Skip to main content
Log in

Confined projection on selected sub-surface using a robust binary-coded pattern for pico-projectors

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Traditional projection environments typically comprise projectors and custom-built projection screens in a static setting. However, with the availability of embedded and standalone pico-projectors, the representative use-case of such hand-held projectors is shifting from static to mobile. Users are increasingly using such devices to project content in random indoor environments that are cluttered and hence not completely suitable for projection. This paper proposes a robust binary-coded pattern that enables the reliable selection of a clutter-free sub-surface from within the projected area and thus allows the confinement of projection to the selected sub-region. Experiments confirm that the proposed pattern provides better resilience to the detection errors as compared to the state-of-the-art binary-coded patterns for the case of mobile-grade low-resolution pico-projectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sony. (Online). http://www.store.sony.com/8gb-full-hd-camcorder-with-projector-zid27-HDRPJ230/B/cat-27-catid-All-Handycam-Camcorders. Accessed 8 June 2015

  2. Wilson, M.L., Robinson, S., Craggs, D., Brimble, K., Jones, M.: Pico-ing into the future of mobile projector phones. In: 28th International Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ‘10), Georgia, USA, pp. 3997–4002 (2010)

  3. Albitar, C., Doignon, C., Graebling, P.: Calibration of vision systems based on pseudo-random patterns. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 321–326 (2009)

  4. Yang, T.-J., Tsai, Y.-M., Chen, L.-G.: Smart display: a mobile self-adaptive projector-camera system. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2011)

  5. Xu, J., Xi, N., Zhang, C., Shi, Q.: Real-time 3D shape measurement system based on single structure light pattern. In: IEEE International Conference on Robotics and Automation, Alaska, USA, pp. 121–126 (2010)

  6. Dai, J., Chung, R.: On making projector both a display device and a 3D sensor. In: International Symposium on Visual Computing (ISVC)’12, pp. 654–664 (2012)

  7. Mistry, P., Maes, P., Chang, L.: WUW—wear ur world. In: 27th International Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA’09), Boston, USA, pp. 4111–4116 (2009)

  8. Mistry, P., Maes, P.: SixthSense: a wearable gestural interface. In: SIGGRAPH Asia 2009, Yokohama, Japan (2009)

  9. Jeong, H.-T., Lee, D.-W., Heo, G.-S., Lee, C.-H.: Live book: a mixed reality book using a projection system. In: IEEE International Conference on Consumer Electronics-ICCE, pp. 680–681 (2012)

  10. Xiao, R., Harrison, C., Hudson, S.E.: WorldKit: rapid and easy creation of ad hoc interactive applications on everyday surfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, pp. 879–888 (2013)

  11. Park, J., Kim, G.J.: Interacting with robots “indirectly” through projected display. In: 5th International Conference on Ubiquitous and Ambient Intelligence (URAI 2008) (2008)

  12. Kwon, E., Kim, G.J.: Humanoid robot vs. projector robot: exploring an indirect approach to human robot interaction. In: 5th International Conference on Human-Robot Interaction, pp. 157–158 (2010)

  13. Greaves, A., Hang, A., Rukzio, E.: Picture Browsing and map interaction using a projector phone. In: 10th International Conference on Human Computer Interaction with mobile devices and services (MobileHCI ‘08), pp. 527–530 (2008)

  14. Cauchard, J.R., Fraser, M., Han, T., Subramanian, S.: Steerable projection: exploring alignment in interactive mobile displays. Pers. Ubiquit. Comput. 16(1), 27–37 (2012)

    Article  Google Scholar 

  15. Rukzio, E., Holleis, P., Gellersen, H.: Personal projectors for pervasive computing. IEEE Pervas. Comput. 11(2), 30–37 (2012)

    Article  Google Scholar 

  16. Dachselt, R., Häkkilä, J., Jones, M., Löchtefeld, M., Rohs, M., Rukzio, E.: Pico projectors: firefly or bright future? Interactions 19(2), 24–29 (2012)

    Article  Google Scholar 

  17. Greaves, A., Rukzio, E.: Evaluation of picture browsing using a projector phone. In: 10th International Conference on Human Computer Interaction with mobile devices and services (MobileHCI ‘08), pp. 351–354 (2008)

  18. Harrison, C., Benko, H., Wilson, A.D.: OmniTouch: wearable multitouch interaction everywhere. In: Proceedings of the 24th annual ACM symposium on User interface software and technology, Santa Barbara, CA, USA, pp. 441–450 (2011)

  19. Wilson, A.D., Benko, H., Izadi, S., Hilliges, O.: Steerable augmented reality with the beamatron. In: Proceedings of the 25th annual ACM symposium on User interface software and technology, pp. 413–422 (2012)

  20. Winkler, C., Seifert, J., Dobbelstein, D., Rukzio, E.: Pervasive information through constant personal projection: the ambient mobile pervasive display (AMP-D). In: Proceedings of the 32nd annual ACM conference on Human factors in computing systems, Toronto, Canada, pp. 4117–4126 (2014)

