Skip to main content

Advertisement

Log in

Comparison of recent metaheuristic optimization algorithms to solve the SHE optimization problem in MLI

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Multilevel inverters (MLIs) are one of the most popular topics of power electronics. Selective harmonic elimination (SHE) method is used to eliminate low-order harmonics in the MLI output voltage by determining the optimum switching angles. It includes the solution of nonlinear sets of transcendental equations. The optimization becomes more difficult as the number of levels in MLIs increases. Therefore, various metaheuristic algorithms have emerged toward obtaining optimal solutions to find the switching angles in the SHE problem in the last decade. In this study, a number of recent metaheuristics, such as ant lion optimization (ALO), hummingbird algorithm (AHA), dragonfly algorithm (DA), harris hawk optimization, moth flame optimizer (MFO), sine cosine algorithm (SCA), flow direction algorithm (FDA), equilibrium optimizer (EO), atom search optimization, artificial electric field algorithm and arithmetic optimization algorithm (AOA), are employed as an attempt to find the best optimization framework to identify switching moments in 11-level MLI. Marine predator algorithm (MPA), whale optimization algorithm (WOA), grey wolf optimizer (GWO), particle swarm optimization (PSO), multiverse optimizer (MVO), teaching–learning-based optimization (TLBO), and genetic algorithm (GA), which are widely used in solving this problem, are selected for performance analysis. AHA, ALO, AOA, DA, EO, FDA, GA, GWO, MFO, MPA, MVO, PSO, SCA, SSA, TLBO and WOA methods meet maximum 8% THD requirement specified in IEEE 519 standard in the range of 0.4–0.9 modulation index. Simulation results show that MFO is superior other algorithms in terms of THD minimization, convergence rate, a single iteration time and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Sinha A, Jana KC, Das MK (2018) An inclusive review on different multi-level inverter topologies, their modulation and control strategies for a grid connected photo-voltaic system. Sol Energy 170:633–657

    Google Scholar 

  2. Sridhar V, Umashankar S (2017) A comprehensive review on CHB MLI based PV inverter and feasibility study of CHB MLI based PV-STATCOM. Renew Sustain Energy Rev 78:138–156

    Google Scholar 

  3. Hosseinzadeh MA, Sarebanzadeh M, Babaei E, Rivera M, Wheeler P (2021) A switched-DC source sub-module multilevel inverter topology for renewable energy source applications. IEEE Access 9:135964–135982. https://doi.org/10.1109/ACCESS.2021.3115660

    Article  Google Scholar 

  4. Poorfakhraei M, Narimani AE (2021) A review of multilevel inverter topologies in electric vehicles: current status and future trends. IEEE Open J Power Electr 2:155–170. https://doi.org/10.1109/OJPEL.2021.3063550

    Article  Google Scholar 

  5. Siddique MD, Iqbal A, Memon MA, Mekhilef S (2020) A new configurable topology for multilevel inverter with reduced switching components. IEEE Access 8:188726–188741

    Google Scholar 

  6. Srndovic M, Zhetessov A, Alizadeh T et al (2018) Simultaneous selective harmonic elimination and THD minimization for a single-phase multilevel inverter with staircase modulation. IEEE Trans Ind Appl 54(2):1532–1541

    Google Scholar 

  7. Colak I, Kabalci E, Bayindir R (2011) Review of multilevel voltage source inverter topologies and control schemes. Energy Convers Manag 52:1114–1128

    Google Scholar 

  8. Jammala V, Yellasiri S, Panda AK (2018) Development of a new hybrid multilevel inverter using modified carrier SPWM switching strategy. IEEE Trans Power Electron 33(10):8192–8197. https://doi.org/10.1109/TPEL.2018.2801822

    Article  Google Scholar 

  9. Jayakumar V, Chokkalingam B, Munda JL (2021) A comprehensive review on space vector modulation techniques for neutral point clamped multi-level inverters. IEEE Access 9:112104–112144. https://doi.org/10.1109/ACCESS.2021.3100346

    Article  Google Scholar 

  10. Chamarthi P, Chhetri P, Agarwal V (2016) Simplified implementation scheme for space vector pulse width modulation of n-level inverter with online computation of optimal switching pulse durations. IEEE Trans Ind Electron 63(11):6695–6704. https://doi.org/10.1109/TIE.2016.2586438

