Skip to main content
Log in

Visual tracking with conditionally adaptive multiple template update scheme for intricate videos

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Tracking of moving objects in real-time scenes is a challenging research problem in computer vision. This is due to incessant live changes in the object features, background, occlusions, and illumination deviations occurring at different instances in the scene. With the objective of tracking visual objects in intricate videos, this paper presents a new color-independent tracking approach, the contributions of which are threefold. First, the illumination level of the sequences is maintained constant using fast discrete curvelet transform. Fisher information metric is calculated based on a cumulative score by comparing the template patches with a reference template at different timeframes. This metric is used for quantifying distances between the consecutive frame histogram distributions. Then, a novel iterative algorithm called conditionally adaptive multiple template update is proposed to regulate the object templates for handling dynamic occlusions effectively. The proposed method is evaluated on a set of extensive challenging benchmark datasets. Experimental results in terms of Center Location Error (CLE), Tracking Success Score (TSS), and Occlusion Success Score (OSS) show that the proposed method competes well with other relevant state-of-the-art tracking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wachs J.P., Kolsch, M., Stern, H., Edan, Y.: Vision-based hand gesture applications. Commun. ACM. 54(2), 60–71 (2011)

    Article  Google Scholar 

  2. Zhang, P., Thomas, T., Emmanuel, S.: Privacy enabled video surveillance using a two-state Markov tracking algorithm. Multimed. Syst. 18(2), 175–199 (2012)

    Article  Google Scholar 

  3. Wang, M., Hong, R., Li, G., Zha, Z.J., Yan, S., Chua, T.S.: Event driven web video summarization by tag localization and key-shot identification. IEEE Trans. Multimed. 14(4), 975–985 (2012)

    Article  Google Scholar 

  4. Park, B.S., Yoo, S.J., Park, J.B., Choi, Y.H.: A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots. IEEE Trans. Control Syst. Technol. 18(5), 1199–1206 (2010)

    Article  Google Scholar 

  5. Peter, A., Rangarajan, A.: Shape analysis using the Fisher–Rao Riemannian metric: unifying shape representation and deformation. Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium IEEE (2006)

  6. Darms, M. S.: Obstacle detection and tracking for the urban challenge. Intell. Transp. Syst. IEEE Trans. 10(3), 475–485 (2009)

    Article  Google Scholar 

  7. Bo, C., et al.: Online visual tracking based on subspace representation with continuous occlusion modeling. Multimed. Syst.: 1–12 (2015)

  8. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. Computer vision and pattern recognition (CVPR), 2012 IEEE Conference IEEE, (2012)

  9. Zhao, H., Wang, X.: Robust visual tracking via discriminative appearance model based on sparse coding. Multimed. Syst. 1–10 (2014)

  10. Ross, D.A., Lim, J., Lin, RS., Yang, MH.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  11. Yang, H., et al. Recent advances and trends in visual tracking: a review. Neurocomputing 74(18), 3823–3831 (2011)

    Article  Google Scholar 

  12. Li, S.: Moving object detection and tracking in video surveillance system. Sixth International Symposium on Multispectral Image Processing and Pattern Recognition. International Society for Optics and Photonics (2009)

  13. Chakraborty, B., Meher, S.: A real-time trajectory-based ball detection-and-tracking framework for basketball video. J. Opt. 42(2), 156–170 (2013)

    Article  Google Scholar 

  14. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. BMVC 1(5), 6 (2006)

    Google Scholar 

  15. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. Computer vision—ECCV 2000. Springer, Berlin, pp 751–767 (2000)

  16. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. Pattern Anal. Mach. Intell. IEEE Trans. 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  17. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. Proceedings of the IEEE conference on computer vision and pattern recognition (2013)

  18. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell., pp 99 (2015)

  19. Smeulders, AWM., et al. Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)

    Article  Google Scholar 

  20. Hu, W., Zhou, X., Li, W., Luo, W., Zhang, X., Maybank, S.: Active contour-based visual tracking by integrating colors, shapes, and motions. IEEE Trans. Image Process. 22(5), 1778–1792 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sugandi, B.: A color-based particle filter for multiple object tracking in an outdoor environment. Artif. Life Robot. 15(1), 41–47 (2010)

