Skip to main content
Log in

MQTT-SN, CoAP, and RTP in wireless IoT real-time communications

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

A great number of Internet of things (IoT) applications rely on real-time communication (RTC) mechanisms for transmission of media. Essentially, applications analyze and process media to make decisions that typically affect actuation and control of embedded devices. IoT networks, however, are subjected to constrains that limit the computational and resource complexity of all entities involved. This is particularly critical when considering the traditional RTC protocols like real-time protocol (RTP) that was not designed to perform well in the context of low-power lossy networks (LLNs). This paper focuses on alternatives to media transport in IoT networks. Specially, constrained application protocol (CoAP) and the message queuing telemetry transport sensor network protocol (MQTT-SN) are presented as valid technologies for media propagation in LLNs. The paper models and compares CoAP, RTP, and MQTT-SN to determine the most efficient scenario for audio, speech, and video transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee, W.C.Y.: Estimate of channel capacity in Raleigh fading environment. In: 38th IEEE Vehicular Technology Conference, pp. 582–584 (1988). https://doi.org/10.1109/VETEC.1988.195421

  2. Herrero, R.: Integrating HEC with circuit breakers and multipath RTP to improve RTC media quality. Telecommun. Syst. 64(1), 211–221 (2017). https://doi.org/10.1007/s11235-016-0169-z

    Article  MathSciNet  Google Scholar 

  3. Herrero, R., St-Pierre, C.: Dynamic forward error correction in wireless real-time Internet of things networks. IET Netw. 6(6), 218–223 (2017). https://doi.org/10.1049/iet-net.2017.0110

    Article  Google Scholar 

  4. Said, O., Albagory, Y., Nofal, M., Raddady, F.A.: IoT-RTP and IoT-RTCP: adaptive protocols for multimedia transmission over Internet of things environments. IEEE Access 5, 16757–16773 (2017). https://doi.org/10.1109/ACCESS.2017.2726902

    Article  Google Scholar 

  5. Bormann, C., Hartke, K., Shelby, Z.: The constrained application protocol (CoAP). RFC 7252 (2015). https://doi.org/10.17487/rfc7252. https://www.rfc-editor.org/rfc/rfc7252.txt. Accessed June 2014

  6. Montenegro, G., Hui, J., Culler, D., Kushalnagar, N.: Transmission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944 (2007). https://doi.org/10.17487/RFC4944. https://www.rfc-editor.org/rfc/rfc4944.txt. Accessed Sept 2007

  7. Bormann, C., Shelby, Z.: Block-wise transfers in the constrained application protocol (CoAP). RFC 7959 (2016). https://doi.org/10.17487/RFC7959. https://www.rfc-editor.org/rfc/rfc7959.txt

  8. Asghar, M.H., Mohammadzadeh, N.: Design and simulation of energy efficiency in node based on MQTT protocol in Internet of things. In: 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 1413–1417 (2015). https://doi.org/10.1109/ICGCIoT.2015.7380689

  9. Pereira, E.G., Pereira, R.: Video encoding and streaming mechanisms in IoT low power networks. In: 2015 3rd International Conference on Future Internet of Things and Cloud, pp. 357–362 (2015). https://doi.org/10.1109/FiCloud.2015.88

  10. Kim, H.: Low power routing and channel allocation method of wireless video sensor networks for Internet of things (IoT). In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 446–451 (2014). https://doi.org/10.1109/WF-IoT.2014.6803208

  11. Plageras, A.P., Psannis, K.E., Ishibashi, Y., Kim, B.G.: IoT-based surveillance system for ubiquitous healthcare. In: IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 6226–6230 (2016). https://doi.org/10.1109/IECON.2016.7793281

  12. Herrero, R.: Dynamic CoAP mode control in real time wireless IoT networks. IEEE Internet Things J. (2018). https://doi.org/10.1109/JIOT.2018.2857701

