Skip to main content
Log in

Bacteria phototaxis optimizer

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a new metaheuristic algorithm called bacteria phototaxis optimizer (BPO). It is designed to solving optimization issues. Inspired by the bacteria phototaxis under the control of photosensory proteins in nature, and based on the basic law of bacterial colony growth and evolution, we have designed the photosensory protein concentration, phototaxis motion and growth operators. These three operators exhibit a highly adaptive and information interaction mechanism. The goal is to simulate the phototaxis process of bacteria and form a complete model of BPO. At the same time, BPO is compared with eight most representative as well as newly generated metaheuristics. Its performance is verified by using 23 well-known benchmark functions with three different types. Additionally, we have conducted several evaluation processes, such as qualitative and quantitative analysis as well as parametric and nonparametric tests. Finally, five classical engineering design problems are used to further test the effectiveness of the algorithm in solving constrained problems. The aforementioned experimental results show that compared with other algorithms, BPO has better accuracy, convergence, and robustness and shows strong competitiveness and optimization performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this paper.

References

  1. Eiben AE, Smith J (2015) From evolutionary computation to the evolution of things. Nature 521:476–482. https://doi.org/10.1038/nature14544

    Article  Google Scholar 

  2. Panigrahy D, Samal P (2021) Modified lightning search algorithm for optimization. Eng Appl Artif Intell 105:104419. https://doi.org/10.1016/j.engappai.2021.104419

    Article  Google Scholar 

  3. Hussain K, MohdSalleh MN, Cheng S, Shi Y (2019) Metaheuristic research: a comprehensive survey. Artif Intell Rev 52:2191–2233. https://doi.org/10.1007/s10462-017-9605-z

    Article  Google Scholar 

  4. Kar AK (2016) Bio inspired computing—a review of algorithms and scope of applications. Expert Syst Appl 59:20–32. https://doi.org/10.1016/j.eswa.2016.04.018

    Article  Google Scholar 

  5. Ewees AA, Mostafa RR, Ghoniem RM, Gaheen MA (2022) Improved seagull optimization algorithm using Lévy flight and mutation operator for feature selection. Neural Comput Appl 34:7437–7472. https://doi.org/10.1007/s00521-021-06751-8

    Article  Google Scholar 

  6. Pan Q, Tang J, Wang H, Li H, Chen X, Lao S (2021) SFSADE: an improved self-adaptive differential evolution algorithm with a shuffled frog-leaping strategy. Artif Intell Rev. https://doi.org/10.1007/s10462-021-10099-9

    Article  Google Scholar 

  7. Gogna A, Tayal A (2013) Metaheuristics: review and application. J Exp Theor Artif Intell 25:503–526. https://doi.org/10.1080/0952813X.2013.782347

    Article  Google Scholar 

  8. Doğan B, Ölmez T (2015) A new metaheuristic for numerical function optimization: Vortex Search algorithm. Inf Sci 293:125–145. https://doi.org/10.1016/j.ins.2014.08.053

    Article  Google Scholar 

  9. Ezugwu AE, Shukla AK, Nath R, Akinyelu AA, Agushaka JO, Chiroma H, Muhuri PK (2021) Metaheuristics: a comprehensive overview and classification along with bibliometric analysis. Artif Intell Rev 54:4237–4316. https://doi.org/10.1007/s10462-020-09952-0

    Article  Google Scholar 

  10. Zhang X, Xin Q (2022) Three-learning strategy particle swarm algorithm for global optimization problems. Inf Sci 593:289–313. https://doi.org/10.1016/j.ins.2022.01.075

    Article  Google Scholar 

  11. Yang X-S (ed) (2018) Nature-inspired algorithms and applied optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-67669-2

    Book  MATH  Google Scholar 

  12. Thrun MC, Ultsch A (2021) Swarm intelligence for self-organized clustering. Artif Intell 290:103237. https://doi.org/10.1016/j.artint.2020.103237

    Article  MathSciNet  MATH  Google Scholar 

  13. Osaba E, Villar-Rodriguez E, Del Ser J, Nebro AJ, Molina D, LaTorre A, Suganthan PN, Coello Coello CA, Herrera F (2021) A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems. Swarm Evol Comput 64:100888. https://doi.org/10.1016/j.swevo.2021.100888

    Article  Google Scholar 

  14. Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley, New York

    Book  MATH  Google Scholar 

  15. Yang X, He X (2013) Swarm intelligence and smart optimization algorithms. Basic Sci J Text Univ 26:287–296

    Google Scholar 

  16. Tang J, Liu G, Pan Q (2021) A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA J Autom Sinica 8:1627–1643

    Article  MathSciNet  Google Scholar 

  17. Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Oper Res 63:511–623. https://doi.org/10.1007/BF02125421

