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AbstractIn developing neural network techniques for real world applications it is still very rare to seeestimates of con�dence placed on the neural network predictions. This is a major de�ciency,especially in safety-critical systems.In this paper we explore three distinct methods of producing point-wise con�dence intervals usingneural networks. We compare and contrast Bayesian, Gaussian Process and Predictive error barsevaluated on real data.The problem domain is concerned with the calibration of a real automotive engine managementsystem for both air-fuel ratio determination and on-line ignition timing. This problem requiresreal-time control and is a good candidate for exploring the use of con�dence predictions due to itssafety-critical nature.Keywords: neural networks, Gaussian Processes, con�dence intervals, Bayesian error bars, safety-critical systems, engine management, air-fuel ratio, ignition timing



Point-wise Con�dence Interval Estimation by Neural Networks: A comparative study based on automotive enginecalibration. 21 IntroductionThe development of neural network approaches to real world problems has now reached a pointwhere they are being seriously considered as candidates for providing the functionality for keyembedded components in safety critical and mission critical systems. In these situations it isapparent that the ability to produce a forecast, regression or classi�cation is not adequate withoutquantifying the minimum of additional knowledge that is required to determine the con�denceintervals or error bars on the neural network outputs: it is necessary to quantify the accuracy orreliability of neural network performance: However there is no accepted `standard' unique wayto determine the neural network con�dence intervals. The di�erent approaches to evaluatingerror bars are based on di�erent assumptions of model speci�cation, data and noise distributions,and also have tradeo�s in terms of memory and speed of computation. In real world situationsit is usually important to deliver information in a timely manner, even if that information is`suboptimal'. Hence knowledge of `the best' error bar may be useless if it takes too long tocompute, or requires more input data than the overall system is capable of providing. In addition,in real systems where a neural network is but one small component, the overall system may demandonly a reasonable level of tolerance of the function supplied by the neural network: a forecast whichis only accurate to �10% may be su�cient for some aspects of the overall system, but may betotally inadequate for a particularly key safety critical part of the system.In this paper we investigate the error bar estimates produced by three di�erent neural networkmotivated approaches. The problem domain considered is taken from a project concerned withproviding automation and `intelligent' control to internal combustion engine management systems.The speci�c example is a function mapping task where we wish to replace the standard look-uptables conventionally used to control the ignition timing and air-to-fuel ratios by a neural networkwhich, in addition, provides a measure of con�dence of its predictions. Performance is demonstratedboth o�-line (data collected from a test-rig engine under `ideal' steady state conditions) and on-line (data collected directly from a vehicle driving around a typical urban environment and hencesubject to transients). A neural network can produce much smoother control surfaces than linearlook-up tables; moreover, a network can encode the optimum solution using a smaller amount ofmemory. In this problem domain the processing power in terms of CPU and memory is limited tothe commercially available processors typically used in engine management systems. Such unitsusually contain only 256k of on-board memory. A neural network implementation, even withthe additional functionality provided, would not be commercially viable if the solution required amodi�cation to upgrade the processor, as this would also require a redesign of the complete enginemanagement system. Hence this is a problem domain with commercial, engineering and technicalconstraints.2 Con�dence IntervalsIn this paper we are concerned primarily with regression problems where the regression surfacesare multidimensional and nonlinear. Feed forward networks such as the multilayer perceptron andradial basis function network are ideal for this class of problem as they producea regression y(x;�) conditioned on the input values x and the weights of the model �. Therehas also been considerable recent work on attempting to produce self-consistent variance estimatesaround these predictions. For example, Tibshirani [12] considered the `delta method' of errorestimation based on the Hessian of the neural network, the `sandwich estimator', and `bootstrap'methods. The delta and sandwich methods are closely related and assume that the errors are i.i.d.random variables with a normal



