Skip to main content
Log in

Drift speed adaptive memristor model

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Different memristive devices have different characteristic curves; how to describe and simulate various kinds of memristive devices with a unified model is still a significant work. In this work, a new memristor model is presented—DSAM, drift speed adaptive memristor model. This model is composed of a linear iv relation function and a speed adaptive state function. A detailed analysis of model parameters’ effect is proposed. It is shown that different parameters perform different drift speed curves, which can be adjusted to describe various memristive devices. The proposed model can also adapt to various voltage inputs. Finally, the model is tested in fitting different memristor devices with an average error of less than \(5.5 \%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80–83

    Google Scholar 

  2. Alon Ascoli, Tetzlaff R, Chua LO (2016) The first ever real bistable memristors-part II: design and analysis of a local fading memory system. IEEE Trans Circuits Syst II Express Briefs 63(12):1096–1100

    Google Scholar 

  3. Srivastava S, Thomas JP, Leung KT (2019) Programmable, electroforming-free TiO x/TaO x heterojunction-based non-volatile memory devices. Nanoscale 11(39):18159–18168

    Google Scholar 

  4. Murdoch BJ, McCulloch DG, Ganesan R, McKenzie DR, Bilek MMM, Partridge JG (2016) Memristor and selector devices fabricated from HfO2- xNx. Appl Phys Lett 108(14):143504

    Google Scholar 

  5. Hong Q, Zi Shi, Sun J, Du S (2021) Memristive self-learning logic circuit with application to encoder and decoder. Neural Comput Appl 33(10):4901–4913

    Google Scholar 

  6. Amirsoleimani A, Ahmadi M, Ahmadi A (2018) Logic design on mirrored memristive crossbars. IEEE Trans Circuits Syst II Express Briefs 65(11):1688–1692

    Google Scholar 

  7. Kim KM, Williams RS (2019) A family of stateful memristor gates for complete cascading logic. IEEE Trans Circuits Syst I Regul Pap 66(11):4348–4355

    MathSciNet  MATH  Google Scholar 

  8. Liu G, Zheng L, Wang G, Shen Y, Liang Y (2019) A carry lookahead adder based on hybrid CMOS-memristor logic circuit. IEEE Access 7:43691–43696

    Google Scholar 

  9. Hong Q, Chen H, Sun J, Wang C (2022) Memristive circuit implementation of a self-repairing network based on biological astrocytes in robot application. IEEE Trans Neural Netw Learn Syst 33(5):2106–2120

    Google Scholar 

  10. Hu X, Feng G, Duan S, Liu L (2016) A memristive multilayer cellular neural network with applications to image processing. IEEE Trans Neural Netw Learn Syst 28(8):1889–1901

    MathSciNet  Google Scholar 

  11. Hong Q, Zhao L, Wang X (2019) Novel circuit designs of memristor synapse and neuron. Neurocomputing 330:11–16

    Google Scholar 

  12. Guo T, Wang L, Zhou M, Duan S (2019) A multi-layer memristive recurrent neural network for solving static and dynamic image associative memory. Neurocomputing 334:35–43

    Google Scholar 

  13. Hu X, Duan S, Chen G, Chen L (2017) Modeling affections with memristor-based associative memory neural networks. Neurocomputing 223:129–137

    Google Scholar 

  14. Yan R, Hong Q, Wang C, Sun J, Li Y (2021) Multilayer memristive neural network circuit based on online learning for license plate detection. IEEE Trans Comput-Aided Des Integr Circuits Syst, pages 1

  15. Zhang X, Zhuo Y, Luo Q, Wu Z, Midya R, Wang Z, Song W, Wang R, Upadhyay NK, Fang Y et al (2020) An artificial spiking afferent nerve based on mott memristors for neurorobotics. Nat Commun 11(1):51

    Google Scholar 

  16. Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang JJ, Qian H (2020) Fully hardware-implemented memristor convolutional neural network. Nature 577(7792):641–646

    Google Scholar 

  17. Joglekar YN, Wolf SJ (2009) The elusive memristor: properties of basic electrical circuits. Eur J Phys 30(4):661

    MATH  Google Scholar 

  18. Biolek Z, Biolek D, Biolkova V (2009) Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2):210–214

    MATH  Google Scholar 

  19. Prodromakis T, Peh BP, Papavassiliou C, Toumazou C (2011) A versatile memristor model with nonlinear dopant kinetics. IEEE Trans Electron Devices 58(9):3099–3105

