Skip to main content
Log in

Segmentation of blood vessels using rule-based and machine-learning-based methods: a review

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Vessel segmentation as a component of medical image processing is the prerequisite for accurate diagnosis of vascular-related diseases. Manual delineation of blood vessels has been turned out to be time consuming and observer dependent. Therefore, much effort has been dedicated to the automatic or semi-automatic vessel segmentation methods. Previous literatures have reviewed the state of vessel segmentation methods from various perspectives. However, their reviews did not take the modern machine-learning methods especially deep neural networks into account. In this paper, we reviewed the state-of-the-art vessel segmentation methods by dividing them into two categories, rule-based, and machine-learning-based methods. The rule-based methods discriminate vessel structure from background relying on intuitively and exquisitely designed rule sets, while the machine-learning-based methods carry out the segmentation by self-learned rules from the previous experience. Instead of exhaustively listing all vessel segmentation methods, this paper focuses on the well-known blood vessel segmentation methods in recent years, to give readers a glimpse of the current state and future direction of segmentation technique for blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorthois, S., Cassot, F.: Fractal analysis of vascular networks: insights from morphogenesis. J. Theor. Biol. 262(4), 614–633 (2010)

    Article  MATH  Google Scholar 

  2. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81–121 (2004)

    Article  Google Scholar 

  3. Lesage, D., Angelini, E.D., Bloch, I., et al.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  4. Bibiloni, P., Gonzalez-Hidalgo, M., Massanet, S.: A survey on curvilinear object segmentation in multiple applications. Pattern Recogn. 60, 949–970 (2016)

    Article  Google Scholar 

  5. Loizou, C.P.: A review of ultrasound common carotid artery image and video segmentation techniques. Med. Biol. Eng. Comput. 52(12), 1073–1093 (2014)

    Article  Google Scholar 

  6. Fraz, M.M., Remagnino, P., Hoppe, A., et al.: Blood vessel segmentation methodologies in retinal images—a survey. Comput. Methods Progr. Biomed. 108(1), 407–433 (2012)

    Article  Google Scholar 

  7. Litjens, G., Kooi, T., Bejnordi, B.E., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

  8. Marin, D., Aquino, A., Emilio Gegundez-Arias, M., et al.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)

    Article  Google Scholar 

  9. Sato, Y., Nakajima, S., Atsumi, H., et al.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Cvrmed-Mrcas’97: First joint conference—Computer vision, virtual reality and robotics in medicine and medical robotics and computer-assisted surgery, vol. 1205, pp 213–222 (1997)

  10. Frangi, A.F., Niessen, W.J., Vincken, K.L., et al.: (1998) Multiscale vessel enhancement filtering. In: Lecture Notes in Computer Science. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention—MICCAI’98, 1998 1998. Springer, Berlin, Germany, pp 130–137

  11. Krissian, K., Malandain, G., Ayache, N., et al.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80(2), 130–171 (2000)

    Article  MATH  Google Scholar 

  12. Zhou, C., Chan, H.P., Chughtai, A., et al.: Computerized analysis of coronary artery disease: performance evaluation of segmentation and tracking of coronary arteries in CT angiograms. Med. Phys. 41(8), 081912 (2014)

    Article  Google Scholar 

  13. Xiao, C., Staring, M., Wang, Y., et al.: Multiscale Bi-Gaussian filter for adjacent curvilinear structures detection with application to vasculature images. IEEE Trans. Image Process. 22(1), 174–188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, F., Liang, J., Chen, D., et al.: Automatic segmentation method for bone and blood vessel in murine hindlimb. Med. Phys. 42(7), 4043–4054 (2015)

    Article  Google Scholar 

  15. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)

    Article  Google Scholar 

  16. Nguyen, U.T.V., Bhuiyan, A., Park, L.A.F., et al.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46(3), 703–715 (2013)

    Article  Google Scholar 

  17. Ding, Y., Ward, W.O.C., Waesterlid, T., et al.: Three-dimensional vessel segmentation using a novel combinatory filter framework. Phys. Med. Biol. 59(22), 7013–7029 (2014)