Point-wise Con�dence Interval Estimation by Neural Networks: A comparative study based on automotive enginecalibration. 3distributionN(0; �2), where �2 is estimated by maximum likelihood �2 /PPp=1[t(xp)�y(xp;�)]2.From a Taylor expansion of the log likelihood function, an estimate of the standard error aboutthe prediction is determined by the inverse of the `observed information matrix', I - the negativeof the Hessian of the neural network. This is related to `Bayesian error bars' discussed furtherbelow. Tibshirani also considered a bootstrap approach to error estimation in which many pseudoreplicates of the training set are produced. Weight parameters are determined for each of thesebootstrap samples. These represent samples from possible model space, each of which gives aslightly di�erent prediction around the training samples and hence error estimates can be obtained.However this is an unrealistic approach in a practical situation as it requires many replicates of thedata, each of which requires an optimisation of the model complexity and weights. It is infeasibleas a model for novel data or on-line con�dence interval estimation in our problem domain, whichis unfortunate as Tibshirani concluded that the bootstrap provided the best estimates of thosemodels considered.Kim and Bartlett [3] developed an alternative and more e�cient approach to con�dence intervalestimation, by introducing a supplementary neural network trained to predict the error of theprimary network by taking as inputs both the inputs and outputs of the primary network. Intheir approach the �rst primary network is trained on the task, producing an output, y(x;�) anda corresponding error signal �(x;�) = jt(xp) � y(xp;�)j. The supplementary network takes asinput, the input vector x, the output vector of the primary network y(x;�) and tries to predictthe corresponding error term �. Since the output of the main network is fed directly into thesupplementary network, Kim and Bartlett termed this approach `error estimation by series asso-ciation'. The predictive error bars advocated later in this paper is similar in spirit though distinctin architecture to this `series association' method.Although there are several other approaches to estimating pointwise con�dence intervals, we nowdescribe in detail the three basic models that are likely to be most suitable for providing con�denceinterval estimation on the speci�c problem of engine calibration.2.1 Bayesian error barsIn the Bayesian approach to error modelling discussed in [13] there are basically two sources oferror: the �rst is concerned with the intrinsic noise on the target data, which is constant, and thesecond is a consequence of the error on the weights themselves. These two terms are independentand can be combined to produce the total output error:�2y(x) = �2w(x) + �2t (x); (1)where �2w(x) is the variance of the output due to weights uncertainty, �2t (x) is the variance of thedata noise and �2y(x) is the overall output variance.Under a Gaussian approximation to the posterior weights distribution the �rst term may be ap-proximated by �2w(x) = gT (x)H�1g(x); (2)where g(x) is the weight gradient of the neural network output and H is the Hessian matrix ofthe model.The noise variance �2t (x) is usually assumed to be constant and approximated by�2t (x) = 1� = 2ED(N � ) ; (3)where N is the number of training examples,  is the number of well-determined parameters in themodel (e.g. weights in a neural network) and ED is the error measured on the training set. The



Point-wise Con�dence Interval Estimation by Neural Networks: A comparative study based on automotive enginecalibration. 4parameter  can either be approximated by the number of weights k in the models or, accordingto the full Bayesian treatment of the error bars, it could be set to = k � �Trace(H�1); (4)where � is a regularisation parameter.Also, when implementing the full Bayesian approach, the training should be iterated until thevalues of hyperparameters � and � converge. This, however, signi�cantly slows down training ofthe networks since, at each iteration, the Hessian matrix needs to be evaluated and inverted, andthe training is repeated with pseudo-inverting the design matrix (in the case of RBF networks)each time.On the other hand, the average number of iterations needed for thehyperparameters to converge is not very large, typically being onlyfour or �ve.In this paper we concentrate upon Radial Basis Function networks. For this case the calculationof the approximate Bayesian error bars is simpli�ed since the Hessian matrix is given by an exactformula [13] H = ��T�+ �I ; (5)where � = 2EW ; (6)EW = 12wTw; (7)w is the weight vector and � is the design matrix for a given Radial Basis Function network.Note that a major assumption in the Bayesian error bars approach (apart from assumptions ofpeaked Gaussian posterior parameter distributions allowing linearisation) is that it is predomi-nantly driven by the density of input data. Although it also depends on the global training error,this relation is not localised. In some regions both the training error and generalisation error maybe low (hence the network should be very con�dent), but still the error bars may be unreasonablyhigh as a consequence of large noise processes elsewhere in data space.Nevertheless Bayesian error bars can indicate that in the regions where the input data is scarcethe network predictions may have a larger error. This is qualitative information which can be usedfor gathering further data points in these high-error/low data density regions.Another major restriction is the assumption of constant noise variance on the targets. The assump-tion is useful since it simpli�es the analysis and reduces the computation required. However theremay be examples when the assumption introduces discrepancies when compared to the predictionsof a more complete model. The consequences of this assumption in practice will be exhibited later.Recent work has attempted to extend the model by allowing for noise dependent inputs [9].2.2 Gaussian ProcessesThe second approach to error bar estimation that we will investigate in this paper is the GaussianProcess model, which is disscussed in [14]. This approach can be considered to be equivalent to a