    Article  MATH  Google Scholar 

  18. Zhong C, Li G, Meng Z (2022) A hybrid teaching–learning slime mould algorithm for global optimization and reliability-based design optimization problems. Neural Comput Appl 34:16617–16642. https://doi.org/10.1007/s00521-022-07277-3

    Article  Google Scholar 

  19. Nguyen PTH, Sudholt D (2020) Memetic algorithms outperform evolutionary algorithms in multimodal optimization. Artif Intell 287:103345. https://doi.org/10.1016/j.artint.2020.103345

    Article  MATH  Google Scholar 

  20. Abdel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) Metaheuristic algorithms: a comprehensive review. In: Computational intelligence for multimedia big data on the cloud with engineering applications. Elsevier, pp 185–231. https://doi.org/10.1016/B978-0-12-813314-9.00010-4

  21. Khan TA, Ling SH (2020) A survey of the state-of-the-art swarm intelligence techniques and their application to an inverse design problem. J Comput Electron 19:1606–1628. https://doi.org/10.1007/s10825-020-01567-6

    Article  Google Scholar 

  22. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  23. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  24. Benlic U, Hao J-K (2013) Breakout local search for maximum clique problems. Comput Oper Res 40:192–206. https://doi.org/10.1016/j.cor.2012.06.002

    Article  MathSciNet  MATH  Google Scholar 

  25. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  26. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  27. Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A (2019) A survey on new generation metaheuristic algorithms. Comput Ind Eng 137:106040. https://doi.org/10.1016/j.cie.2019.106040

    Article  Google Scholar 

  28. Beyer H-G, Schwefel H-P (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1:3–52. https://doi.org/10.1023/A:1015059928466

    Article  MathSciNet  MATH  Google Scholar 

  29. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley-IEEE Press, New York

    MATH  Google Scholar 

  30. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Oxford

    MATH  Google Scholar 

  31. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  32. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, pp 4661–4667

  33. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Computat 12:702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  34. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144. https://doi.org/10.1016/j.amc.2013.02.017

    Article  MathSciNet  MATH  Google Scholar 

  35. Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl-Based Syst 75:1–18. https://doi.org/10.1016/j.knosys.2014.07.025

    Article  Google Scholar 

  36. Sulaiman MH, Mustaffa Z, Saari MM, Daniyal H (2020) Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng Appl Artif Intell 87:103330. https://doi.org/10.1016/j.engappai.2019.103330

    Article  Google Scholar 

  37. A. LaTorre, D. Molina, E. Osaba, J. Del Ser, F. Herrera, Fairness in Bio-inspired Optimization Research: A Prescription of Methodological Guidelines for Comparing Meta-heuristics, http://arxiv.org/abs/2004.09969 [Cs]. (2020). http://arxiv.org/abs/2004.09969 (accessed December 23, 2021).

  38. Boettcher S, Percus A (2000) Nature’s way of optimizing. Artif Intell 119:275–286. https://doi.org/10.1016/S0004-3702(00)00007-2

    Article  MATH  Google Scholar 

  39. Erol OK, Eksin I (2006) A new optimization method: Big Bang-Big Crunch. Adv Eng Softw 37:106–111. https://doi.org/10.1016/j.advengsoft.2005.04.005

    Article  Google Scholar 

  40. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  41. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289. https://doi.org/10.1007/s00707-009-0270-4

    Article  MATH  Google Scholar 

  42. AI-Rifaie MM, Bishop JM (2013) Stochastic diffusion search review. Paladyn J Behav Robot 4:155–173. https://doi.org/10.2478/pjbr-2013-0021

    Article  Google Scholar 

  43. Tamura K, Yasuda K (2011) Primary study of spiral dynamics inspired optimization. IEEJ Trans Elec Electron Eng 6:98–100. https://doi.org/10.1002/tee.20628

    Article  Google Scholar 

  44. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  45. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  46. Anita A, Yadav AEFA (2019) Artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93–108. https://doi.org/10.1016/j.swevo.2019.03.013

    Article  Google Scholar 

  47. Duan H, Luo Q (2015) New progresses in swarm intelligence-based computation. Int J Bio Inspir Comput 7:26–35. https://doi.org/10.1504/IJBIC.2015.067981

    Article  Google Scholar 

  48. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks, 1995, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  49. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B 26:29–41. https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  50. Li X (2003) A new intelligent optimization-artificial fish swarm algorithm. Zhejiang University, 2003

  51. Basturk B, Karaboga D (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: USA, 2006, pp 12–14

  52. Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11:5508–5518. https://doi.org/10.1016/j.asoc.2011.05.008