    Google Scholar 

  20. Zha J, Huang H, Liu Y (2016) A novel window function for memristor model with application in programming analog circuits. IEEE Trans Circuits Syst II Express Briefs 63(5):423–427

    Google Scholar 

  21. Zha J, Huang H, Huang T, Cao J, Alsaedi A, Alsaadi FE (2017) A general memristor model and its applications in programmable analog circuits. Neurocomputing 267:134–140

    Google Scholar 

  22. Ilyasov AI, Nikiruy KE, Emelyanov AV, Chernoglazov KY, Sitnikov AV, Rylkov V, Demin VA (2022) Arrays of nanocomposite crossbar memristors for the implementation of formal and spiking neuromorphic systems. Nanobiotechnol Rep 17(1):118–125

    Google Scholar 

  23. Kvatinsky S, Friedman EG, Kolodny A, Weiser UC (2013) Team: Threshold adaptive memristor model. IEEE Trans Circuits Syst I Regular Papers 60(1):211–221

    MathSciNet  MATH  Google Scholar 

  24. Kvatinsky S, Ramadan M, Friedman EG, Kolodny A (2015) VTEAM: A general model for voltage-controlled memristors. IEEE Trans Circuits Syst II Express Briefs 62(8):786–790

    Google Scholar 

  25. Yakopcic C, Taha TM, Subramanyam G, Pino RE (2013) Generalized memristive device spice model and its application in circuit design. IEEE Trans Comput Aided Des Integr Circuits Syst 32(8):1201–1214

    Google Scholar 

  26. Wang X, Xu B, Chen L (2017) Efficient memristor model implementation for simulation and application. IEEE Trans Comput Aided Des Integr Circuits Syst 36(7):1226–1230

    Google Scholar 

  27. Chen L, Li C, Huang T, Hu X, Chen Y (2016) The bipolar and unipolar reversible behavior on the forgetting memristor model. Neurocomputing 171:1637–1643

    Google Scholar 

  28. Yang R, Huang HM, Hong QH, Yin XB, Tan ZH, Shi T, Zhou YX, Miao XS, Wang XP, Mi SB et al (2018) Synaptic suppression triplet-stdp learning rule realized in second-order memristors. Adv Func Mater 28(5):1704455

    Google Scholar 

  29. Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X, Miao X (2014) Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci Rep 4(6184):4906

    Google Scholar 

  30. Yin XB, Tan ZH, Guo X (2015) The role of Schottky barrier in the resistive switching of SrTiO3: direct experimental evidence. Phys Chem Chem Phys 17(1):134–137

    Google Scholar 

  31. Liu G, Wang C, Zhang W, Pan L, Zhang C, Yang X, Fan F, Chen Y, Li RW (2016) Organic biomimicking memristor for information storage and processing applications. Adv Electron Mater 2(2):1500298

    Google Scholar 

  32. Yang Z, Wang X, Yi L, Friedman EG (2017) Memristive model for synaptic circuits. IEEE Trans Circuits Syst II Express Briefs 64(7):767–771

    Google Scholar 

  33. Chua L (2018) Five non-volatile memristor enigmas solved. Appl Phys A 124(8):563

    Google Scholar 

  34. Anusudha TA, Prabaharan SRS (2018) A versatile window function for linear ion drift memristor model- a new approach. AEU-Int J Electron C 90:130–139

    Google Scholar 

  35. Valeri M, Stoyan K (2018) A memristor model with a modified window function and activation thresholds. In IEEE International Symposium on Circuits and Systems (ISCAS)

  36. Li J, Dong Z, Luo L, Duan S, Wang L (2015) A novel versatile window function for memristor model with application in spiking neural network. Neurocomputing 405:600–605

    Google Scholar 

  37. Chowdhury J, Das JK, Rout NK (2015) Trigonometric Window Functions for Memristive Device Modeling. 2015 Fifth International Conference on Advanced Computing & Communication Technologies, PP. 157–161

  38. Mladenov V, Kirilov S (2017) A nonlinear drift memristor model with a modified biolek window function and activation threshold. Electronics 6(4):77

    Google Scholar 

  39. Agudov NV, Dubkov AA, Safonov AV, Krichigin AV, Kharcheva AA, Guseinov DV et al (2021) Stochastic model of memristor based on the length of conductive region. Chaos, Solitons & Fractals 150:111131

    MathSciNet  Google Scholar 

  40. Xu KD, Li D, Jiang Y, Chen Q (2021) SPICE behaviors of double memristor circuits using cosine window function. Front Phys 9:56