Point-wise Con�dence Interval Estimation by Neural Networks: A comparative study based on automotive enginecalibration. 5neural network in the limit of an in�nite number of hidden units assuming Gaussian weight priors.The Gaussian Process model assumes a stochastic source characterised by a mean and covarianceonly and no higher moments are necessary. In general the predictive distribution is Gaussian withmean and variance given by yG(x) = kTK�1t�2y(x) = C(x;x)� kTK�1k (8)where fx1; : : :xP g is the set of training examples,t is the set of training targets,k = (C(x;x1); : : : C(x;xP )T and K is the covariance matrix for training cases. Hence the errorbars are explicit by the predictive distribution being Gaussian.One major aw with this approach is that it does not scale well, due to the requirement of invertinga P �P covariance matrix. This probably excludes this model from being a practical contender forimplementation in the current problem. However its explicit construction of the variance aroundthe prediction makes it an ideal model for benchmarking.2.3 Predictive Error barsThe third approach to error bar estimation by neural networks is what we shall term predictiveerror bar estimation. In this approach we construct a neural network model of the regression onthe conditional target variance to model the noise process. It is an approach suggested by [10] ina neural network context. In a non neural network context in econometric time series modelling,a similar method but employing a Kalman Filter as the noise model is known as prediction errorvariance [2].This approach is based on the fact that for a network trained on minimum square error, theoptimum network output approximates the conditional mean of the target data, yopt(x) � ht(x)jxi.Hence for each input pattern x we may estimate the local variance as jjt(x)�yopt(x)jj2. If this localvariance is used as the training target for another neural network, then the optimum output of thissecond network is just the conditional target value again. However for these modi�ed targets, thisoptimum output is therefore an approximation to the local expected variance which we interpretas a con�dence interval �2(x) = hjjt(x)� ht(x)jxijj2jxi (9)In the implementation of predictive error bars there are two interlocked neural networks. Eachnetwork shares the same input and hidden nodes, but has di�erent �nal layer links to separateoutput nodes. One set produces the required regression to the desired target values whereas thesecond one (the error network) approximates the residual error surface of the �rst model. Thissurface is extracted from the �rst network by measuring the residual error on the training set(target values are known). Thus the second network predicts the noise variance of the main neuralmodel. The approach readily extends to committees of networks. Figure 1 depicts the interlockingnetwork architecture.Optimisation of the weights is a two-stage process: the �rst stage determines the weights w1conditioning the regression on the mapping surface. Once these weights have been determined,the network approximations to the target values are known, and hence so are the conditional errorvalues on the training samples. In the second stage, the inputs to the network remain exactly asbefore, but now the target outputs of the network are the conditional error values. This second passdetermines the weights w2 which condition the second set of output nodes to the (squared) error



Point-wise Con�dence Interval Estimation by Neural Networks: A comparative study based on automotive enginecalibration. 6

C
om

m
on F

irst
Layer W

eights

x

y(x)

(x)2

w1

w2

Figure 1: The architecture of the predictive error network. The second interlocking networkwhich produces the con�dence prediction is displayed in a lighter shade of grey.values �2(x). Note that it is reasonable to employ the same hidden units for both the regressionand the error networks, since the �rst layer determines the unconditional distribution of the data- or extracts the relevant feature space of the problem - if the �rst layer weights are optimised.Hence the error network is modelling the same data distribution as the regression network. It alsoreduces training time if the �rst layer weights are optimised as the optimisation of the �rst layerweights is performed only in the �rst pass phase.This approach is computationally fast, does not increase the input dimensionality of the networkas in some other approaches to con�dence interval estimation, and does not rely on the smoothnessand peaked Gaussian assumptions of the Bayesian approach. However it does rely on the ability ofthe neural network to approximate the conditional regression correctly. Hence model complexityand the bias-variance dilemma are issues which need to be addressed. Also note that if we make theadditional assumptions of a Gaussian noise distribution, then we can write down a likelihoodmodel,the maximum of which corresponds to the predictive error estimate. For this reason, predictiveerror bars are also sometimes known as maximum likelihood error bars. However the assumptionof a Gaussian model is not essential and hence predictive error bars have a wider generality. Inparticular note that predictive error bars are unconstrained estimates. Since they are not basedon a tightly constraining Gaussian model they are not parameterised to automatically have thecorrect properties of a variance estimate. In particular, in situations where a network is overtrainedand then is used to extrapolate, then there is no guarantee that the con�dence interval will remainpositive. In such situations, higher order uncertainty is required (con�dence in the con�denceestimates). Another way ofcircumventing this problem is to build in constraints such as a possibility of an exponential function