    Article  Google Scholar 

  53. Yang XS (n.d.) Firefy algorithms for multimodal optimization. In: Springer, Berlin, pp 169–178

  54. Yang X (2010) A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74. https://doi.org/10.1007/978-3-642-12538-6_6

    Chapter  Google Scholar 

  55. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  56. Shadravan S, Naji HR, Bardsiri VK (2019) The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34. https://doi.org/10.1016/j.engappai.2019.01.001

    Article  Google Scholar 

  57. Yapici H, Cetinkaya N (2019) A new meta-heuristic optimizer: Pathfinder algorithm. Appl Soft Comput 78:545–568. https://doi.org/10.1016/j.asoc.2019.03.012

    Article  Google Scholar 

  58. Xue J, Shen B (2020) A novel swarm intelligence optimization approach: sparrow search algorithm, systems science & control. Engineering 8:22–34. https://doi.org/10.1080/21642583.2019.1708830

    Article  Google Scholar 

  59. Reynolds RG (n.d.) An introduction to cultural algorithms. In: World Scientifc, River Edge, pp 131–139

  60. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76:60–68. https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  61. He S, Wu QH, Saunders JR (2006) A novel group search optimizer inspired by animal behavioural ecology, In: 2006 IEEE international conference on evolutionary computation. IEEE, Vancouver, BC, Canada, 2006, pp 1272–1278. https://doi.org/10.1109/CEC.2006.1688455

  62. Kashan A (2009) League championship algorithm: a new algorithm for numerical function optimization. In: 2009 international conference of soft computing and pattern recognition, 2009, pp 43–48

  63. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  64. Ahmadi-Javid A (2011) Anarchic society optimization: a human-inspired method. In: IEEE, 2011, pp 2586–2592

  65. Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl Soft Comput 19:177–187

    Article  Google Scholar 

  66. Mousavirad SJ, Ebrahimpour-Komleh H (2017) Human mental search: a new population-based metaheuristic optimization algorithm. Appl Intell 47:850–887. https://doi.org/10.1007/s10489-017-0903-6

    Article  Google Scholar 

  67. Askari Q, Younas I, Saeed M (2020) Political optimizer: a novel socio-inspired meta-heuristic for global optimization. Knowl Based Syst 195:105709. https://doi.org/10.1016/j.knosys.2020.105709

    Article  Google Scholar 

  68. Del Ser J, Osaba E, Molina D, Yang X-S, Salcedo-Sanz S, Camacho D, Das S, Suganthan PN, Coello Coello CA, Herrera F (2019) Bio-inspired computation: where we stand and what’s next. Swarm Evol Comput 48:220–250. https://doi.org/10.1016/j.swevo.2019.04.008

    Article  Google Scholar 

  69. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Computat 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  70. Vaidya AT, Chen C-H, Dunlap JC, Loros JJ, Crane BR (2011) Structure of a light-activated LOV protein dimer that regulates transcription. Sci Signal. https://doi.org/10.1126/scisignal.2001945

    Article  Google Scholar 

  71. Ulrich R (2021) Bacteria in the wind. Nat Rev Earth Environ 2:823–823. https://doi.org/10.1038/s43017-021-00250-z

    Article  Google Scholar 

  72. Fromm J (2005) Types and forms of emergence. Physics 1–23. https://doi.org/10.48550/arXiv.nlin/0506028

    Article  Google Scholar 

  73. Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845–1858. https://doi.org/10.1099/mic.0.2008/017871-0

    Article  Google Scholar 

  74. Liu S, Shankar S, Marchetti MC, Wu Y (2021) Viscoelastic control of spatiotemporal order in bacterial active matter. Nature 590:80–84. https://doi.org/10.1038/s41586-020-03168-6

    Article  Google Scholar 

  75. Deng Z (2017) Microbiology. Higher Education Press, Beijing

    Google Scholar 

  76. Armitage JP (1999) Bacterial tactic responses. In: Advances in microbial physiology. Elsevier, 1999, pp 229–289. https://doi.org/10.1016/S0065-2911(08)60168-X

  77. Murrell JC (1991) Physiology of the bacterial cell—a molecular approach. Trends Genet 7:341. https://doi.org/10.1016/0168-9525(91)90427-R

    Article  Google Scholar 

  78. Muller SD, Marchetto J, Airaghi S, Kournoutsakos P (2002) Optimization based on bacterial chemotaxis. IEEE Trans Evol Comput 6:16–29. https://doi.org/10.1109/4235.985689

