
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/abs/1912.01369
http://arxiv.org/abs/1608.08710

61. Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M

(2020) Covid-19 image data collection: Prospective predictions

are the future. journal of machine learning for biomedical

imaging (melba). https://github.com/ieee8023/covid-chestxray-

dataset

62. Canayaz M, Şehribanoğlu S, Özdağ R, Demir M (2022) COVID-

19 diagnosis on CT images with Bayes optimization-based deep

neural networks and machine learning algorithms. Neural Com-

put Appl 34(7):5349–5365

63. Louati H, Bechikh S, Louati A, Aldaej A, Said LB (2021) Evo-

lutionary optimization of convolutional neural network architec-

ture design for thoracic x-ray image classification. In: Advances

and trends in artificial intelligence. Artificial Intelligence Prac-

tices, pp 121–132

64. Louati H, Bechikh S, Louati A, Aldaej A, Said LB (2022) Evo-

lutionary optimization for cnn compression using thoracic x-ray

image classification. In: the 34th international conference on

industrial, engineering & other applications of applied intelligent

systems

65. Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, Xue Z, Shen D,

Shi Y (2020) Lung infection quantification of COVID-19 in CT

images with deep learning. arXiv:2003.04655

66. Sethy PK, Behera SK (2020) Detection of coronavirus disease

(COVID-19) based on deep features. Int J Math Eng Manag Sci

5(4):643–651

67. Butt C, Gill J, Chun D, Babu BA (2020) Deep learning system to

screen coronavirus disease 2019 pneumonia. Appl Intell. https://

doi.org/10.1007/s10489-020-01714-3

68. Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J,

Li Y, Meng X, Xu B (2021) A deep learning algorithm using CT

images to screen for corona virus disease (COVID-19). Eur

Radiol 31(8):6096–6104

69. Louati A, Lahyani R, Aldaej A, Aldumaykhi A, Otai S (2022)

Price forecasting for real estate using machine learning: A case

study on riyadh city. Concurr Comput Practice Exp 34(6):6748

70. Louati A, Masmoudi F, Lahyani R (2022) Traffic disturbance

mining and feedforward neural network to enhance the immune

network control performance. In: Proceedings of seventh inter-

national congress on information and communication technology

71. Banan A, Nasiri A, Taheri-Garavand A (2020) Deep learning-

based appearance features extraction for automated carp species

identification. Aquacult Eng 89:102053

72. Shamshirband S, Rabczuk T, Chau K-W (2019) A survey of deep

learning techniques: application in wind and solar energy

resources. IEEE Access 7:164650–164666

73. Fan Y, Xu K, Wu H, Zheng Y, Tao B (2020) Spatiotemporal

modeling for nonlinear distributed thermal processes based on kl

decomposition, mlp and lstm network. IEEE Access

8:25111–25121

74. Azzouz R, Bechikh S, Ben Said L (2014) A multiple reference

point-based evolutionary algorithm for dynamic multi-objective

optimization with undetectable changes. In: 2014 IEEE congress

on evolutionary computation (CEC)

75. Kolstad CD (1985) A review of the literature on bi-level math-

ematical programming. Report Number: LA-10284-MS

76. Candler WV, Townsley R (1962) A study of the demand for

butter in the united kingdom. Australian J Agricult Econom

6:36–48

77. Louati A, Lahyani R, Aldaej A, Mellouli R, Nusir M (2021)

Mixed integer linear programming models to solve a real-life

vehicle routing problem with pickup and delivery. Appl Sci

11(20):9551

78. Bard JF, Falk JE (1982) An explicit solution to the multi-level

programming problem. Comput Oper Res 9(1):77–100

79. Shimizu K, Kobayashi Y, Muraoka K (1981) Midperipheral

fundus involvement in diabetic retinopathy. Ophthalmology

88(7):601–612

80. Białas S, Garloff J (1985) Convex combinations of stable poly-

nomials. J Franklin Inst 319(3):373–377

81. Sinha A, Malo P, Frantsev A, Deb K (2013) Multi-objective

stackelberg game between a regulating authority and a mining

company: a case study in environmental economics. In: 2013

IEEE congress on evolutionary computation, pp 478–485

82. Sinha A, Bedi S, Deb K (2018) Bilevel optimization based on

kriging approximations of lower level optimal value function. In:

2018 IEEE congress on evolutionary computation (CEC), pp 1–8

83. Sinha A, Malo P, Deb K (2017) A review on bilevel optimization:

from classical to evolutionary approaches and applications. IEEE

Trans Evol Comput 22(2):276–295

84. Said R, Elarbi M, Bechikh S, Ben Said L (2021) Solving com-

binatorial bi-level optimization problems using multiple popula-

tions and migration schemes. Oper Res 1–39

85. Ross PJ (1996) Taguchi Techniques for Quality Engineering:

Loss Function. Orthogonal Experiments, Parameter and Toler-

ance Design

86. Eiben AE, Smit SK (2011) Parameter tuning for configuring and

analyzing evolutionary algorithms. Swarm Evol Comput

1(1):19–31

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2022) 34:15007–15029 15029

123

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
http://arxiv.org/abs/2003.04655
https://doi.org/10.1007/s10489-020-01714-3
https://doi.org/10.1007/s10489-020-01714-3

	Joint design and compression of convolutional neural networks as a Bi-level optimization problem
	Abstract
	Introduction
	Related work
	CNN design based on evolutionary optimization
	CNN compression

	The proposed approach
	Bi-CNN-efficient and compression overview
	Bi-CNN-D-C: adaptation of CEMBA to the bi-level model
	Upper level: CNN design
	Lower level: CNN compression

	Experimental study
	Benchmarks and research questions
	Performance indicators
	Peer algorithms and parameters setup
	Comparative results
	Comparisons to evolutionary design methods
	Evolution trajectory at the upper level
	Comparisons to pruning methods
	Further analysis and discussion

	Case study on COVID-19 diagnosis
	Benchmarks
	Existing works
	Experiment

	Conclusions and future work
	Appendix A Manually designed CNN architectures used for compression
	Appendix B Bi-level optimization’s main definitions
	Appendix C Main principle of CEMBA
	Appendix D Tuning of parameters
	Acknowledgements
	References