Point-wise Con�dence Interval Estimation by Neural Networks: A comparative study based on automotive enginecalibration. 7on the output.In terms of computational complexity the predictive error bars would be most e�cient to imple-ment, followed by Bayesian error bars and Gaussian Process error bars. We now demonstrate thebehaviour of these di�erent estimates of con�dence, beginning with a simple illustrative example.3 Synthetic ExampleAs a simple example of the behaviour of the three di�erent approaches to estimating pointwisecon�dence, consider the example of data generated according to a simple sine wave. The problemis slightly complicated by having a higher data density near to the origin. In addition the rawsamples have a space-dependent additive noise process applied. The noise is randomly uniformwith a maximum absolute spread of 0.7 and is only e�ective in the region [�=2; 3�=2] and is zeroelsewhere.
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Figure 3: Radial Basis Function networkwith Bayesian error bars
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Figure 5: Radial Basis Function modelwith predictive error barsFigure 2 depicts the true generator, and the training data samples used. The additional �gures(Figures 3, 4, 5) show the results of the regression curves plus the calculated con�dence intervals



Point-wise Con�dence Interval Estimation by Neural Networks: A comparative study based on automotive enginecalibration. 8displayed as 2� curves around the local predicted means. Note that all models produce goodregression curves, but yield di�erent behaviour of the con�dence intervals.The Gaussian process error bars are unrealistically small in regions of high noise and in additionrequire signi�cant computation time. The Bayesian error bars reect a sensible dispersion in theregion of uniform noise, and also indicate broad error bars in the region of low data density. How-ever, it also displays large errors in regions of high data density. This is a consequence of thelimitation of assuming a constant noise variance on the targets. Although work is in progress torelax this assumption [9] to allow position dependent noise variance, this extended approach re-quires more data and signi�cantly more computational time to produce the error bars. In contrast,the predictive error bars require least processing time, exhibit large and approximately uniformerror bars in the region of uniform noise, and reduced error bars in the region of zero noise andlow data density.The inability of the Bayesian approach to deal with position dependent noise variance is a signi�cantdisadvantage in real world situations in which we are more interested.4 Neural Networks Applied to Automotive Engine Calibra-tionApplying neural network methods to vehicle engine management systems is not novel [4; 5; 6; 7; 8;11]. However none of these approaches have considered the consequence of less than perfect neuralnetwork predictions. We now demonstrate the behaviour of the selected error bar models on onesmall aspect of automatic engine control.Currently, modern engine management systems regulate functions such as the ignition timing andthe air-to-fuel ratio of the combustion mixture with piecewise linear interpolation look-up tablesbased on calibration points. We are interested in replacing these by full regression surfaces for theignition timing and the air to fuel ratio (AFR) maps. In normal engine operation (away from idlespeed) the ignition timing and fuel injection volume is determined by recourse to a set of human-derived look up tables as a function of several variables such as load, speed, engine temperatureetc. These look up tables are obtained from laborious and human-intensive experiments and aretypically produced as selected values in a sparse matrix, typically of size 16 � 16 cells or less.There are many such look up tables in modern engine management systems governing all aspectsof an engine operating envelope. The criteria for `correct' values are complex, involving tradeo�sbetween performance, exhaust emissions, economy and driveability.As part of a process of developing neural network methods to engine management systems wehave constructed replacements for some of these look up tables using a neural network. This hasthe advantage of being e�cient in processing power, capable of on-line adjustment due to engineaging, but mainly it has the ability to produce continuously analog output values, rather thanbeing restricted to the values of the look up table cells. In addition the approach allows us toproduce estimates of con�dences on the engine maps which could be used as part of an overallsafety critical assessment system. This real world problem is characterised by a sparsity of dataand a signi�cant expense of collecting each extra data point. Hence it is usual for only part ofthe look up table to be determined by experiment and the remaining cells speci�ed by `expertknowledge' of the engineer { especially on the boundaries of the map.There are two di�erent sources of errors in making predictions. Firstly, because these maps havebeen produced by engineers, it is considered that the values in the map are not very accurate andhence the maps contain some errors due to a human factor. The second source of the errors in