    Article  Google Scholar 

  18. Qian, X., Brennan, M.P., Dione, D.P., et al.: A non-parametric vessel detection method for complex vascular structures. Med. Image Anal. 13(1), 49–61 (2009)

    Article  Google Scholar 

  19. Rivest-Henault, D., Cheriet, M.: 3-D curvilinear structure detection filter via structure-ball analysis. IEEE Trans. Image Process. 22(7), 2849–2863 (2013)

    Article  Google Scholar 

  20. Zhang, B., Zhang, L., Zhang, L., et al.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 40(4), 438–445 (2010)

    Article  Google Scholar 

  21. Lajevardi, S.M., Arakala, A., Davis, S.A., et al.: Retina verification system based on biometric graph matching. IEEE Trans. Image Process. 22(9), 3625–3635 (2013)

    Article  Google Scholar 

  22. Kovacs, G., Hajdu, A.: A self-calibrating approach for the segmentation of retinal vessels by template matching and contour reconstruction. Med. Image Anal. 29, 24–46 (2016)

    Article  Google Scholar 

  23. Najman, L., Talbot, H.: Introduction to mathematical morphology. Comput. Vis. Graph. Image Process. 35(3), 283–305 (1986)

  24. Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7), 1010–1019 (2001)

    Article  MATH  Google Scholar 

  25. Passat, N., Ronse, C., Baruthio, J., et al.: Watershed and multimodal data for brain vessel segmentation: application to the superior sagittal sinus. Image Vis. Comput. 25(4), 512–521 (2007)

    Article  Google Scholar 

  26. Bouraoui, B., Ronse, C., Baruthio, J., et al.: 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Comput. Med. Imaging Gr. 34(5), 377–387 (2010)

    Article  Google Scholar 

  27. Caldairou, B., Passat, N., Naegel, B.: (2010) Attribute-Filtering and Knowledge Extraction for Vessel Segmentation. In: Bebis G, Boyle R, Parvin B et al. (eds) Advances in Visual Computing: 6th International Symposium, ISVC 2010, Las Vegas, NV, USA, November 29-December 1, 2010. Proceedings, Part I. Springer, Berlin, Heidelberg, pp 13–22. https://doi.org/10.1007/978-3-642-17289-2_2

  28. Babin, D., Pizurica, A., Bellens, R., et al.: Generalized pixel profiling and comparative segmentation with application to arteriovenous malformation segmentation. Med. Image Anal. 16(5), 991–1002 (2012)

    Article  Google Scholar 

  29. Babin, D., Pizurica, A., De Vylder, J., et al.: Brain blood vessel segmentation using line-shaped profiles. Phys. Med. Biol. 58(22), 8041–8061 (2013)

    Article  Google Scholar 

  30. Dufour, A., Tankyevych, O., Naegel, B., et al.: Filtering and segmentation of 3D angiographic data: advances based on mathematical morphology. Med. Image Anal. 17(2), 147–164 (2013)

    Article  Google Scholar 

  31. Sigurosson, E.M., Valero, S., Benediktsson, J.A., et al.: Automatic retinal vessel extraction based on directional mathematical morphology and fuzzy classification. Pattern Recogn. Lett. 47, 164–171 (2014)

    Article  Google Scholar 

  32. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997)

    Article  Google Scholar 

  33. Wang, L., Kallem, V., Bansal, M., et al.: Interactive retinal vessel extraction by integrating vessel tracing and graph search. In: Medical image computing and computer-assisted intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 16 (Pt 2), pp. 567–574 (2013)

  34. Li, H., Yezzi, A.: Vessels as 4-d curves: global minimal 4-d paths to extract 3-d tubular surfaces and centerlines. IEEE Trans. Med. Imaging 26(9), 1213–1223 (2007)

    Article  Google Scholar 

  35. Mohan, V., Sundaramoorthi, G., Tannenbaum, A.: Tubular surface segmentation for extracting anatomical structures from medical imagery. IEEE Trans. Med. Imaging 29(12), 1945–1958 (2010)