    Article  Google Scholar 

  79. Dunny GM, Brickman TJ, Dworkin M (2010) Multicellular behavior in bacteria: communication, cooperation, competition and cheating. BioEssays 30:296–298. https://doi.org/10.1002/bies.20740

    Article  Google Scholar 

  80. Multamäki E, Nanekar R, Morozov D, Lievonen T, Golonka D, Wahlgren WY, Stucki-Buchli B, Rossi J, Hytönen VP, Westenhoff S, Ihalainen JA, Möglich A, Takala H (2021) Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling. Nat Commun 12:4394. https://doi.org/10.1038/s41467-021-24676-7

    Article  Google Scholar 

  81. Bremermann H (1974) Chemotaxis and optimization. J Frankl Inst 297:397–404. https://doi.org/10.1016/0016-0032(74)90041-6

    Article  Google Scholar 

  82. Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Nature 239:500–504

    Article  Google Scholar 

  83. Dahlquist FW, Elwell RA, Lovely PS (1976) Studies of bacterial chemotaxis in defined concentration gradients. A model for chemotaxis towardL-serine. J Supramol Struct 4:329–342. https://doi.org/10.1002/jss.400040304

    Article  Google Scholar 

  84. Li Y, Yi S (2012) Adaptive mean shift algorithm based on hybridized bacterial chemotaxis. In: IEEE, 2012

  85. Rashid S, Long Z, Singh S, Kohram M, Vashistha H, Navlakha S, Salman H, Oltvai ZN, Bar-Joseph Z (2019) Adjustment in tumbling rates improves bacterial chemotaxis on obstacle-laden terrains. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1816315116

    Article  Google Scholar 

  86. Li W, Wang H, Zou Z, Qian J (2005) Function optimization method based on bacterial colony chemotaxis. J Circuits Syst 10:6

    Google Scholar 

  87. Han H, Xv J, Fan Z (2015) Application of the improved bacterial colony chemotaxis algorithm to the calculation of available transmission capacity. Electr Meas Instrum 52:23–28

    Google Scholar 

  88. Lu Z, Geng L, Huo G, Zhao H, Yao W, Li G, Guo X, Zhang J (2020) A novel hybrid multi-objective bacterial colony chemotaxis algorithm. Soft Comput 24:2013–2032. https://doi.org/10.1007/s00500-019-04034-y

    Article  Google Scholar 

  89. Zhang Y, Wu L (2009) Optimization based on polymorphic bacterial chemotaxis. Comput Eng Appl 45:6–9

    Google Scholar 

  90. Su H (2014) Coordination optimization of PSS parameters based on polymorphic bacterial chemotaxis algorithm. IJHIT 7:121–136. https://doi.org/10.14257/ijhit.2014.7.5.11

    Article  Google Scholar 

  91. Niu B, Wang H (2012) Bacterial colony optimization. Discrete Dyn Nat Soc 2012:1–28. https://doi.org/10.1155/2012/698057

    Article  MathSciNet  MATH  Google Scholar 

  92. Wang H, Jing X, Niu B (2014) A weighted bacterial colony optimization for feature selection. In: Huang D-S, Han K, Gromiha M (eds) Intelligent computing in bioinformatics. Springer, Cham, pp 379–389. https://doi.org/10.1007/978-3-319-09330-7_45

    Chapter  Google Scholar 

  93. Vijayakumari K, Baby Deepa V (2021) Fuzzy C-means hybrid with fuzzy bacterial colony optimization. In: Sengodan T, Murugappan M, Misra S (eds) Advances in electrical and computer technologies. Springer, Singapore, pp 75–87. https://doi.org/10.1007/978-981-15-9019-1_7

    Chapter  Google Scholar 

  94. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22:52–67. https://doi.org/10.1109/MCS.2002.1004010

    Article  Google Scholar 

  95. Chen H, Zhu Y, Hu K (2011) Adaptive bacterial foraging optimization. Abstr Appl Anal 2011:1–27. https://doi.org/10.1155/2011/108269

    Article  MathSciNet  MATH  Google Scholar 

  96. Tian L, Shao Y, Zhao H (2013) Discrete bacterial foraging optimization. J Pure Appl Microbiol 7:2117–2122

    Google Scholar 

  97. Du CC, Feng XG, Zhang JY (2017) Improved bacterial foraging optimization algorithm based on fuzzy control rule base. J Electron Sci Technol 15:283–288

    Google Scholar 

  98. Chen H, Wang L, Di J, Ping S (2020) Bacterial foraging optimization based on self-adaptive chemotaxis strategy. Comput Intell Neurosci 7:1–15. https://doi.org/10.1155/2020/2630104