  21. Jones, B., Sodhi, R., Murdock, M., Mehra, R., Benko, H., Wilson, A.D., Ofek, E., MacIntyre, B., Raghuvanshi, N., Shapira, L.: RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units. In: Proceedings of the 27th annual ACM symposium on User interface software and technology, Honolulu, HI, USA, pp. 637–644 (2014)

  22. Molyneaux, D., Izadi, S., Kim, D., Hilliges, O., Hodges, S., Cao, X., Butler, A., Gellersen, H.: Interactive environment-aware handheld projectors for pervasive computing spaces. Pervas. Comput. 7319, 197–215 (2012)

    Article  Google Scholar 

  23. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimed. 19(2), 4–10 (2012)

    Article  Google Scholar 

  24. Han, J., Shao, L., Dong, X., Shotton, J.: Enhanced computer vision with microsoft kinect sensor: a review. IEEE Trans. Cybern. 43(5), 1318–1334 (2013)

    Article  Google Scholar 

  25. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics, vol. 79, pp. 477–491. Springer, Berlin (2014)

  26. Wang, K., Zhang, G., Bao, H.: Robust 3D reconstruction with an RGB-D camera. IEEE Trans. Image Process. 23(11), 4893–4906 (2014)

    Article  MathSciNet  Google Scholar 

  27. Harville, M., Culbertson, B., Sobel, I., Gelb, D., Fitzhugh, A., Tanguay, D.: Practical methods for geometric and photometric correction of tiled projector. In: Proceedings of IEEE International Workshop on ProjectorCamera Systems (ProCams), New York, USA, pp. 52–59 (2006)

  28. Yang, R., Majumder, A., Brown, M.S.: Camera-based calibration techniques for seamless multiprojector displays. IEEE Trans. Vis. Comput. Graph. 11, 193–206 (2005)

    Article  Google Scholar 

  29. Ahmed, A., Hafiz, R., Khan, M.M., Cho, Y., Cha, J.: Geometric correction for uneven quadric projection surfaces using recursive subdivision of Bézier patches. ETRI J. 35, 1115–1125 (2013)

    Article  Google Scholar 

  30. Salvi, J., Fernandez, S., Pribanic, T., Llado, X.: A state of the art in structured light patterns for surface profilometry. Pattern Recogn. 43, 2666–2680 (2010)

    Article  MATH  Google Scholar 

  31. Ishii, I., Yamamoto, K., Doi, K., Tsuji, T.: High-speed 3D image acquisition using coded structured light projection. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, pp. 925–930 (2007)

  32. Payeur, P., Desjardins, D.: Structured light stereoscopic imaging with dynamic pseudo-random patterns. Image Anal. Recogn. Lect. Notes Comput. Sci. 5627, 687–696 (2009)

    Article  Google Scholar 

  33. Pages, J., Salvi, J., Collewet, C., Forest, J.: Optimized De Bruijn patterns for one-shot shape acquisition. Image Vis. Comput. 23(8), 707–720 (2005)

    Article  Google Scholar 

  34. Albitar, C., Graebling, P., Doignon, C.: Robust structured light coding for 3D reconstruction. In: IEEE 11th International Conference on Computer Vision (ICCV 2007), pp. 1–6 (2007)

  35. Jing, X., Xi, N., Zhang, C., Shi, Q., Gregory, J.: Real-time 3D shape inspection system of automotive parts based on structured light pattern. Opt. Laser Technol. 43, 1–8 (2011)

    Article  Google Scholar 

  36. Mussadiq, S., Hafiz, R.: Projection on suitable sub-surface selected in indoor environment. In: Advances in Visual Computing, Crete, Greece, vol. 8034, pp. 339–348. Springer, Berlin (2013)

  37. Cowan, L., Weibel, N., Griswold, W.G., Pina, L.R., Hollan, J.D.: Projector phone use: practices and social implications. Pers. Ubiquit. Comput. 16(1), 53–63 (2011)

    Article  Google Scholar 

  38. Google Glass. (Online). https://en.wikipedia.org/wiki/Google_Glass. Accessed 31 July 2015

  39. Recon Instruments. (Online). http://reconinstruments.com/products/jet/. Accessed 8 June 2015

  40. Telepathy. (Online). http://tele-pathy.org/eng/product/index.php#sec-bg. Accessed 8 June 2015

  41. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

  42. Ghamisi, P., Couceiro, M.S., Benediktsson, J.A., Ferreira, N.M.F.: An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst. Appl. 39(16), 12407–12417 (2012)

    Article  Google Scholar 

  43. Comaniciu, D., Meer, P.: Mean shift: a robust approach towards feature space. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  44. Pages, J., Salvi, J., Garcia, R., Matabosch, C.: Overview of coded light projection techniques for automatic 3D profiling. In: IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 133–138 (2003)

  45. Chen, H., Ma, S.: Feature points matching for face reconstruction based on the window unique property of pseudo-random coded image. Spec. Issue Intell. Mechatron. 22(6), 688–695 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaq Mussadiq.

Additional information

Communicated by P. Pala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mussadiq, S., Hafiz, R. & Jamal, M.A. Confined projection on selected sub-surface using a robust binary-coded pattern for pico-projectors. Multimedia Systems 23, 207–222 (2017). https://doi.org/10.1007/s00530-015-0477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-015-0477-2

Keywords

Navigation