    Article  Google Scholar 

  36. Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vis. 92(2), 192–210 (2011)

    Article  Google Scholar 

  37. Cetin, S., Demir, A., Yezzi, A., et al.: Vessel tractography using an intensity based tensor model with branch detection. IEEE Trans. Med. Imaging 32(2), 348–363 (2013)

    Article  Google Scholar 

  38. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  39. Li, C., Huang, R., Ding, Z., et al.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  41. Lorigo, L.M., Faugeras, O.D., Grimson, W.E.L., et al.: CURVES: curve evolution for vessel segmentation. Med. Image Anal. 5(3), 195–206 (2001)

    Article  Google Scholar 

  42. Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel enhancing diffusion—a scale space representation of vessel structures. Med. Image Anal. 10(6), 815–825 (2006)

    Article  Google Scholar 

  43. Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel axis tracking using topology constrained surface evolution. IEEE Trans. Med. Imaging 26(3), 309–316 (2007)

    Article  Google Scholar 

  44. Forkert, N.D., Schmidt-Richberg, A., Fiehler, J., et al.: 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights. Magn. Reson. Imaging 31(2), 262–271 (2013)

    Article  Google Scholar 

  45. McInerney, T., Terzopoulos, D.: T-snakes: topology adaptive snakes. Med. Image Anal. 4(2), 73–91 (2000)

    Article  Google Scholar 

  46. Xu, X., Zhou, Y., Cheng, X., et al.: Ultrasound intima-media segmentation using Hough transform and dual snake model. Comput. Med. Imaging Gr. 36(3), 248–258 (2012)

    Article  Google Scholar 

  47. Yuanzhi, C., Xin, H., Ji, W., et al.: Accurate vessel segmentation with constrained B-snake. IEEE Trans. Image Process. 24(8), 2440–2455 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  49. Wolz, R., Chu, C., Misawa, K., et al.: Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans. Med. Imaging 32(9), 1723–1730 (2013)

    Article  Google Scholar 

  50. Liu, M., Zhang, J., Yap, P.-T., et al.: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data. Med. Image Anal. 36, 123–134 (2017)

    Article  Google Scholar 

  51. Bauer, C., Pock, T., Sorantin, E., et al.: Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts. Med. Image Anal. 14(2), 172–184 (2010)

    Article  Google Scholar 

  52. Esneault, S., Lafon, C., Dillenseger, J.-L.: Liver vessels segmentation using a hybrid geometrical moments/graph cuts method. IEEE Trans. Biomed. Eng. 57(2), 276–283 (2010)

    Article  Google Scholar 

  53. Zhao, Y., Liu, Y., Wu, X., et al.: (2015) Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase. Plos One 10 (4)

  54. Hernandez-Vela, A., Gatta, C., Escalera, S., et al.: Accurate coronary centerline extraction, caliber estimation, and catheter detection in angiographies. IEEE Trans. Inf. Technol. Biomed. 16(6), 1332–1340 (2012)

    Article  Google Scholar 

  55. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  56. Yazici, A.C., Ogus, E., Ankarali, S., et al.: Artificial neural networks: review. Turk Klin Tip Bilim Derg 27(1), 65–71 (2007)

    Google Scholar 

  57. Gardner, G.G., Keating, D., Williamson, T.H., et al.: Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br. J. Ophthalmol. 80(11), 940–944 (1996)

    Article  Google Scholar 

  58. Sinthanayothin, C., Boyce, J.F., Cook, H.L., et al.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83(8), 902–910 (1999)

    Article  Google Scholar 

  59. Niemeijer, M., Staal, J., van Ginneken, B., et al.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Proceedings of SPIE, pp. 648–656 (2004)

  60. Staal, J., Abramoff, M.D., Niemeijer, M., et al.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  61. Soares, J.V.B., Leandro, J.J.G., Cesar, R.M. Jr., et al.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)

    Article  Google Scholar 

  62. Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification. IEEE J. Biomed. Health Inf. 19(3), 1118–1128 (2015)