Point-wise Con�dence Interval Estimation by Neural Networks: A comparative study based on automotive enginecalibration. 9predictions should be due to sparsity of data and inaccuracies in the neural network models. Asthe human errors cannot be accurately captured (or corrected) by a neural network it is consideredthat the values in the map are reasonably accurate and hence the target signal to noise ratio ishigh. So the dominant sources of the error in predictions should be due to problems with sparsityof data and neural network representaions of the data. We will see the e�ect of this in the errorbar plots next.We begin by concentrating only upon the AFR maps. The ignition timing maps are similar, butbecause the AFR maps tend to be more variable the forecasts on the ignition timing maps tendto be more accurate with smaller error bars. Hence modelling the AFR maps tends to provide abetter comparison of the approaches.4.1 AFR mappingFigure 6 shows the actual data in a real AFR map for an engine as a function of just the load andspeed of a vehicle. For this experiment the original map consists of 256 samples in the 16 � 16map. Some of these values were determined by experiment, and the others were speci�ed by priorexpert domain knowledge. As a consequence of having mixed sources of data, we would expectthere to be natural variations in reliability in the actual data itself, particularly at boundaries andin regions of rapid variations of the maps where it would be di�cult to maintain precise load, speedand AFR values.The error surfaces obtained by optimising a Radial Basis Function network and Gaussian processmodels to produce a regression surface to Figure 6 are displayed in �gures 7{9. We note that theBayesian and Gaussian error surfaces are more uniform than the predictive error surface, despitethe fact that there is a nonuniform distribution of error in the data. The predictive error barsare more sensitive to regions in the map which are subject to signi�cant changes. This reectsthe reality in that it is more di�cult to determine the correct AFR values in operating enveloperegions which are changing rapidly.On the basis of these results we conclude that the predictive error bar model is both e�cientand e�ective. In a real implementation it is likely that on criteria of low computational require-ment combined with the good overall performance, the predictive error bar would be the chosenimplementation.
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Figure 6: AFR raw data: 256 uniformlydistributed samples an a 16�16grid
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Point-wise Con�dence Interval Estimation by Neural Networks: A comparative study based on automotive enginecalibration. 114.2 On{line behaviourThe previous experiments were o�-line regression problems where the neural network was used tomimic the behaviour of the expert engineer in producing AFR maps. In this o�-line experiment wedo not have access to intermediate values employed by the real engine. Since the neural networkgave predictions at all intermediate values of load and speed sites it is interesting to speculatewhether the neural network generalisation performance extends to on-line performance as well. Inthis �nal experiment we examine on-line ignition timing performance using just the radial basisfunction network employing predictive error bar estimation.An instrumented vehicle was driven around an urban route under normal conditions, includingsteady state and transient, under a variety of load/speed conditions. The actual ignition timingemployed by the engine was logged, along with other details such as the estimated load andmeasured speed. This actual performance was then compared to the predicted ignition timingvalues as produced by an appropriate radial basis function network. The results of this on{roadtest comparing the actual engine performance and the model are depicted in Figure 10.
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Figure 10: A plot of the RBF-predicted and the actual measured ignitiontiming values as determined from an on-road exercise.This �gure also displays the calculated predictive error bars of the Radial Basis Function modelwhich are superimposed as 2� bounds around the predicted mean. It is noted that there is ex-ceptionally good correlation between the predictions and the actual values, especially when thecon�dence intervals are taken into account. The one exception is a region on the graph which cor-responds to the idle speed conditions of the vehicle. In the actual engine, idle speed conditions areaccounted for by an entirely separate map for ignition timing which the controller switches over towhen load-speed conditions drop below a threshold. No allowance was made for the idle speed mapby the neural network regression in that no training data points were employed corresponding to



Point-wise Con�dence Interval Estimation by Neural Networks: A comparative study based on automotive enginecalibration. 12these extreme conditions. In this sense, idle speed conditions are not representative of the trainingdata available to the original network model.5 ConclusionWe have considered the implication of employing neural networks in safety critical real world situ-ations from the perspective of developing con�dence intervals on neural network predictions. Thisis not trivial as there are several approaches one may adopt in constructing con�dence intervals,as discussed. In the problem considered in this paper it is important to obtain an estimate of themapping surface and a level of con�dence in real time (determined by the cylinder �ring rate andhence is down at the tens of millisecond time frame). We have found that an approach which werefer to as `predictive error bars' are more suited to data noise and also are more e�cient in termsof computational power required, which is a constraint in current engine management systemsbased on conventional EEPROM controllers. Although this paper has only demonstrated resultson individual neural network models, the approaches outlined in the paper have also been extendedto committees of networks involving combinations of radial basis function networks, multilayer per-ceptron networks and linear models. This has the advantage of improving regression performanceby combining di�erent failure modes to reduce the error bars. In principle this should be a morerobust approach for safety critical systems.Finally, one remaining issue not discussed in this paper but left as an open question is to pose thechallenge of how this extra `con�dence' information provided by a neural network can be exploitedin an embedded system to determine system{level validation and veri�cation.
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