    Article  Google Scholar 

  11. Zhang F, Yan Y (2009) Selective harmonic elimination PWM control scheme on a three-phase four-leg voltage source inverter. IEEE Trans Power Electron 24(7):1682–1689. https://doi.org/10.1109/TPEL.2009.2014378

    Article  Google Scholar 

  12. Dahidah MSA, Konstantinou G, Agelidis VG (2015) A review of multilevel selective harmonic elimination PWM: formulations, solving algorithms, implementation and applications. IEEE Trans Power Electron 30(8):4091–4106. https://doi.org/10.1109/TPEL.2014.2355226

    Article  Google Scholar 

  13. Zhang Y, Li YW, Zargari NR, Cheng Z (2015) Improved selective harmonics elimination scheme with online harmonic compensation for high-power PWM converters. IEEE Trans Power Electron 30(7):3508–3517. https://doi.org/10.1109/TPEL.2014.2345051

    Article  Google Scholar 

  14. Hasan N, Rosmin N, Osman D, Musta’amal A (2017) Reviews on multilevel converter and modulation techniques. Renew Sustain Energy Rev 80:163–174. https://doi.org/10.1016/j.rser.2017.05.163

    Article  Google Scholar 

  15. Ahmed M et al (2020) General mathematical solution for selective harmonic elimination. IEEE J Emerg Sel Top Power Electron 8(4):4440–4456. https://doi.org/10.1109/JESTPE.2019.2932933

    Article  Google Scholar 

  16. Ürgün S, Yiğit H (2021) Selective harmonic eliminated pulse width modulation (SHE–PWM) method using genetic algorithm in single–phase multilevel inverters. Int J Electr Eng Inform 13(1):191–202

    Google Scholar 

  17. Anupriya G, Akash T (2013) Metaheuristics: review and application. J Exp Theor Artif Intell 25(4):503–526

    Google Scholar 

  18. Wang P, Zhou Y, Luo Q, Cao Han Y, Niu ML (2020) Complex-valued encoding metaheuristic optimization algorithm: a comprehensive survey. Neurocomputing 407:313–342. https://doi.org/10.1016/j.neucom.2019.06.112

    Article  Google Scholar 

  19. De León-Aldaco SE, Calleja H, Aguayo Alquicira J (2015) Metaheuristic optimization methods applied to power converters: a review. IEEE Trans Power Electron 30(12):6791–6803. https://doi.org/10.1109/TPEL.2015.2397311

    Article  Google Scholar 

  20. Ahmed M, Orabi M, Ghoneim SS, Al-Harthi MM, Salem FA, Alamri B, Mekhilef S (2020) General mathematical solution for selective harmonic elimination. IEEE J Emerg Sel Top Power Electron 8:4440–4456

    Google Scholar 

  21. Memon MA, Mekhilef S, Mubin M, Aamir M (2018) Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: a review. Renew Sustain Energy Rev 82:2235–2253

    Google Scholar 

  22. Padmanaban S, Dhanamjayulu C, Khan B (2021) Artificial neural network and newton raphson (ANN-NR) algorithm based selective harmonic elimination in cascaded multilevel inverter for PV applications. IEEE Access 9:75058–75070

    Google Scholar 

  23. Chiasson JN, Tolbert LM, McKenzie KJ et al (2004) A complete solution to the harmonic elimination problem. IEEE Trans Power Electron 19(2):491–499

    Google Scholar 

  24. Hussain K, Salleh MNM, Cheng S et al (2019) On the exploration and exploitation in popular swarm–based metaheuristic algorithms. Neural Comput Appl 31:7665–7683

    Google Scholar 

  25. Agrawal P, Abutarboush HF, Ganesh T, Mohamed AW (2021) Metaheuristic algorithms on feature selection: a survey of one decade of research (2009–2019). IEEE Access 9:26766–26791

    Google Scholar 

  26. Goldberg DE Genetic algorithms, Pearson Education India

  27. Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl 32:12363–12379

    Google Scholar 

  28. Fogel GB (2012) Evolutionary programming. In: Rozenberg G, Bäck T, Kok JN (eds) Handbook of natural computing. Springer, Berlin, Heidelberg

