Skip to main content
Log in

Adaptive neural network control of an uncertain 2-DOF helicopter system with input backlash and output constraints

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study considers an adaptive neural control for a two degrees of freedom helicopter nonlinear system preceded by system uncertainties, input backlash, and output constraints. First, a neural network is adopted to handle the hybrid effects of input backlash nonlinearities and system uncertainties. Subsequently, a barrier Lyapunov function is introduced to limit the output signals for further ensuring the safe operation of the system. The bounded stability of the closed-loop system is analyzed employing the direct Lyapunov approach. In the end, the simulation and experiment results are provided to demonstrate the validity and efficacy of the derived control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. He W, Wang T, He X, Yang L-J, Kaynak O (2020) Dynamical modeling and boundary vibration control of a rigid-flexible wing system. IEEE/ASME Trans Mechatron 25(6):2711–2721

    Article  Google Scholar 

  2. Ulus A, Eski K (2021) Neural network and fuzzy logic-based hybrid attitude controller designs of a fixed-wing UAV. Neural Comput Appl 5:1–23

    Google Scholar 

  3. Zhao Z, Zhang J, Liu Z, Mu C, Hong K-S (2022) Adaptive neural network control of an uncertain 2-dof helicopter with unknown backlash-like hysteresis and output constraints. IEEE Trans Neural Netw Learn Syst (in press)

  4. Raptis IA, Valavanis KP, Vachtsevanos GJ (2012) Linear tracking control for small-scale unmanned helicopters. IEEE Trans Control Syst Technol 20(4):995–1010

    Article  Google Scholar 

  5. Nuthi P, Subbarao K (2016) Experimental verification of linear and adaptive control techniques for a two degrees-of-freedom helicopter. J Dyn Syst Meas Control 137(6):064501

    Article  Google Scholar 

  6. Subramanian RG, Elumalai VK (2016) Robust mrac augmented baseline lqr for tracking control of 2 dof helicopter. Robot Auton Syst 86:70–77

    Article  Google Scholar 

  7. Chun TY, Park JB, Choi YH (2018) Reinforcement q-learning based on multirate generalized policy iteration and its application to a 2-dof helicopter. Int J Control Autom Syst 16:377–386

    Article  Google Scholar 

  8. Butt SS, Sun H, Aschemann H (2015) Control design by extended linearisation techniques for a two degrees of freedom helicopter. Ifac Papersonline 48(11):22–27

    Article  Google Scholar 

  9. Yuan Y, Cheng L, Wang Z, Sun C (2019) Position tracking and attitude control for quadrotors via active disturbance rejection control method. Science China (Inf Sci) 62(1):10

    Google Scholar 

  10. He W, Mu X, Zhang L, Zou Y (2021) Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA J Autom Sin 8(1):148–156

    Article  MathSciNet  Google Scholar 

  11. Ouyang Y, Dong L, Xue L, Sun C (2019) Adaptive control based on neural networks for an uncertain 2-dof helicopter system with input deadzone and output constraints. IEEE/CAA J Autom Sin 6(3):807–815

    Article  MathSciNet  Google Scholar 

  12. Zeghlache S, Kara K, Saigaa D (2014) Type-2 fuzzy logic control of a 2-dof helicopter (TRMS system). Open Eng 4(3):303

    Article  Google Scholar 

  13. Hernandez-Gonzalez M, Alanis AY, Hernandez-Vargas EA (2012) Decentralized discrete-time neural control for a quanser 2-dof helicopter. Appl Soft Comput 12(8):2462–2469

    Article  Google Scholar 

  14. Zhang J, Cheng X, Zhu J (2016) Control of a laboratory 3-dof helicopter: explicit model predictive approach. Int J Control Autom Syst 14(2):389–399

    Article  Google Scholar 

  15. Meza-Sánchez M, Aguilar LT, Orlov Y (2015) Output sliding mode-based stabilization of underactuated 3-dof helicopter prototype and its experimental verification. J Frankl Inst 352(4):1580–1594

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou J, Zhang C, Wen C (2007) Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity. IEEE Trans Autom Control 52(3):503–509

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang C, Huang D, He W, Cheng L (2021) Neural control of robot manipulators with trajectory tracking constraints and input saturation. IEEE Trans Neural Netw Learn Syst 32(9):4231–4242

    Article  MathSciNet  Google Scholar 

  18. Zhao Z, Liu Z, He W, Hong K-S, Li H-X (2021) Boundary adaptive fault-tolerant control for a flexible timoshenko arm with backlash-like hysteresis. Automatica 130:109690

    Article  MathSciNet  MATH  Google Scholar 

  19. Yan H, Li Y (2015) Adaptive nn prescribed performance control for nonlinear systems with output dead zone. Neural Comput Appl 28(1):1–9