    Google Scholar 

  63. Bhuiyan, A., Nath, B., Chua, J., et al.: Blood vessel segmentation from color retinal images using unsupervised texture classification. In: 2007 IEEE International Conference on Image Processing, Sept. 16 2007–Oct. 19 2007, pp. V-521–V-524 (2007)

  64. Kande, G.B., Subbaiah, P.V., Savithri, T.S.: Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. J. Med. Syst. 34(5), 849–858 (2010)

    Article  Google Scholar 

  65. Saffarzadeh, V.M., Osareh, A., Shadgar, B.: Vessel Segmentation in retinal images using multi-scale line operator and K-Means clustering. J.Med. Sign. Sens. 4(2), 122–129 (2014)

    Google Scholar 

  66. Zhang, J., Liu, M., An, L., et al.: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J. Biomed. Health Inf. 21(6), 1607–1616 (2017)

  67. Xu, L., Luo, S.: A novel method for blood vessel detection from retinal images. Biomed. Eng. Online 9, 14 (2010)

    Article  Google Scholar 

  68. You, X., Peng, Q., Yuan, Y., et al.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn. 44(10–11), 2314–2324 (2011)

    Article  Google Scholar 

  69. Agurto, C., Yu, H., Murray, V., et al.: A multiscale decomposition approach to detect abnormal vasculature in the optic disc. Comput. Med. Imaging Gr. 43, 137–149 (2015)

    Article  Google Scholar 

  70. Zhang, J., Liang, J., Zhao, H.: Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans. Image Process. 22(1), 31–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ben-Haim, Y., Tom-Tov, E.: A streaming parallel decision tree algorithm. J. Mach. Learn. Res. 11, 849–872 (2010)

    MathSciNet  MATH  Google Scholar 

  72. Verikas, A., Gelzinis, A., Bacauskiene, M.: Mining data with random forests: a survey and results of new tests. Pattern Recogn. 44(2), 330–349 (2011)

    Article  Google Scholar 

  73. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40(2), 139–157 (2000)

    Article  Google Scholar 

  74. Biau, G., Devroye, L., Lugosi, G.: Consistency of random forests and other averaging classifiers. J. Mach. Learn. Res. 9, 2015–2033 (2008)

    MathSciNet  MATH  Google Scholar 

  75. Fraz, M.M., Remagnino, P., Hoppe, A., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  76. Fraz, M.M., Rudnicka, A.R., Owen, C.G., et al.: Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification. Int. J. Comput. Assist. Radiol. Surg. 9(5), 795–811 (2014)

    Article  Google Scholar 

  77. Shahrian, E.V., Yousefi, S., Isfahani, A.M., et al.: Vessels segmentation in color retinal images using ensemble of bagged decision trees and patched based principle component analysis and linear discriminant analysis. Investig. Ophthalmol. Vis. Sci. 56, 7 (2015)

    Google Scholar 

  78. Aslani, S., Sarnel, H.: A new supervised retinal vessel segmentation method based on robust hybrid features. Biomed. Signal Process. Control 30, 1–12 (2016)

    Article  Google Scholar 

  79. Cherry, K.M., Peplinski, B., Kim, L., et al.: Sequential Monte Carlo tracking of the marginal artery by multiple cue fusion and random forest regression. Med. Image Anal. 19(1), 164–175 (2015)

    Article  Google Scholar 

  80. Schneider, M., Hirsch, S., Weber, B., et al.: Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters. Med. Image Anal. 19(1), 220–249 (2015)

    Article  Google Scholar 

  81. Wang, S., Yin, Y., Cao, G., et al.: Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149, 708–717 (2015)

    Article  Google Scholar 

  82. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  83. Glorot, X., Bordes, A., Bengio, Y.: Deep Sparse Rectifier Neural Networks. In: International Conference on Artificial Intelligence and Statistics (AISTATS), 11–13 April 2011, pp. 315–323 (2011)