    Google Scholar 

  29. Swagatam D, Ponnuthurai NS (2011) Differential evolution: a survey of the state–of–the–art. IEEE Trans Evol Comput 15(99):4–31

    Google Scholar 

  30. Dariusz J, Jarosław A (2017) A differential evolution strategy. In: IEEE congress on evolutionary computation (CEC) 2017, Donostia, Spain. pp 1872–1876

  31. Hansen N, Arnold DV, Auger A (2015) Evolution strategies. In: Kacprzyk J, Pedrycz W (eds) Springer handbook of computational intelligence. Springer handbooks. Springer, Berlin, Heidelberg

    Google Scholar 

  32. Wierstra D, Schaul T, Peters J, Schmidhuber J (2008) Natural evolution strategies. In: IEEE congress on evolutionary computation (IEEE world congress on computational intelligence) 2008, Hong Kong, China. pp 3381–3387

  33. Slowik A (ed) (2020) Swarm intelligence algorithms: a tutorial, 1st edn. CRC Press, Florida

    MATH  Google Scholar 

  34. Kennedy J, Eberhart R (1995) Particle swarm optimization. Int Conf Neural Netw (ICNN’95) 4:1942–1948

    Google Scholar 

  35. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Google Scholar 

  36. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471

    MathSciNet  MATH  Google Scholar 

  37. Abualigah L, Shehab M, Alshinwan M et al (2020) Salp swarm algorithm: a comprehensive survey. Neural Comput Appl 32:11195–11215. https://doi.org/10.1007/s00521-019-04629-4

    Article  Google Scholar 

  38. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  39. Yang X-S (2011) Bat algorithm for multi–objective optimization. Int J Bio-Inspired Comput 3:267–274

    Google Scholar 

  40. Kumar S, Kumar A (2018) A brief review on antlion optimization algorithm. In: 2018 international conference on advances in computing, communication control and networking (ICACCCN). pp 236–240. https://doi.org/10.1109/ICACCCN.2018.8748862

  41. Long W, Cai S, Jiao J et al (2020) An efficient and robust grey wolf optimizer algorithm for large-scale numerical optimization. Soft Comput 24:997–1026. https://doi.org/10.1007/s00500-019-03939-y

    Article  Google Scholar 

  42. Mirjalili S (2015) Moth–flame optimization algorithm: A novel nature–inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Google Scholar 

  43. Heidari AA, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawk’s optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Google Scholar 

  44. Abualigah L, Diabat A (2021) Advances in sine cosine algorithm: a comprehensive survey. Artif Intell Rev 54:2567–2608. https://doi.org/10.1007/s10462-020-09909-3

    Article  Google Scholar 

  45. Meraihi Y, Ramdane-Cherif A, Acheli D et al (2020) Dragonfly algorithm: a comprehensive review and applications. Neural Comput Appl 32:16625–16646

    Google Scholar 

  46. Shadman Abid M, Apon HJ, Morshed KA, Ahmed A (2022) Optimal planning of multiple renewable energy-integrated distribution system with uncertainties using artificial hummingbird algorithm. IEEE Access 10:40716–40730. https://doi.org/10.1109/ACCESS.2022.3167395

    Article  Google Scholar 

  47. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    MathSciNet  MATH  Google Scholar 

  48. Rashedi E, Nezamabadi-Pour H, Saryazdi SG (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    MATH  Google Scholar 

  49. Abualigah L (2020) Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications. Neural Comput Appl 32:12381–12401. https://doi.org/10.1007/s00521-020-04839-1

    Article  Google Scholar 

  50. Weiguo Z, Liying W, Zhenxing Z (2019) Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl-Based Syst 163:283–304

    Google Scholar 

  51. Karami H, Anaraki MV, Farzin S, Mirjalili S (2021) Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems. Comput Ind Eng 156:107224

    Google Scholar 

  52. Houssein EH, Hassan MH, Mahdy MA et al (2022) Development and application of equilibrium optimizer for optimal power flow calculation of power system. Appl Intell. https://doi.org/10.1007/s10489-022-03796-7

    Article  Google Scholar 

  53. Anupam Yadav AEFA (2019) Artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93–108. https://doi.org/10.1016/j.swevo.2019.03.013