    Article  Google Scholar 

  13. Choi, G., Kim, D., Yeom, I.: Efficient streaming over COAP. In: 2016 International Conference on Information Networking (ICOIN), pp. 476–478 (2016). https://doi.org/10.1109/ICOIN.2016.7427163

  14. Herrero, R.: 6Lowpan fragmentation in the context of IoT based media real time communication. Internet Technol. Lett. 3(2), e144 (2020). https://doi.org/10.1002/itl2.144

    Article  MathSciNet  Google Scholar 

  15. Lai, C., Hwang, Y.: The voice controlled Internet of things system. In: 2018 7th International Symposium on Next Generation Electronics (ISNE), pp. 1–2 (2018). https://doi.org/10.1109/ISNE.2018.8394640

  16. Belli, L., Cirani, S., Davoli, L., Ferrari, G., Melegari, L., Montón, M., Picone, M.: A scalable big stream cloud architecture for the Internet of things. Int. J. Syst. Serv. Orient. Eng. 5(4), 26–53 (2015). https://doi.org/10.4018/IJSSOE.2015100102

    Article  Google Scholar 

  17. Hohlfeld, O., Geib, R., Hasslinger, G.: Packet loss in real-time services: Markovian models generating QOE impairments. In: 2008 16th Interntional Workshop on Quality of Service, pp. 239–248 (2008). https://doi.org/10.1109/IWQOS.2008.33

  18. Gilbert, E.N.: Capacity of a burst-noise channel. Bell Syst. Tech. J. 39(5), 1253–1265 (1960). https://doi.org/10.1002/j.1538-7305.1960.tb03959.x

    Article  MathSciNet  Google Scholar 

  19. Elliott, E.O.: Estimates of error rates for codes on burst-noise channels. Bell Syst. Tech. J. 42(5), 1977–1997 (1963). https://doi.org/10.1002/j.1538-7305.1963.tb00955.x

    Article  Google Scholar 

  20. Nagle, J.: RFC 896: Congestion control in IP/TCP internetworks (1984). ftp://www.ftp.internic.net/rfc/rfc896.txt,ftp://ftp.math.utah.edu/pub/rfc/rfc896.txt. Accessed Jan 1984

  21. Hartke, K.: Observing resources in the constrained application protocol (CoAP). RFC 7641 (2015). https://doi.org/10.17487/rfc7641. https://www.rfc-editor.org/rfc/rfc7641.txt. Accessed Sept 2015

  22. VPS+: Vps+ protocol emulator. https://www.l7tr.com. Accessed July 2020

  23. ITU-T Recommendation P.501: Test Signals for Use in Telephonometry. Telephonometry, International Telecommunication Union, Geneva (2000)

  24. ITU-T: G.711 : Pulse code modulation (PCM) of voice frequencies. Technical report G.711, International Telecommunication Union, Geneva (2006)

  25. Salami, R., Laflamme, C., Bessette, B., Adoul, J.: Description of ITU-T recommendation g.729 annex a: reduced complexity 8 kbit/s cs-acelp codec. In: Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’97), vol. 2, ICASSP ’97, p. 775. IEEE Computer Society, Washington, DC, USA (1997)

  26. 3GPP: Ts 26.071: Mandatory speech codec speech processing functions; AMR speech codec; general description. Technical report TS 26.071, 3rd Generation Partnership Project (2008)

  27. Ramo, A., Toukomaa, H.: Subjective quality evaluation of the 3gpp evs codec. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5157–5161 (2015). https://doi.org/10.1109/ICASSP.2015.7178954

  28. ITU-T Recommendation P.863: Technical report, International Telecommunication Union, Geneva, Switzerland

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Herrero.

Additional information

Communicated by R. Steinmetz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrero, R. MQTT-SN, CoAP, and RTP in wireless IoT real-time communications. Multimedia Systems 26, 643–654 (2020). https://doi.org/10.1007/s00530-020-00674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00674-5

Keywords

Navigation