  84. Srivastava, N., Hinton, G., Krizhevsky, A., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  85. Zhang, J., Liu, M., Shen, D.: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans. Image Process. 26(10), 4753–4764 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  86. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  87. Khalaf, A.F., Yassine, I.A., Fahmy A.S.: Convolutional neural networks for deep feature learning in retinal vessel segmentation. In: 2016 IEEE International Conference on Image Processing (ICIP), 25–28 Sept. 2016, pp. 385–388 (2016)

  88. Wu, A., Xu, Z., Gao, M., et al.: Deep vessel tracking: A generalized probabilistic approach via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 13–16 April 2016, pp. 1363–1367 (2016)

  89. Prentasic, P., Heisler, M., Mammo, Z., et al.: (2016) Segmentation of the foveal microvasculature using deep learning networks. J. Biomed. Opt. 21, 7

    Article  Google Scholar 

  90. Maji, D., Santara, A., Mitra, P., et al.: (2016) Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images. arXiv:160304833v1

  91. Li, Q., Feng, B., Xie, L., et al.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2016)

    Article  Google Scholar 

  92. Moeskops, P., Wolterink, J.M., van der Velden, B.H.M., et al.: (2016) Deep Learning for Multi-task Medical Image Segmentation in Multiple Modalities. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016: 19th International Conference, Athens, Greece, October 17–21, 2016. In: Proceedings, Part II. Springer International Publishing, Cham, pp. 478–486. https://doi.org/10.1007/978-3-319-46723-8_55

  93. Annunziata, R., Trucco, E.: Accelerating convolutional sparse coding for curvilinear structures segmentation by refining SCIRD-TS filter banks. IEEE Trans. Med. Imaging 35(11), 2381–2392 (2016)

    Article  Google Scholar 

  94. Zhao, F., Liu, J., Qu, X., et al.: In vivo quantitative evaluation of vascular parameters for angiogenesis based on sparse principal component analysis and aggregated boosted trees. Phys. Med. Biol. 59(24), 7777–7791 (2014)

    Article  Google Scholar 

  95. Zhao, F., Liang, J., Chen, X., et al.: Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution. Med. Biol. Eng. Comput. 54(2–3), 511–524 (2016)

    Article  Google Scholar 

  96. Piccinelli, M., Veneziani, A., Steinman, D.A., et al.: A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans. Med. Imaging. 28(8), 1141–1155 (2009)

    Article  Google Scholar 

  97. Wu, X., Luboz, V., Krissian, K., et al.: Segmentation and reconstruction of vascular structures for 3D real-time simulation. Med. Image Anal. 15(1), 22–34 (2011)

    Article  Google Scholar 

  98. Zhao, F., Sun, F., Hou, Y., et al.: (2017) A monocentric centerline extraction method for ring-like blood vessels. Med. Biol. Eng. Comput.

  99. Wong, W.C.K., So, R.W.K., Chung, A.C.S.: Principal curves for lumen center extraction and flow channel width estimation in 3-D Arterial networks: theory, algorithm, and validation. IEEE Trans. Image Process. 21(4), 1847–1862 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  100. Zhang, J., Gao, Y., Park, S.H., et al.: Structured learning for 3D perivascular spaces segmentation using vascular features. IEEE Trans. Biomed. Eng. 64(12), 2803–2812 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61601363, 61372046, 61640418, 61401264, 11571012, 81530058, 61601154, and 61502387, the National Key R&D Program of China under Grant No. 2016YFC1300300, the Science and Technology Plan Program in Shaanxi Province of China under Grant Nos. 2013K12-20-12 and 2015KW-002, the Natural Science Research Plan Program in Shaanxi Province of China under Grant Nos. 2017JQ6017, 2015JM6322, and 2015JZ019, and the Scientific Research Foundation of Northwest University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei He.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest in our research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 632 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Chen, Y., Hou, Y. et al. Segmentation of blood vessels using rule-based and machine-learning-based methods: a review. Multimedia Systems 25, 109–118 (2019). https://doi.org/10.1007/s00530-017-0580-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-017-0580-7

Keywords

Navigation