Skip to main content
Log in

Vibrotactile perception: examining the coding of vibrations and the just noticeable difference under various conditions

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

High-frequency vibrations are an essential part of numerous manipulation tasks. A promising research area, in particular, are telemanipulation tasks where vibrations occurring in the remote environment are fed back through tactile displays. Three experiments concerning the perception of vibrations were conducted. The first experiment aims at determining whether vibrations are coded primarily by frequency, amplitude, or acceleration by human participants. Results show that primarily frequency and amplitude, but not acceleration of the vibrations were perceived. In the second experiment, participants’ just noticeable difference (JND) for frequency under different conditions was examined. The resulting JND of 18% for frequencies showed dependence neither on the amplitude or acceleration, which were independently held constant, nor on the reference frequencies. Therefore, it is not necessary to adjust the subjective intensity for vibrations for each human operator when designing and using tactile displays. In the third experiment, the stimuli and the procedure of the second experiment were replicated using different configurations and a mere force-output device. The resulting JNDs were 21% for vibrations of 100 Hz, and 17% for vibrations of 150 Hz and above. Furthermore, there was no visual dominance over the haptic modality regarding the JND for frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dennerlein, J.T., Millman, P.A., Howe, R.D.: Vibrotactile feedback for industrial telemanipulators. In: Proceedings of the ASME Dynamic Control Division, Dallas, pp. 189–195 (1997)

  2. Okamura, A.M., Dennerlein, J.T., Howe, R.D.: Vibration feedback models for virtual environments. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, pp. 674–679 (1998)

  3. Hollins M. (2002). Touch and haptics. In: Yantis, S. and Pashler, H. (eds) Steven’s handbook of experimental psychology, Vol. 1: Sensation and perception, pp 585–618. Wiley, New York

    Google Scholar 

  4. Moy, G., Wagner, C., Fearing, R.S.: A compliant tactile display for teleaction. In: Proceedings of the 2000 IEEE International Conference on Robotics & Automation, Piscataway, pp. 3409–3415 (2000)

  5. Allam, H.M.: Single element based tactile display. In: Proceedings of the 2004 International Workshop on Robot Sensing, Piscataway, pp. 49–54 (2004)

  6. Kontarinis D.A. and Howe R.D. (1995). Tactile display of vibratory information in teleoperation and virtual environments. Presence 4(4): 387–402

    Google Scholar 

  7. Bolanowski S.J. Jr., Gescheider G.A., Verrillo R.T., Checkosky C.M. (1988) Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84(5): 1680–1694

    Article  Google Scholar 

  8. Johnson K. (2002). Neural basis of haptic perception. In: Yantis, S. and Pashler, H. (eds) Stevens’ handbook of experimental psychology, Vol. 1: Sensation and perception., pp 537–583. Wiley, New York

    Google Scholar 

  9. Lederman S.J. and Klatzky R.L. (1999). Sensing and displaying spatially distributed fingertip forces in haptic interfaces for teleoperator and virtual environment systems. Presence 8(1): 86–103

    Article  Google Scholar 

  10. Hollins M., Bensmaïa S.J. and Roy E.A. (2002). Vibrotaction and texture perception. Behav. Brain Res. 135: 51–56

    Article  Google Scholar 

  11. Klatzky R.L. and Lederman S.J. (1999). Tactile roughness with a rigid link interposed between skin and surface. Percept. Psychophys. 61(4): 591–607

    Google Scholar 

  12. Pawluk D. and Howe R. (1996). A holistic model of human touch. In: Bower, J.M. (eds) Computational neuroscience trends in research, pp 759–764. Plenum, New York

    Google Scholar 

  13. Seow K.C. (1988). Physiology of touch, grip and gait. In: Webster, J.G. (eds) Tactile sensing for robotics and medicine, pp 13–40. Wiley, New York

    Google Scholar 

  14. Burdea G.C. (1996). Force and Touch Feedback for Virtual Reality. Wiley, New York

    Google Scholar 

  15. Schmidt R.F.: Somato-viscerale Sensibilität. In: Schmidt R.F., (eds.) Grundriß der Sinnesphysiologie. Springer, Berlin, pp. 42–93 (1973)

    Google Scholar 

  16. Sherrick C.E., Craig J.C. (1982). The psychophysics of touch. In: Schiff W., Foulke E. (eds). Tactual perception: A sourcebook. Cambridge University Press, Cambridge, pp. 55–81

    Google Scholar 

  17. Bensmaïa S.J. and Hollins M. (2000). Complex tactile waveform discrimination. J. Acoust. Soc. Am. 108(3 Pt 1): 1236–1245