    Google Scholar 

  41. Singh J, Sharma SK, Raj B (2020) Investigation of Inherent Capacitive Effects in Linear Memristor Model. Silicon, 1–8

  42. Lin H, Wang C, Hong Q, Sun Y (2020) A multi-stable memristor and its application in a neural network. IEEE Trans Circuits Syst II Express Briefs 67(12):3472–3476

    Google Scholar 

  43. Peng Y, Sun K, He S (2020) A discrete memristor model and its application in Hénon map. Chaos, Solitons & Fractals 137:109873

    MathSciNet  MATH  Google Scholar 

  44. Al Chawa MM, Picos R, Tetzlaff R (2021) A Compact Memristor Model for Neuromorphic ReRAM Devices in Flux-Charge Space. IEEE Trans Circuits Syst I Regul Pap 68(9):3631–3641

    Google Scholar 

  45. Chua LO, Kang SM (1976) Memristive devices and systems. Proc IEEE 64(2):209–223

    MathSciNet  Google Scholar 

  46. Biolek D, Kolka Z, Biolková V, Biolek Z, Potrebić M, Tošić D (2018) Modeling and simulation of large memristive networks. Int J Circuit Theory Appl 46:50–65

    Google Scholar 

  47. Messaris Y, Serb A, Stathopoulos S, Khiat A, Nikolaidis S, Prodromakis T (2018) A data-driven verilog-a reram model. IEEE Trans Comput-Aided Des Integr Circuits Syst, PP.1–1

  48. Oblea AS, Timilsina A, Moore D, Campbell KA (2010) Silver chalcogenide based memristor devices. In International Joint Conference on Neural Networks, PP. 1–3

  49. Miller K, Nalwa KS, Bergerud A, Neihart NM, Chaudhary S (2010) Memristive Behavior in Thin Anodic Titania. IEEE Electron Device Lett 31(7):737–739

    Google Scholar 

  50. Jo SH, Lu W (2008) CMOS compatible nanoscale nonvolatile resistance switching memory. Nano Lett 8(2):392–397

    Google Scholar 

  51. Singh J, Raj B (2019) An accurate and generic window function for nonlinear memristor models. J Comput Electron 18(2):640–647

    MathSciNet  Google Scholar 

  52. Ren K, Zhang K, Qin X, Yang F, Sun B, Zhao Y, Zhang Y (2021) VETAM-M: A General Model for Voltage-Controlled Memcapacitive-Coupled Memristors. Express Briefs, IEEE Trans Circuits Syst II

  53. Maruf MH, Ali SI (2020) Review and comparative study of IV characteristics of different memristor models with sinusoidal input. Int J Electron 107(3):349–375

    Google Scholar 

  54. Isah A, Nguetcho AST, Binczak S, Bilbault JM (2021) Comparison of the Performance of the Memristor Models in 2D Cellular Nonlinear Network. Electronics 10(13):1577

    Google Scholar 

  55. Anusudha TA, Prabaharan SRS (2018) A versatile window function for linear ion drift memristor model-A new approach. AEU-Int J Electron Commun 90:130–139

    Google Scholar 

  56. Xu J, Wang D, Li F, Zhang L, Stathis D, Yang Y, Jin Y Lansner A, Hemani A, Zou Z, Zheng LR (2021) A Memristor Model with Concise Window Function for Spiking Brain-Inspired Computation. 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 1–4

  57. Mladenov V, Kirilo S (2018) Advanced memristor model with a modified Biolek window and a voltage-dependent variable exponent. In Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska

Download references

Acknowledgements

The work was supported by the National Nature Science Foundation of China under Grant (Nos. 61674054, 62101142) and with the Natural Science Foundation of Hunan Province of China under Grant (No. 2017JJ2049) and with the Science and Technology Program of Guangzhou of China under Grant (No. 201904010302) and with the Guangzhou Science and Technology Plan Research Project under Grant (No. 202102020874) and with innovation Project for Higher Education of Guangdong Province under Grant (No. 2021KTSCX062) and with Key Research Platform Project for Higher Education of Guangdong Province under Grant (No. 2021ZDZX1079) and with the Fundamental Research Funds for the Central Universities (No. 531118010418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghui Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xie, L., Xiao, P. et al. Drift speed adaptive memristor model. Neural Comput & Applic 35, 14419–14430 (2023). https://doi.org/10.1007/s00521-023-08401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08401-7

Keywords

Navigation