Skip to main content
Log in

A low-latency scheduling approach for high-definition video streaming in a heterogeneous wireless network with multihomed clients

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

We consider the problem of high-definition (HD) video transmission in a heterogeneous wireless network from a video server to a multihomed client. On the one hand, a single wireless network is limited in the transmission performance (e.g., available bandwidth and link delay); On the other hand, the HD video streaming is characterized by the high transmission rate and large-size video frames. Thus, the end-to-end video frame delay becomes a severely challenging problem which is critical for the real-time video applications. In this paper, we propose a novel scheduling approach named sub-frame-level (SFL), which deliberately splits the large-size video frames into sub-frames and dispatches each of them onto a different wireless network to the multihomed client. This approach is able to improve the frame-level delay for enhancing video quality. We formulate the optimization problem of video streaming allocation for minimizing the end-to-end delay based on the network calculus and derive its solution with the water filling algorithm. We evaluate the performance of the proposed SFL through the Exata emulations using real-time H.264 video streaming. Emulation results show that SFL outperforms the existing frame-level scheduling approaches in improving the frame-level delay as well as in enhancing video quality in terms of peak signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. In this paper, we focus on the constant bit rate (CBR) video streaming since it is used in most video applications [22]. Please note that CBR does not always indicate a fixed rate. For the CBR video streaming, the bit rate is constant at large time scales. But at medium or fine-grain time scales, an on–off pattern or back-to-back packet trains are often seen. It is observed in a recent measurement study [23] that most CBR-coded videos are not long-range dependent (LRD).

  2. In this subsection, we consider the case of \(\mu _{i}>\lambda _{i}\) for the derivation while the solution for the case of \(\mu _{i}\le \lambda _{i}\) can be obtained by following the same steps and replacing the notation \(\mu _{i}-\lambda _{i}\) with \(\mu _{i}\).

References

  1. Zhang, C., Ariyavisitakul, S.L., Meixia, T.: LTE-advanced and 4G wireless communications. IEEE Commun. Mag. 50(2), 102–103 (2012)

    Article  Google Scholar 

  2. Eklund, C., Marks, R., Stanwood, K., Wang, S.: IEEE standard 802.16: a technical overview of the wireless MAN air interface for broadband wireless access. IEEE Commun. Mag. 40(6), 98–107 (2002)

    Article  Google Scholar 

  3. Oliveira, T., Mahadevan, S., Agrawal, D.P.:Handling network uncertainty in heterogeneous wireless networks. In: Proceedings of IEEE INFOCOM, 2011

  4. YouTube, http://www.youtube.com/

  5. Hulu, http://www.hulu.com/

  6. Cisco, Cisco visual networking index: global mobile data traffic forecast update, 2010–2015, Feb. 2011

  7. Yooon, J., Zhang, H., Banerjee, S., Rangarajan, S.: MuVi: a multicast video delivery scheme for 4G cellular networks, In: Proceedings of ACM MobiCom, 2012

  8. Chebrolu, K., Rao, R.: Bandwidth aggregation for real-time applications in heterogeneous wireless networks. IEEE Trans. Mobile Comput. 5(4), 388–403 (2006)

    Article  Google Scholar 

  9. Jurca, D., Frossard, P.: Video packet selection and scheduling for multipath streaming. IEEE Trans. Multimed. 9(3), 629–641 (2007)

    Article  Google Scholar 

  10. Song, W., Zhuang, W.: Performance analysis of probabilistic multipath transmission of video streaming traffic over multi-radio wireless devices. IEEE Trans. Wireless Commun. 11(4), 1554–1564 (2012)

    Article  Google Scholar 

  11. Kamiyama, N., Kawahara, R., Mori, T., Harada, S., Hasegawa, H.: Parallel video streaming optimizing network throughput. Comput. Commun. 34(10), 1182–1194 (2011)

    Article  Google Scholar 

  12. JSVM software, http://www.hhi.fraunhofer.de/

  13. http://media.xiph.org/video/derf

  14. http://en.wikipedia.org/wiki/Bit_rate

  15. IEEE standard 802.16-2009. ieee standard for local and metropolitan area networks-part 16 : air interface for fixed broadband wireless access systems, May 2009.

  16. Si, P., Ji, H., Yu, F.R.: Optimal network selection in heterogeneous wireless multimedia networks. Wirel. Netw. 16(5), 1277–1288 (2009)

    Article  Google Scholar 

  17. Piamrat, K., Ksentini, A., Bonnin, J.M., Viho, C.: Radio resource management in emerging heterogeneous wireless networks. Comput. Commun. 34, 1066–1076 (2010)

    Article  Google Scholar 

  18. Tu, W., Jia, W.: APB: an adaptive playback buffer scheme for wireless streaming media. IEICE Trans. Commun. E88.B(10), 4030–4039 (2005)

    Article  Google Scholar 

  19. Cruz, R.L.: A calculus for network delay-part I: network elements in isolation. IEEE Trans. Inf. Theory 37(1), 114–131 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Thiran, P., Boudec, J.Y., Worm, F.: Network calculus applied to optimal multimedia smoothing. In: Proceedings of IEEE INFOCOM, 2001

  21. Liang, G., Liang, B.: Effect of delay and buffering on jitter-free streaming over random VBR channels. IEEE Trans. Multimed. 10(6), 1128–1141 (2008)

    Article  Google Scholar 

  22. Kompella, S., Mao, S., Hou, Y.T., Sherali, H.D.: On path selection and rate allocation for video in wireless mesh networks. IEEE/ACM Trans. Netw. 17(1), 212–224 (2009)

