Skip to main content
Log in

Possibility and Necessity Pattern Classification using an Interval Arithmetic Perceptron

  • Published:
Neural Computing & Applications Aims and scope Submit manuscript

Abstract

In the work presented in this paper, an Interval Arithmetic Perceptron (IAP) is used to detect the region in the input space to which an uncertainty decision should be appropriately associated. This region may be originated both by sub-regions which are not represented in the training set, and by subregions where the probabilities of the two classes are very similar. To train the IAP, an algorithm will be presented which in particular is able detect the two certainty regions and the uncertainty one From the interval weights thus obtained, a confidence interval of the probability will also be evaluated. The algorithm has been used for studying a simple artificial problem and two real-world appli-cations, the Iris and Breast Cancer databases. Regarding the latter application in particular, a statistical analysis of the results is presented, together with a discussion of the possible alternative classifications of the patterns attributed to the uncertainty region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drago, G., Ridella, S. Possibility and Necessity Pattern Classification using an Interval Arithmetic Perceptron. NCA 8, 40–52 (1999). https://doi.org/10.1007/s005210050006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005210050006