    Article  Google Scholar 

  99. Tang WJ, Wu QH, Saunders JR (2007) A bacterial swarming algorithm for global optimization. In: 2007, pp 1207–1212

  100. Shanmugasundaram S, Mohamed ASA, Ruhaiyem NIR (2017) Hybrid improved bacterial swarm (HIBS) optimization algorithm. Ruhaiyem 10645:71–78

    Google Scholar 

  101. Chu Y, Mi H, Liao H, Ji Z, Wu QH (2008) A fast bacterial swarming algorithm for high-dimensional function optimization. In: 2008, pp 3135–3140

  102. Li M, Yang C (2011) Bacterial colony optimization algorithm. Control Theory Appl 28:223–228

    Google Scholar 

  103. Chen H, Niu B, Ma L, Su W, Zhu Y (2014) Bacterial colony foraging optimization. Neurocomputing 137:268–284

    Article  Google Scholar 

  104. Niu B, Liu Q, Wang Z, Tan L, Li L (2021) Multi-objective bacterial colony optimization algorithm for integrated container terminal scheduling problem. Nat Comput 20:89–104. https://doi.org/10.1007/s11047-019-09781-3

    Article  MathSciNet  Google Scholar 

  105. Mo H, Xu L (2012) Magnetotactic bacteria algorithm for function optimization. JSEA 05:66–71. https://doi.org/10.4236/jsea.2012.512B014

    Article  Google Scholar 

  106. Mo H, Ma J, Zhao Y (2015) An improved magnetotactic bacteria moment migration optimization algorithm. In: Rutkowski L, Korytkowski M, Scherer R, Tadeusiewicz R, Zadeh LA, Zurada JM (eds) Artificial intelligence and soft computing. Springer, Cham, pp 691–702. https://doi.org/10.1007/978-3-319-19369-4_61

    Chapter  Google Scholar 

  107. Mo H, Liu L, Zhao J (2017) A new magnetotactic bacteria optimization algorithm based on moment migration. IEEE/ACM Trans Comput Biol Bioinf 14:15–26. https://doi.org/10.1109/TCBB.2015.2453949

    Article  Google Scholar 

  108. Gómez-Vizcaíno LS, Ríos DGR (2012) Global bacteria optimization: a metaheuristic inspired on bacteria phototaxis to solve multi-objective optimization problems. Int J Adv Res Comput Sci 3:140–148

    Google Scholar 

  109. Gest H (1995) Phototaxis and other sensory phenomena in purple photosynthetic bacteria. FEMS Microbiol Rev 4:287–294

    Article  Google Scholar 

  110. Engelmann T (1881) Bacterium photometricum: an article on the comparative physiology of the sense for light and colour. Arch Ges Physiol Bonn 30:95–124

    Article  Google Scholar 

  111. Nultsch W (1973) Phototaxis and photokinesis in bacteria and blue–green algae. Springer, New York

    Book  Google Scholar 

  112. Li K, Chen H, Wu L, Song T (2018) Behavior and mechanism of bacterial response to light illumination. Microbiology China 45:1574–1587

    Google Scholar 

  113. Clayton RK (1959) Phototaxis of purple bacteria. In: Physiology of movements/Physiologie Der Bewegungen. Springer, Berlin, pp 371–387. https://doi.org/10.1007/978-3-642-94755-1_16

  114. van der Horst MA, Key J, Hellingwerf KJ (2007) Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too. Trends Microbiol 15:554–562. https://doi.org/10.1016/j.tim.2007.09.009

    Article  Google Scholar 

  115. Elías-Arnanz M, Padmanabhan S, Murillo FJ (2011) Light-dependent gene regulation in nonphototrophic bacteria. Curr Opin Microbiol 14:128–135. https://doi.org/10.1016/j.mib.2010.12.009

    Article  Google Scholar 

  116. Otero LH, Klinke S, Rinaldi J, Velázquez-Escobar F, Mroginski MA, Fernández López M, Malamud F, Vojnov AA, Hildebrandt P, Goldbaum FA, Bonomi HR (2016) Structure of the full-length bacteriophytochrome from the plant pathogen Xanthomonas campestris provides clues to its long-range signaling mechanism. J Mol Biol 428:3702–3720. https://doi.org/10.1016/j.jmb.2016.04.012

    Article  Google Scholar 

  117. Davis SJ, Vener AV, Vierstra RD (1999) Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286:2517–2520. https://doi.org/10.1126/science.286.5449.2517

    Article  Google Scholar 

  118. Braatsch S, Klug G (2004) Blue light perception in bacteria. Photosynth Res 79:45–57. https://doi.org/10.1023/B:PRES.0000011924.89742.f9