    Article  Google Scholar 

  23. Kuang, T., Williamson, C.: A measurement study of real media audio/video streaming traffic. In: Proceedings of SPIE ITCOM, 2002

  24. Chang, C.S.: Stability, queue length, and delay of deterministic and stochastic queueing networks. IEEE Trans. Autom. Control 39(5), 913–931 (1994)

    Article  MATH  Google Scholar 

  25. Schwartz, M.: Broadband integrated networks. Prentice Hall, New Jersey (1996)

    Google Scholar 

  26. RTP Payload Format for H.264 Video, 2011, IETF RFC 6184

  27. Jain, M., Dovrolis, C.: Pathload: a measurement tool for end-to-end available bandwidth. In: Proceedings of Passive and Active Measurement Workshop, 2002

  28. Ribeiro, V., Riedi, R., Baraniuk, R., Navratil, J., Cottrell, L.: PathChirp: efficient available bandwidth estimation for network paths. In: Proceedings of Passive and Active Measurement Workshop, 2003

  29. Jain, M., Dovrolis, C.: End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput. IEEE/ACM Trans. Netw. 11(4), 537–549 (2003)

    Article  Google Scholar 

  30. Kapoor, R., Chen, L., Lao, L., Gerla, M., Sanadidi, M.: Capprobe: a simple and accurate capacity estimation technique. In: Proceedings of ACM SIGCOMM, 2004

  31. Exata, Scalable Network Tech., http://www.scalable-networks.com/exata

  32. QualNet, Scalable Network Tech., http://www.scalable-networks.com/qualnet

  33. Exata 2.1 Programmer’s Guide, http://www.scalable-networks.com/exata

  34. Subjective Video Quality Assessment Methods for Multimedia Applications, ITU-T Recommendation P.910, Sep. 1999

  35. Tanenbaum, A.S., Wetherall, D.J.: Computer networks, 5th edn. Prentice Hall, New Jersey (2011)

    Google Scholar 

  36. Han, S., Joo, H., Lee, D., Song, H.: An end-to-end virtual path construction system for stable live video streaming over heterogeneous wireless networks. IEEE J. Select. Areas Commun. 29(5), 1032–1041 (2011)

    Article  Google Scholar 

  37. Reed-Solomon Forward Error Correction (FEC) Schemes, 2009, IETF RFC 5510

  38. Zhu, X., Boronat, F.: Distributed rate allocation policies for multihomed video streaming over heterogeneous access networks. IEEE Trans. Multimed. 56(12), 2912–2933 (2009)

    Google Scholar 

  39. Szwabe, A., Schorr, A., Hauck, F.J., Kassler, A.J.: Dynamic multimedia stream adaptation and rate control for heterogeneous networks. In: Proceedings of IEEE Packet Video Workshop 7, 63–69 (2006)

  40. Jurca, D., Frossard, P.: Media flow rate allocation in multipath networks. IEEE Trans. Multimed. 9(6), 1227–1240 (2007)

    Article  Google Scholar 

  41. Mushroom Networks Inc., Wireless broadband bonding network appliance, http://www.mushroomnetworks.com

  42. Poor, B.P., Fleury, M., Altaf, M., et al.: Channel adaptive video stream switching for broadband wireless links. Multimed. Sys. 17(5), 449–463 (2011)

    Article  Google Scholar 

  43. Nakashima, Y., Babaguchi, N., Fan, J.: Intended human object detection for automatically protecting privacy in mobile video surveillance. Multimed. Sys. 18(2), 157–173 (2012)

    Article  Google Scholar 

  44. Xu, C., Liu, T., Guan, J., et al.: CMT-QA: quality-aware adaptive concurrent multipath data transfer in heterogeneous wireless networks. IEEE Trans. Mobile Comput. 12(11), 2193–2205 (2013)

    Article  Google Scholar 

  45. Xu, C., Zhao, F., Guan, J., et al.: QoE-driven user-centric VoD services in urban multihomed P2P-based vehicular networks. IEEE Trans. Veh. Technol. 62(5), 2273–2289 (2013)

    Article  Google Scholar 

  46. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of transportation. Yale Univ. Press, New Haven, CT (1956)

    Google Scholar 

Download references

Acknowledgments

The research reported in this paper is partly supported by the MultiplAtform Game Innovation Centre (MAGIC), funded by the Singapore National Research Foundation under its IDM Futures Funding Initiative and administered by the Interactive & Digital Media Programme Office, Media Development Authority; National Grand Fundamental Research (973 Program) of China under Grant Nos. 2011CB302506, 2012CB315802; National Key Technology Research and Development Program of China “Research on the mobile community cultural service aggregation supporting technology” (2012BAH94F02); Novel Mobile Service Control Network Architecture and Key Technologies (2010ZX03004-001-01); National High-tech \(\hbox {R} \& \hbox {D}\) Program of China (863 Program) under Grant No. 2013AA102301; and National Natural Science Foundation of China under Grant No. 61171102, 61132001). The authors would like to express their sincere gratitude for the anonymous reviewers’ helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyan Wu.

Additional information

Communicated by C. Sreenan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Qiao, X., Xia, Y. et al. A low-latency scheduling approach for high-definition video streaming in a heterogeneous wireless network with multihomed clients. Multimedia Systems 21, 411–425 (2015). https://doi.org/10.1007/s00530-014-0388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-014-0388-7

Keywords

Navigation