    Article  Google Scholar 

  22. Zhang, Z., Yue, S., Zhang, G.: Fly visual system inspired artificial neural network for collision detection. Neurocomputing 153, 221–234 (2015)

    Article  Google Scholar 

  23. Ren, T., et al.: Soft-assigned bag of features for object tracking. Multimed. Syst. 21(2), 189–205 (2015)

    Article  Google Scholar 

  24. Zhang, K., et al.: Robust visual tracking via convolutional networks. arXiv preprint arXiv:1501.04505 (2015)

  25. Nebehay, G., Pflugfelder, R.: Clustering of static-adaptive correspondences for deformable object tracking. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

  26. Nie, W., Liu, A., Su, Y. et al.: Single/cross-camera multiple-person tracking by graph matching. Neurocomputing 139, 220–232 (2014)

    Article  Google Scholar 

  27. Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kwon, J., Lee, K.M.: Visual tracking decomposition. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE (2010)

  29. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. Pattern Anal. Mach. Intell. IEEE Trans. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  30. Chen, S., Zhu, S., Yan, Y.: Robust visual tracking via online semi-supervised co-boosting. Multimedia Syst. 1–17 (2015)

  31. Zhang, T., et al.: Robust visual tracking via exclusive context modeling. IEEE Trans. Cybern. 46(1), 51–63 (2016)

    Article  Google Scholar 

  32. Ding, J., et al.: Robust tracking with adaptive appearance learning and occlusion detection. Multimedia Syst. 22(2), 255–269 (2016)

    Article  Google Scholar 

  33. Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Cehovin, L., Fernandez, G., Pflugfelder, R.: The visual object tracking VOT2015 challenge results. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1–23 (2015)

  34. Huang, T., Yang, G., Tang, G.:. A fast two-dimensional median filtering algorithm. Acoust. Speech Signal Process. IEEE Trans. 27(1), 13–18 (1979)

    Article  Google Scholar 

  35. Barnard, K., Cardei, V., Funt, B.: A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data. Image Process. IEEE Trans. 11(9):972–984 (2002)

    Article  Google Scholar 

  36. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via structured multi-task sparse learning. Int. J. Comput. Vision. 101(2), 367–383 (2013)

    Article  MathSciNet  Google Scholar 

  37. Cehovin, L., Kristan, M., Leonardis, A.: Robust visual tracking using an adaptive coupled-layer visual model. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 941–953 (2013)

    Article  Google Scholar 

  38. Bao, C., Wu, Y., Ling, H., Ji, H.: Real-time robust l1 tracker using accelerated proximal gradient approach. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

  39. Yoon, J. H., Kim, D. Y., Yoon, K. J.: Visual tracking via adaptive tracker selection with multiple features. In: Proceedings of European Conference on Computer Vision (ECCV) (2012)

  40. Wang, D., Lu, H.: Visual tracking via probability continuous outlier model. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. pp. 3478–3485 (2014)

  41. He, S., Yang, Q., Lau, R. W. H., Wang, J., Yang, M.-H.: Visual tracking via locality sensitive histograms. CVPR (2013)

  42. Henriques, J. F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels, Computer Vision–ECCV 2012, Springer, pp. 702–715 (2012)

  43. Valera, M., Velastin, S.A.: Intelligent distributed surveillance systems: a review. Vis. Image Signal Process. IEEE Proc. IET 152(2), 77–79 (2005)

    Google Scholar 

  44. Zhang, K., Zhang, L., Yang, M.H.: Real-time compressive tracking. European Conference on Computer Vision. Springer, Berlin (2012)

  45. Oron, S., et al. Locally orderless tracking. Int. J. Comput. Vis. 111(2), 213–228 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Joy.

Additional information

Communicated by Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joy, E., Peter, J.D. Visual tracking with conditionally adaptive multiple template update scheme for intricate videos. Multimedia Systems 24, 175–194 (2018). https://doi.org/10.1007/s00530-017-0540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-017-0540-2

Keywords

Navigation