    Article  Google Scholar 

  119. Wiltbank LB, Kehoe DM (2019) Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 17:37–50. https://doi.org/10.1038/s41579-018-0110-4

    Article  Google Scholar 

  120. Ha S-Y, Levy D, Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 151-747, Department of Mathematics and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742 (2009) Particle, kinetic and fluid models for phototaxis. Discrete Contin Dyn Syst B 12:77–108. https://doi.org/10.3934/dcdsb.2009.12.77

  121. Fraikin GY, Strakhovskaya MG, Belenikina NS, Rubin AB (2015) Bacterial photosensory proteins: regulatory functions and optogenetic applications. Microbiology 84:461–472. https://doi.org/10.1134/S0026261715040086

    Article  Google Scholar 

  122. Herrou J, Crosson S (2011) Function, structure and mechanism of bacterial photosensory LOV proteins. Nat Rev Microbiol 9:713–723. https://doi.org/10.1038/nrmicro2622

    Article  Google Scholar 

  123. Kübel J, Chenchiliyan M, Ooi SA, Gustavsson E, Isaksson L, Kuznetsova V, Ihalainen JA, Westenhoff S, Maj M (2020) Transient IR spectroscopy identifies key interactions and unravels new intermediates in the photocycle of a bacterial phytochrome. Phys Chem Chem Phys 22:9195–9203. https://doi.org/10.1039/C9CP06995J

    Article  Google Scholar 

  124. Levy D, Requeijo T (2008) Stochastic models for phototaxis. Bull Math Biol 70:1684–1706. https://doi.org/10.1007/s11538-008-9314-5

    Article  MathSciNet  MATH  Google Scholar 

  125. Tano J, Ripa MB, Tondo ML, Carrau A, Petrocelli S, Rodriguez MV, Ferreira V, Siri MI, Piskulic L, Orellano EG (2021) Light modulates important physiological features of Ralstonia pseudosolanacearum during the colonization of tomato plants. Sci Rep 11:14531. https://doi.org/10.1038/s41598-021-93871-9

    Article  Google Scholar 

  126. Vourc’h T, Léopoldès J, Peerhossaini H (2020) Light control of the diffusion coefficient of active fluids. J Fluids Eng 142:031109. https://doi.org/10.1115/1.4045951

    Article  Google Scholar 

  127. Varuni P, Menon SN, Menon GI (2017) Phototaxis as a collective phenomenon in cyanobacterial colonies. Sci Rep 7:17799. https://doi.org/10.1038/s41598-017-18160-w

    Article  Google Scholar 

  128. Bhaya D, Levy D, Requeijo T (2008) Group dynamics of phototaxis: interacting stochastic many-particle systems and their continuum limit. In: Benzoni-Gavage S, Serre D (eds) Hyperbolic problems: theory, numerics, applications. Springer, Berlin, pp 145–159

    Chapter  Google Scholar 

  129. Menon SN, Varuni P, Menon GI (2020) Information integration and collective motility in phototactic cyanobacteria. PLoS Comput Biol 16:e1007807. https://doi.org/10.1371/journal.pcbi.1007807

    Article  Google Scholar 

  130. Björling A, Berntsson O, Lehtivuori H, Takala H, Hughes AJ, Panman M, Hoernke M, Niebling S, Henry L, Henning R, Kosheleva I, Chukharev V, Tkachenko NV, Menzel A, Newby G, Khakhulin D, Wulff M, Ihalainen JA, Westenhoff S (2016) Structural photoactivation of a full-length bacterial phytochrome. Sci Adv 2:e1600920. https://doi.org/10.1126/sciadv.1600920

    Article  Google Scholar 

  131. Perlova T, Gruebele M, Chemla YR (2019) Blue light is a universal signal for Escherichia coli chemoreceptors. J Bacteriol. https://doi.org/10.1128/JB.00762-18

    Article  Google Scholar 

  132. Zhang J, Luo Y, Poh CL (2020) Blue light-directed cell migration, aggregation, and patterning. J Mol Biol 432:3137–3148. https://doi.org/10.1016/j.jmb.2020.03.029

    Article  Google Scholar 

  133. Zhou D (2002) Essential microbiology. Higher Education Press, Beijing

    Google Scholar 

  134. Johnson CH, Stewart PL, Egli M (2011) The cyanobacterial circadian system: from biophysics to bioevolution. Annu Rev Biophys 40:143–167. https://doi.org/10.1146/annurev-biophys-042910-155317

