Skip to main content
Log in

GOP ARIMA: Modeling the nonstationarity of VBR processes

  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In this work, we develop a stochastic model, GOP ARIMA (autoregressive integrated moving average for a group of pictures) for VBR processes with a regular GOP pattern. It explicitly incorporates the deterministic time-dependent behavior of frame-level VBR traffic. The GOP ARIMA model elaborately represents the inter- and intra-GOP sample autocorrelation structures and provides a physical explanation of observed stochastic characteristics of the empirical VBR process. We explain stochastic characteristics of the empirical VBR process, e.g., slowly decaying sample autocorrelations and strong correlations at the lags, based on the aspect of nonstationarity of the underlying process. The GOP ARIMA model generates synthetic traffic, which has the same multiplicative periodic sample autocorrelation structure as well as slowly decaying autocorrelations of the empirical VBR process. The simulation results show that the GOP ARIMA process very well captures the behavior of the empirical process in various respects: packet loss, packet delay, and frame corruption. Our work makes a contribution not only toward providing a theoretical explanation of the observed characteristics of the empirical VBR process but also toward the development of an efficient method for generating a more realistic synthetic sequence for various engineering purposes and for predicting future bandwidth requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abry, P., Veitch, D.: Wavelet analysis of long-range dependence traffic. IEEE Trans. Inf. Theory 44(1), 2–15 (1998)

    Article  Google Scholar 

  2. Adas, A.M.: Using adaptive linear prediction to support real-time vbr video under rcbr network service model. IEEE Trans. Network. 6(5), 635–645 (1998)

    Article  Google Scholar 

  3. Beran, J., Sherman, R., Taqqu, M.S., Willinger, W.: Long-range dependence in variable bit-rate video traffic. IEEE Trans. Commun. 43(2–4), 1566–1579 (1995)

    Article  Google Scholar 

  4. Brockwell, P., Davis, A.: Time Series: Theory and Methods. Springer, Berlin Heidelberg New york (1991)

  5. Chang, R.-I.: Dynamic window-based traffic-smoothing for optimal delivery of online vbr media streams. In: Proceedings of CPADS, pp. 127–134. Iwate, Japan (2000)

  6. Crovella, M., Bestavros, A.: Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Trans. Network. 5(1), 71–86 (1997)

    Article  Google Scholar 

  7. Doulamis, N., Doulamis, A., Kollias, S.: Modeling and adaptive prediction of vbr mpeg video sources. In: Proceedings of the IEEE 3rd Workshop on Multimedia Signal Processing, pp. 27–32. Copenhagen, Denmark (1999)

  8. Maglaris, B., Anastassiou, D., Sen, P., Karlsson, G., Robbins, J.D.: Performance models of statistical multiplexing in packet video communications. IEEE J. Select. Areas Commun. 36(7), 834–844 (1988)

    Google Scholar 

  9. Feldmann, A., Gilbert, A.C., Willinger, W.: Data networks as cascades: investigating the multifractal nature of internet wan traffic. ACM Comput. Commun. Rev. 28(4), 42–55 (1998)

    Article  Google Scholar 

  10. Frey, M., Nguyen-Quang, S.: A gamma-based framework for modeling variable-rate mpeg video sources: the gop gbar model. IEEE/ACM Trans. Network. 8(6), 710–719 (2000)

    Article  Google Scholar 

  11. Garrett, M., Willinger, W.: Analysis, modeling and generation of self-similar vbr video traffic. In: Proceedings of SIGCOMM 94, pp. 269–280. London (1994)

  12. Grossglauser, M., Bolot, J.: On the relevance of long range dependence in network traffic. IEEE Trans. Network. 7(5), 629–640 (1998)

    Article  Google Scholar 

  13. Grunenfelder, R., Cosmos, J.P., Manthorpe, S., Odinma-Okafor, A.: Characterization of video codecs as autoregressive moving average processes and related queueing system performance. IEEE J. Select. Areas Commun. 9(3), 284–293 (1991)

    Article  Google Scholar 

  14. Henderson, T., Bhatti, S.: Modelling user behavior in networked games. In: Proceedings of the ACM Multimedia Conference, pp. 212–220. Ottawa, Canada (2001)

  15. Heyman, D., Tabatabai, A., Lakshman, T.V.: Statistical analysis and simulation study of video teleconference traffic in atrn networks. IEEE Trans. Circuits Syst. Video Technol. 2(1), 49–59 (1992)

    Google Scholar 

  16. Heyman, D.P.: The gbar source model for vbr videoconferences. IEEE/ACM Trans. Network. 5(4), 554–560 (1997)

    Google Scholar 

  17. Hurst, H.E.: Methods of using long-term storage in reservior. In: Proceedings of the Institution of Civil Engineers, Part I, pp. 519–577 (1955)

  18. Isovic, D., Fohler, G., Lennvall, T.: Analysis of mpeg-2 video streams. Mtrc report. Mardalen Real-time Research Center, Mardalen University, Sweden (2002)

  19. Kant, K., Won, Y.: Server capacity planning under web traffic workload. IEEE Trans. Knowl. Data Eng. 11(5), 731–747 (1999)

    Article  Google Scholar 

  20. Krunz, M., Tripathi, S.: On the characterization of vbr mpeg streams. In: Proceedings of SIGMETRICS '97, pp. 192–202. Seattle (1997)

