Skip to main content
Log in

Star tracking and attitude determination using fuzzy based positional pattern and rotation compensation in Fourier domain

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In this article, a new approach is proposed for star tracking and attitude determination. To track stars and determine the attitude of the camera, a new star pattern matching algorithm is presented. The proposed star matching algorithm is a two-stage approach. In the first stage, all stars in the Field of View of the bright star are employed to construct the star pattern for matching. To handle the problem of missing stars and the inaccuracy of stars’ position, fuzzy based positional information is employed to construct the pattern. To compensate for in-plane rotation of the camera, a circular grid is used, which converts in-plane rotation of the camera into the angular shift in the polar coordinate. Then, the Fourier transformation and its attributes are applied to discard the shift or the rotation effect. In the second stage of the algorithm, the angular distances between the bright stars are employed to refine the candidate matches of the first stage. We use SKY2000 master star catalog to create the database and test the proposed algorithm. The comparison of the results of the proposed algorithm with those of other methods shows the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Accardo, D., Rufino, G.: Brightness-independent start-up routine for star trackers. IEEE Trans. Aerosp. Electron. Syst. 38(3), 813–823 (2002)

    Article  Google Scholar 

  2. Lamy Au Rousseau, G., Bostel, J., Mazari, B.: Star recognition algorithm for APS star tracker: oriented triangles. IEEE Aerosp. Electron. Syst. Mag. 20(2), 27–31 (2005)

    Article  Google Scholar 

  3. Steyn, W., Jacobs, M., Oosthuizen, P.: A high performance star sensor system for full attitude determination on a microsatellite Department of Electronic Engineering, University of Stellenbosch, South Africa (1997)

  4. Mortari, D., Samaan, M.A., Bruccoleri, C., Junkins, J.L.: The pyramid star identification technique. Navigation 51(3), 171–184 (2004)

    Article  Google Scholar 

  5. Zhang, G., Wei, X., Jiang, J.: Full-sky autonomous star identification based on radial and cyclic features of star pattern. Image Vis. Comput. 26(7), 891–897 (2008)

    Article  Google Scholar 

  6. Liebe, C.C.: Pattern recognition of star constellations for spacecraft applications. IEEE Aerosp. Electron. Syst. Mag. 7(6), 34–41 (1992)

    Article  Google Scholar 

  7. Miri, S.S., Shiri, M.E.: Star identification using Delaunay triangulation and distributed neural networks. Int J Model Optim (IJMO) 2(3), 234–238 (2012)

    Article  Google Scholar 

  8. Quan, W., Fang, J.: A star recognition method based on the adaptive ant colony algorithm for star sensors. Sensors 10(3), 1955–1966 (2010)

    Article  Google Scholar 

  9. Xie, J., Tang, X., Jiang, W., Fu, X.: An autonomous star identification algorithm based on the directed circularity pattern. In: Shortis M., NE-S (ed) XXII ISPRS Congress, Technical Commission I, Melbourne, Australia, 25 Aug.–01 Sept. 2012

  10. Xie, J., Jiang, W., Gong, J.: A new star identification algorithm based on matching probability. In: IEEE International geoscience and remote sensing symposium (IGARSS 2008), 2008. IEEE, pp III-1166–III-1169

  11. Kolomenkin, M., Pollak, S., Shimshoni, I., Lindenbaum, M.: Geometric voting algorithm for star trackers. IEEE Trans. Aerosp. Electron. Syst. 44(2), 441–456 (2008)

    Article  Google Scholar 

  12. Clouse, D.S., Padgett, C.W.: Small field-of-view star identification using Bayesian decision theory. IEEE Trans. Aerosp. Electron. Syst. 36(3), 773–783 (2000)

    Article  Google Scholar 

  13. Lee, H., Oh, C.S., Bang, H.: Modified grid algorithm for star pattern identification by using star trackers. In: International conference on recent advances in space technologies (RAST’03), Istanbul, Turkey, 20–22 Nov. 2003. IEEE, pp 385–391

  14. Juang, J.N., Kim, H.Y., Junkins, J.L.: An efficient and robust singular value method for star pattern recognition and attitude determination. J Astronaut Sci 52(1), 211–220 (2004)

    Google Scholar 

  15. Padgett, C., Kreutz-Delgado, K.: A grid algorithm for autonomous star identification. IEEE Trans. Aerosp. Electron. Syst. 33(1), 202–213 (1997)

    Article  Google Scholar 

  16. Li, C., Li, K., Zhang, L., Jin, S., Zu, J.: Star pattern recognition method based on neural network. Chin. Sci. Bull. 48(18), 1927–1930 (2003)

    Article  Google Scholar 

  17. Spratling, B.B., Mortari, D.: A survey on star identification algorithms. Algorithms 2(1), 93–107 (2009). doi:10.3390/a2010093

    Article  Google Scholar 

  18. Wertz, J.R.: Spacecraft attitude determination and control. Kluwer Academic Pub., Boston (1978)

    Book  Google Scholar 

  19. Walker, J.: Your Sky: virtual telescope. http://www.fourmilab.ch/yoursky/. Accessed 27 sept 2013

  20. Yoon, H., Paek, S.W., Lim, Y., Lee, B.-H., Lee, H.: New star pattern identification with vector pattern matching for attitude determination. IEEE Trans. Aerosp. Electron. Syst. 49(2), 1108–1118 (2013)

    Article  Google Scholar 

  21. Na, M., Zheng, D., Jia, P.: Modified grid algorithm for noisy all-sky autonomous star identification. IEEE Trans. Aerosp. Electron. Syst. 45(2), 516–522 (2009)

    Article  Google Scholar 

  22. Mortari, D., Junkins, J.L., Samaan M.: Lost-in-space pyramid algorithm for robust star pattern recognition. In: 24th annual AAS guidance and control conference, 2001, pp 49–68

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Behrad.

Additional information

Communicated by C. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadat, E.S., Behrad, A. Star tracking and attitude determination using fuzzy based positional pattern and rotation compensation in Fourier domain. Multimedia Systems 21, 401–410 (2015). https://doi.org/10.1007/s00530-014-0365-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-014-0365-1

Keywords

Navigation