    Article  Google Scholar 

  135. Carrillo M, Pandey S, Sanchez J, Noda M, Poudyal I, Aldama L, Malla TN, Claesson E, Wahlgren WY, Feliz D, Šrajer V, Maj M, Castillon L, Iwata S, Nango E, Tanaka R, Tanaka T, Fangjia L, Tono K, Owada S, Westenhoff S, Schmidt M (2021) High-resolution crystal structures of transient intermediates in the phytochrome photocycle. Structure 29:743–754. https://doi.org/10.1016/j.str.2021.03.004

    Article  Google Scholar 

  136. Zhao W, Wang L (2016) An effective bacterial foraging optimizer for global optimization. Inf Sci 329:719–735. https://doi.org/10.1016/j.ins.2015.10.001

    Article  Google Scholar 

  137. Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77:481–506. https://doi.org/10.1080/00207160108805080

    Article  MathSciNet  MATH  Google Scholar 

  138. Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization

  139. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  140. Nadimi-Shahraki MH, Taghian S, Mirjalili S, Faris H (2020) MTDE: an effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl Soft Comput 97:106761. https://doi.org/10.1016/j.asoc.2020.106761

    Article  Google Scholar 

  141. Das B, Mukherjee V, Das D (2020) Student psychology based optimization algorithm: a new population based optimization algorithm for solving optimization problems. Adv Eng Softw 146:102804. https://doi.org/10.1016/j.advengsoft.2020.102804

    Article  Google Scholar 

  142. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  143. Zhao H, Li M, Weng X, Zhou H (2015) Performance evaluation for biology-inspired optimization algorithms based on nonparametric statistics. J Airf Eng Univ (Nat Sci Edn) 16(94):89–94

    Google Scholar 

  144. Derrac J (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 16:3–18

    Article  Google Scholar 

  145. Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, Das S (2020) A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol Comput 56:100693. https://doi.org/10.1016/j.swevo.2020.100693

    Article  Google Scholar 

  146. Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4:284–294. https://doi.org/10.1109/4235.873238

    Article  Google Scholar 

  147. Tasgetiren MF, Suganthan PN (2006) A multi-populated differential evolution algorithm for solving constrained optimization problem. In: IEEE, pp 33–40

  148. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186:311–338. https://doi.org/10.1016/S0045-7825(99)00389-8

    Article  MATH  Google Scholar 

  149. Takahama T, Sakai S, Iwane N (2005) Constrained optimization by the ε constrained hybrid algorithm of particle swarm optimization and genetic algorithm. In: Springer, pp 389–400

  150. Kocis GR, Grossmann IE (1989) A modelling and decomposition strategy for the minlp optimization of process flowsheets. Comput Chem Eng 13:797–819. https://doi.org/10.1016/0098-1354(89)85053-7

    Article  Google Scholar 

  151. Floudas CA (1995) Nonlinear and mixed-integer optimization: fundamentals and applications. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  152. Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part I: theory. Int J Numer Meth Eng 21:1583–1599. https://doi.org/10.1002/nme.1620210904

    Article  MATH  Google Scholar 

  153. Nowacki H (1973) Optimization in pre-contract ship design. In: 1973, pp 1–12

  154. Himmelblau DM (1972) Applied nonlinear programming. McGraw-Hill Companies, New York

    MATH  Google Scholar 

Download references

Funding

This paper was supported by the National Natural Science Foundation Project of China [grant number 62073330] and the Natural Science Foundation Project of Hunan Province of China [grant number 2019JJ20021].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tang.

Ethics declarations

Competing interest

The authors declare that they have no conflicts of interest about this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Process synthesis problem

This problem incorporates a nonlinear constraint and its mathematical formulation is described as follows [150].

Minimize:

$$f\left(\overline{x}\right)={x}_{2}+2{x}_{1}$$

Subject to:

$${g}_{1}\left(\overline{x}\right)=-{x}_{1}^{2}-{x}_{2}+1.25\le 0$$
$${g}_{2}\left(\overline{x}\right)={x}_{1}+{x}_{2}\le 1.6$$

Variable ranges:

$$0\le {x}_{1}\le 1.6$$
$${x}_{2}\in \left\{\mathrm{0,1}\right\}$$

1.2 Process flow sheeting problem

This problem can be formulated as a nonconvex constrained optimization problem, which is expressed as follows [151].

Minimize:

$$f\left(\overline{x}\right)=-0.7{x}_{3}+0.8+5{\left(0.5-{x}_{1}\right)}^{2}$$

Subject to:

$${g}_{1}\left(\overline{x}\right)=-\mathit{exp}\left({x}_{1}-0.2\right)-{x}_{2}\le 0$$
$${g}_{2}\left(\overline{x}\right)={x}_{2}+1.1{x}_{3}\le -1.0$$
$${g}_{3}\left(\overline{x}\right)={x}_{1}-{x}_{3}\le 0.2$$

Variable ranges:

$$0.2\le {x}_{1}\le 1$$
$$-2.22554\le {x}_{2}\le -1$$
$${x}_{3}\in \left\{\mathrm{0,1}\right\}$$

1.3 Tension/compression spring design

This problem needs to optimize the weight of a tension or compression spring and contains four constraints and three variables: the diameter of the wire (x1), the mean of the diameter of coil (x2), and the number of active coils (x3). It is defined specifically as follows [152].