  21. Krunz, M., Sass, R., Hughes, H.: Statistical characteristics and multiplexing of mpeg streams. In: Proceedings of INFOCOM 95, pp. 455–462. Boston (1995)

  22. Kweon, S.-K., Shin, K.G.: Real-time transport of MPEG video with a statistically guaranteed loss ratio in ATM networks. IEEE Trans. Parallel Distrib. Syst. 12(4), 387–396 (2001)

    Article  Google Scholar 

  23. Lam, S.S., Chow, S., Yau, D.K.Y.: An algorithm for lossless smoothing for mpeg video. In: Proceedings of ACM SIGCOMM '94. London (1994)

  24. Leland, W., Taqqu, M., Willinger, W., Wilson, D.: On the self-similar nature of ethernet traffic. In: Proceedings of ACM SIGCOMM '93, pp. 183–193. San Francisco (1993)

  25. Lombardo, A., Morabito, G., Palazzo, S., Schembra, G.: Intra-gop modeling of mpeg video traffic. In: Proceedings of IEEE ICC'98. Atlanta (1998)

  26. Lucantoni, D., Neuts, M., Reibman, A.: Methods for performance evaluation of vbr video traffic models. IEEE Trans. Network. 2(2), 176–180 (1994)

    Article  Google Scholar 

  27. Manzoni, P., Cremonesi, P., Serazzi, G.: Workload models of vbr video traffic and their use in resource allocation policies. IEEE Trans. Network. 7(3), 387–397 (1999)

    Article  Google Scholar 

  28. Nakajima, N.: The path to 4g mobile. IEEE Commun. 39(3), 38–41 (2001)

    Google Scholar 

  29. Odlyzko, A.M.: Internet TV: Implications for the Long Distance Network. Erlbaum, Mahwah, NJ (2001)

  30. Paxson, V.: Fast, approximate synthesis of fractional gaussian noise for generating self-similar network traffic. ACM Comput. Commun. Rev. 27(5), 5–18 (1997)

    Article  Google Scholar 

  31. Paxson, V., Floyd, S.: Wide-area traffic: the failure of poisson modeling. IEEE/ACM Trans. Network. 3(3), 226–244 (1995)

    Article  Google Scholar 

  32. Rexford, J., Towsley, D.: Smoothing variable-bit-rate video in an internetwork. IEEE/ACM Trans. Network. 7(2), 202–215 (1999)

    Article  Google Scholar 

  33. Rose, O.: Simple and efficient models for variable bit rate MPEG video traffic. Perform. Eval. 3(1–2), 69–85 (1997)

    Article  Google Scholar 

  34. Ryu, K., Elwalid, A.: The importance of long-range dependence of vbr video traffic in atm traffic engineering: myths and realities. ACM Comput. Commun. Rev. 26(4), 3–14 (1996)

    Article  Google Scholar 

  35. Sony, Philips, Matsushita, and JVC. While Book VCD spec. (1993)

  36. Tran, N., Reed, D.A.: Arima time series modeling and forecasting for adaptive i/o prefetching. In: Proceedings of the ACM International Conference on Supercomputing, pp. 473–485. Sorrento, Italy (2001)

  37. Turaga, D., Chen, T.: Activity-adaptive modeling of dynamic multimedia traffic. In: IEEE International Conference on Multimedia and Expo (III), pp. 1305–1308. New York (2000)

  38. Verscheure, O., Frossard, P., Boudec, J.-Y.: Optimal scheduling of rich media in a rate-distortion sense. In: Proceedings of the 15th International Symposium on Mathematical Theory of Networks and Systems. University of Notre Dame, IN (2002)

  39. Wang, Y., Wenger, S., Wen, J., Katsaggelos, A.K.: Error resilient video coding techniques. IEEE Signal Process. Mag. 17(4), 61–82 (2000)

    Article  Google Scholar 

  40. Wey, W.W.W.: Time Series Analysis, Chap. 4.3. Addison-Wesley, Reading, MA (1990)

  41. ISO/IEC JTC1/SC29 WG11/602. Coding of moving pictures and associated audio. ISO/IEC 13818-2, Committee Draft (1993)

  42. Willinger, W., Taqqu, M., Leland, W., Wilson, D.: Self-similarity in high-speed packet traffic: analysis and modeling of ethernet traffic measurements. Stat. Sci. 10(1), 67–83 (1995)

    Google Scholar 

  43. Willinger, W., Taqqu, M., Sherman, R.: Self-similarity through high-variability: statistical analysis of ethernet Ian traffic at the srouce level. In: Proceedings of SIGCOMM'95, pp. 100–113. Cambridge, MA (1995)

  44. Won, Y., Ahn, S., Jeon, J.: Performance analysis of nonstationary model for empirical vbr process. In: Proceedings of IEEE Globecom'01. St. Antonio, TX (2001)

  45. Won, Y., Shim, B.: Importance of smoothing in broadband wireless internet: the reality. In: Proceedings of 12CS Workshop, pp. 193–204 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soohan Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Won, Y., Ahn, S. GOP ARIMA: Modeling the nonstationarity of VBR processes. Multimedia Systems 10, 359–378 (2005). https://doi.org/10.1007/s00530-005-0166-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-005-0166-7

Keywords

Navigation