    Article  Google Scholar 

  18. Greenspan J.D. and Bolanowski S.J. (1996). The psychophysics of tactile perception and its peripheral physiological basis. In: Kruger, L. (eds) Pain and touch, pp 25–103. Academic, San Diego

    Google Scholar 

  19. Makous J.C., Friedman R.M. and Vierck C.J. Jr. (1995). A critical band filter in touch. The J.Neurosci. 15(4): 2808–2818

    Google Scholar 

  20. Franzén O. and Nordmark J. (1975). Vibrotactile frequency discrimination. Percept. Psychophys. 17(5): 480–484

    Google Scholar 

  21. Goff G.D. (1967). Differential discrimination of frequency of cutaneous mechanical vibration. J. Exp. Psychol. 74(2 Pt 1): 294–299

    Article  Google Scholar 

  22. Rothenberg M., Verrillo R.T., Zahorian S.A., Brachman M.L. and Bolanowski S.J. Jr. (1977). Vibrotactile frequency for encoding a speech parameter. J. Acoust. Soc. Am. 62(4): 1003–1012

    Article  Google Scholar 

  23. Mowbray G.H. and Gebhard J.W. (1957). Sensitivity of the skin to changes in rate of intermittent mechanical stimuli. Science 125: 1297–1298

    Article  Google Scholar 

  24. Craig J.C. (1972). Difference threshold for intensity of tactile stimuli. Percept. Psychophys. 11(2): 150–152

    Google Scholar 

  25. Craig J.C. (1974). Vibrotactile difference thresholds for intensity and the effect of a masking stimulus. Percept. Psychophys. 15(1): 123–127

    MathSciNet  Google Scholar 

  26. La Motte R.H. and Mountcastle V.B. (1975). Capacities of humans and monkeys to discriminate between vibratory stimuli of different frequency and amplitude: A correlation between neural events and psychophysical mechanisms. J Neurophysiol. 38: 539–559

    Google Scholar 

  27. Kenshalo D.R. (1986). Somesthetic sensitivity in young and elderly humans. J. Gerontol. 41(6): 732–742

    Google Scholar 

  28. Goble A.K., Collins A.A. and Cholewiak R.W. (1996). Vibrotactile threshold in young and old observers: The effect of spatial summation and the presence of a rigid surround. J. Acoust. Soc. Am. 99(4 Pt 1): 2256–2269

    Article  Google Scholar 

  29. Berglund B., Berglund U. and Ekman G. (1967). Temporal integration of vibrotactile stimulation. Percept. Motor Skills 25: 249–560

    Google Scholar 

  30. Bliss J.C., Crane H.D., Mansfield P.K. and Townsend J.T. (1966). Information available in brief tactile presentations. Percept. Psychophys. 1: 273–283

    Google Scholar 

  31. Sinclair R.J. and Burton H. (1996). Discrimination of vibrotactile frequencies in a delayed pair comparison task. Percept. Psychophys. 58(5): 680–692

    Google Scholar 

  32. Verrillo R.T. (1963). Effect of contactor area on the vibrotactile threshold. J. Acoust. Soc. Am. 35(12): 1962–1966

    Article  Google Scholar 

  33. Klatzky R.L., Lederman S.J. and Langseth S. (2003). Watching a cursor distorts haptically guided reproduction of mouse movement. J. Exp. Psychol. App. 9(4): 228–235

    Article  Google Scholar 

  34. Welch R.B. and Warren D.H. (1986). Intersensory interactions. In: Boff, K.R., Kaufman, L. and Thomas, J.P. (eds) Handbook of Perception and Human Performance, Vol. II: Cognitive Processes and Performance, pp 25-1–25-36. Wiley, New York

    Google Scholar 

  35. Mood A.M., Graybill F.A. and Boes D.C. (1974). Introduction to the theory of statistics. McGraw-Hill, New York

    MATH  Google Scholar 

  36. Gescheider, G.A.: Psychophysics, Lawrence Erlbaum (1985)

  37. Brooks, T.L.: Telerobotic response requirements. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, New York, pp. 113–120 (1990)

  38. Lamoré P.J.J. and Keemink C.J. (1988). Evidence for different types of mechanoreceptors from measurements of the psychophysical threshold for vibrations under different stimulation conditions. J. Acoust. Soc. Am. 83(6): 2339–2351

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Pongrac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pongrac, H. Vibrotactile perception: examining the coding of vibrations and the just noticeable difference under various conditions. Multimedia Systems 13, 297–307 (2008). https://doi.org/10.1007/s00530-007-0105-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-007-0105-x

Keywords

Navigation