    Article  Google Scholar 

  54. Ozpineci B, Tolbert LM, Chiasson JN (2005) Harmonic optimization of multilevel converters using genetic algorithms. IEEE Power Electron Lett 3(3):92–95

    Google Scholar 

  55. Memon MA, Siddique MD, Mekhilef S, Mubin M (2022) Asynchronous particle swarm optimization–genetic algorithm (APSO–GA) based selective harmonic elimination in a cascaded h–bridge multilevel inverter. IEEE Trans Industr Electron 69(2):1477–1487

    Google Scholar 

  56. Kumar SS, Iruthayarajan MW, Sivakumar T (2020) Evolutionary algorithm based selective harmonic elimination for three–phase cascaded H–bridge multilevel inverters with optimized input sources. J Power Electron 20:1172–1183

    Google Scholar 

  57. Islam J, Meraj ST, Negash B et al (2021) Modified quantum particle swarm optimization for selective harmonic elimination (SHE) in a dingle–phase multilevel inverter. Int J Innov Comput Inf Control 17:959–971

    Google Scholar 

  58. Memon MA, Mekhilef S, Mubin M, Aamir M (2018) Selective harmonic elimination in inverters using bio–inspired intelligent algorithms for renewable energy conversion applications: a review. Renew Sustain Energy Rev 82:2235–2253

    Google Scholar 

  59. Etesami MH, Farokhnia N, Hamid Fathi S (2015) Colonial competitive algorithm development toward harmonic minimization in multilevel inverters. IEEE Trans Industr Inf 11(2):459–466

    Google Scholar 

  60. Panda P, Bana PR, Panda G (2020) FPA optimized selective harmonic elimination in symmetric–asymmetric reduced switch cascaded multilevel inverter. IEEE Trans Ind Appl 56(3):2862–2870

    Google Scholar 

  61. Dzung PQ, Tien NT, Dinh Tuyen N, Lee HH (2015) Selective harmonic elimination for cascaded multilevel inverters using grey wolf optimizer algorithm. In: 2015 9th international conference on power electronics and ECCE Asia (ICPE-ECCE Asia). pp 2776–2781. https://doi.org/10.1109/ICPE.2015.7168164

  62. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning–based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315

    Google Scholar 

  63. Haghdar K (2020) Optimal dc source influence on selective harmonic elimination in multilevel inverters using teaching–learning–based optimization. IEEE Trans Industr Electron 67(2):942–949

    Google Scholar 

  64. Ceylan O (2021) Multi–verse optimization algorithm and salp swarm optimization algorithm based optimization of multilevel inverters. Neural Comput Appl 33:1935–1950

    Google Scholar 

  65. Riad N, Anis W, Elkassas A, Hassan AE-W (2021) Three–phase multilevel inverter using selective harmonic elimination with marine predator algorithm. Electronics 10:374

    Google Scholar 

  66. Falehi A (2020) Optimal harmonic mitigation strategy based on multiobjective whale optimization algorithm for asymmetrical half–cascaded multilevel inverter. Electr Eng 102:1639–1650. https://doi.org/10.1007/s00202-020-00983-y

    Article  Google Scholar 

  67. Abualigah L, Diabat A, Mirjalili S, Elaziz MA, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609

    MathSciNet  MATH  Google Scholar 

  68. Kala P, Arora S (2017) A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications. Renew Sustain Energy Rev 76:905–931

    Google Scholar 

  69. Kala P, Arora S (2021) Implementation of hybrid GSA SHE technique in hybrid nine–level inverter topology. IEEE J Emerg Sel Top Power Electron 9(1):1064–1074

    Google Scholar 

  70. Routray RKS, Mahanty R (2020) Harmonic reduction in hybrid cascaded multilevel inverter using modified grey wolf optimization. IEEE Trans Ind Appl 56(2):1827–1838. https://doi.org/10.1109/TIA.2019.2957252

    Article  Google Scholar 

Download references

Acknowledgments

The authors are pleased to thank the individuals who contributed to this study.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Yiğit.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiğit, H., Ürgün, S. & Mirjalili, S. Comparison of recent metaheuristic optimization algorithms to solve the SHE optimization problem in MLI. Neural Comput & Applic 35, 7369–7388 (2023). https://doi.org/10.1007/s00521-022-07980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07980-1

Keywords

Navigation