    MathSciNet  Google Scholar 

  20. Mousavi SH, Ranjbar-Sahraei B, Noroozi N (2012) Output feedback controller for hysteretic time-delayed mimo nonlinear systems an h-infinity-based indirect adaptive interval type-2 fuzzy approach. Nonlinear Dyn 68(2):76–78

    MATH  Google Scholar 

  21. Yu J, Shi P, Liu J, Lin C (2020) Neuroadaptive finite-time control for nonlinear mimo systems with input constraint. IEEE Trans Cybern 1–8

  22. Hegde N, George V, Nayak C, Vaz A (2021) Application of robust h-infinity controller in transition flight modeling of autonomous vtol convertible quad tiltrotor uav. Int J Intell Unmanned Syst 9(3):204–235

    Article  Google Scholar 

  23. Huang D, Yang C, Pan Y, Cheng L (2021) Composite learning enhanced neural control for robot manipulator with output error constraints. IEEE Trans Ind Inform 17(1):209–218

    Article  Google Scholar 

  24. Zhao Z, Ahn CK, Li H-X (2020) Dead zone compensation and adaptive vibration control of uncertain spatial flexible riser systems. IEEE/ASME Trans Mechatron 25(3):1398–1408

    Article  Google Scholar 

  25. Zhao Z, Ren Y, Mu C, Zou T, Hong K-S (2021) Adaptive neural-network-based fault-tolerant control for a flexible string with composite disturbance observer and input constraints. IEEE Trans Cybern 1–11

  26. Zhao Z, Liu Y, Zou T, Hong K-S, Li H-X (2022) Robust adaptive fault-tolerant control for a riser-vessel system with input hysteresis and time-varying output constraints. IEEE Trans Cybern (in press)

  27. He W, Huang H, Ge SS (2017) Adaptive neural network control of a robotic manipulator with time-varying output constraints. IEEE Trans Cybern 47(10):3136–3147

    Article  Google Scholar 

  28. Li DP, Liu YJ, Tong S, Chen CLP, Li DJ (2019) Neural networks-based adaptive control for nonlinear state constrained systems with input delay. IEEE Trans Cybern 49(4):1249–1258

    Article  Google Scholar 

  29. Liu YJ, Tong S, Chen CLP, Li DJ (2017) Adaptive nn control using integral barrier Lyapunov functionals for uncertain nonlinear block-triangular constraint systems. IEEE Trans Cybern 47(11):3747–3757

    Article  Google Scholar 

  30. Liu Y-J, Lu S, Tong S (2017) Neural network controller design for an uncertain robot with time-varying output constraint. IEEE Trans Syst Man Cybern Syst 47(8):2060–2068

    Article  Google Scholar 

  31. He X, Zhao Z, Su J, Yang Q, Zhu D (2021) Adaptive inverse control of a vibrating coupled vessel-riser system with input backlash. IEEE Trans Syst Man Cybern Syst 51(8):4706–4715

    Article  Google Scholar 

  32. Xin Y, Qin ZC, Sun JQ (2018) Input-output tracking control of a 2-dof laboratory helicopter with improved algebraic differential estimation. Mech Syst Signal Process 116:843–857

    Article  Google Scholar 

  33. Ge SS, Wang C (2004) Adaptive neural control of uncertain mimo nonlinear systems. IEEE Trans Neural Netw 15(3):674–692

    Article  Google Scholar 

  34. Zhao Z, He W, Ge SS (2014) Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Trans Control Syst Technol 22(4):1536–1543

    Article  Google Scholar 

  35. Chen M, Shi P, Lim C-C (2016) Adaptive neural fault-tolerant control of a 3-dof model helicopter system. IEEE Trans Syst Man Cybern Syst 46(2):260–270

    Article  Google Scholar 

  36. Cui D, Wu Y, Xiang Z (2021) Finite-time adaptive fault-tolerant tracking control for nonlinear switched systems with dynamic uncertainties. Int J Robust Nonlinear Control 31:2976–2992

    Article  MathSciNet  Google Scholar 

  37. Li S, Ahn CK, Guo J, Xiang Z (2021) Neural network-based sampled-data control for switched uncertain nonlinear systems. IEEE Trans Syst Man Cybern Syst 51(9):5437–5445

    Article  Google Scholar 

  38. Chen M, Ge SS, Ren B (2011) Adaptive tracking control of uncertain mimo nonlinear systems with input constraints. Automatica 47(3):452–465

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Projects of Guangzhou Education Bureau under Grant No. 202032793.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijia Zhao.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., He, W., Yang, J. et al. Adaptive neural network control of an uncertain 2-DOF helicopter system with input backlash and output constraints. Neural Comput & Applic 34, 18143–18154 (2022). https://doi.org/10.1007/s00521-022-07463-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07463-3

Keywords

Navigation