Minimize:

$$f\left(\overline{x}\right)={x}_{1}^{2}{x}_{2}\left(2+{x}_{3}\right)$$

Subject to:

$${g}_{1}\left(\overline{x}\right)=1-\frac{{x}_{2}^{3}{x}_{3}}{71785{x}_{1}^{4}}\le 0$$
$${g}_{2}\left(\overline{x}\right)=\frac{4{x}_{2}^{2}-{x}_{1}{x}_{2}}{12566\left({x}_{2}{x}_{1}^{3}-{x}_{1}^{4}\right)}+\frac{1}{5108{x}_{1}^{2}}-1\le 0$$
$${g}_{3}\left(\overline{x}\right)=1-\frac{140.45{x}_{1}}{{x}_{2}^{2}{x}_{3}}\le 0$$
$${g}_{4}\left(\overline{x}\right)=\frac{{x}_{1}+{x}_{2}}{1.5}-1\le 0$$

Variable ranges:

$$0.05\le {x}_{1}\le 2.00$$
$$0.25\le {x}_{2}\le 1.30$$
$$2.00\le {x}_{3}\le 15.0$$

1.4 Three-bar truss design problem

This problem with an accidented constrained space is taken from civil engineering. Its main objective is to minimize the weight of the bar structures. The stress constraints of each bar are considered, which finally constitute three nonlinear constraints of this problem. The mathematical description is given below [153].

Minimize:

$$f\left(\overline{x}\right)=l\left({x}_{2}+2\sqrt{2}{x}_{1}\right)$$

Subject to:

$${g}_{1}\left(\overline{x}\right)=\frac{{x}_{2}}{2{x}_{2}{x}_{1}+\sqrt{2}{x}_{1}^{2}}P-\sigma \le 0$$
$${g}_{2}\left(\overline{x}\right)=\frac{{x}_{2}+\sqrt{2}{x}_{1}}{2{x}_{2}{x}_{1}+\sqrt{2}{x}_{1}^{2}}P-\sigma \le 0$$
$${g}_{3}\left(\overline{x}\right)=\frac{1}{{x}_{1}+\sqrt{2}{x}_{2}}P-\sigma \le 0$$
$$l=100, P=2,\text{ and }\sigma =2.$$

Variable ranges:

$$0\le {x}_{1},{x}_{2}\le 1$$

1.5 Himmelblau’s function

This problem is not only used to simulate the process design problems, but also as a common benchmark to analyze non-linear constrained optimization algorithms. It contains six nonlinear constraints and five variables, which are shown below [154].

Minimize:

$$f\left(\overline{x}\right)=5.3578547{x}_{3}^{2}+0.8356891{x}_{1}{x}_{5}+37.293239{x}_{1}-40792.141$$

Subject to:

$${g}_{1}\left(\overline{x}\right)=-G1\le 0$$
$${g}_{2}\left(\overline{x}\right)=G1-92\le 0$$
$${g}_{3}\left(\overline{x}\right)=90-G2\le 0$$
$${g}_{4}\left(\overline{x}\right)=G2-110\le 0$$
$${g}_{5}\left(\overline{x}\right)=20-G3\le 0$$
$${g}_{6}\left(\overline{x}\right)=G3-25\le 0$$
$$G1=85.334407+0.0056858{x}_{2}{x}_{5}+0.0006262{x}_{1}{x}_{4}-0.0022053{x}_{3}{x}_{5}$$
$$G2=80.51249+0.0071317{x}_{2}{x}_{5}+0.0029955{x}_{1}{x}_{2}+0.0021813{x}_{3}^{2}$$
$$G3=9.300961+0.0047026{x}_{3}{x}_{5}+0.00125447{x}_{1}{x}_{3}+0.0019085{x}_{3}{x}_{4}$$

Variable ranges:

$$78\le {x}_{1}\le 102$$
$$33\le {x}_{2}\le 45$$
$$27\le {x}_{3},{x}_{4},{x}_{5}\le 45$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Q., Tang, J., Zhan, J. et al. Bacteria phototaxis optimizer. Neural Comput & Applic 35, 13433–13464 (2023). https://doi.org/10.1007/s00521-023-08391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08391-6

Keywords

Navigation