Skip to main content
Log in

Dynamic Data Driven Simulations in Stochastic Environments

  • Published:
Computing Aims and scope Submit manuscript

Abstract

To improve the predictions in dynamic data driven simulations (DDDAS) for subsurface problems, we propose the permeability update based on observed measurements. Based on measurement errors and a priori information about the permeability field, such as covariance of permeability field and its values at the measurement locations, the permeability field is sampled. This sampling problem is highly nonlinear and Markov chain Monte Carlo (MCMC) method is used. We show that using the sampled realizations of the permeability field, the predictions can be significantly improved and the uncertainties can be assessed for this highly nonlinear problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. V. Deutsch A. G. Journel (1998) GSLIB: Geostatistical software library and user's guide EditionNumber2 Oxford University Press New York

    Google Scholar 

  • Douglas, C. C., Shannon, C., Efendiev, Y., Ewing, R., Ginting, V., Lazarov, R., Cole, M., Jones, G., Johnson, C., Simpson, J.: A note on data-driven contaminant simulation. Lecture Notes in Computer Science, vol. 3038. Springer 2004, pp. 701–708.

  • Douglas, C. C., Efendiev, Y., Ewing, R., Lazarov, R., Cole, M. R., Johnson, C. R., Jones, G.: Virtual telemetry middleware for DDDAS. Computational Sciences – ICCS 2003 (Sllot, P. M. A., Abramson, D., Dongarra, J. J., Zomaya, A. Y., and Gorbachev, Yu. E., eds.), vol. 4, pp. 279–288.

  • C. C. Douglas C. Shannon Y. Efendiev R. Ewing V. Ginting R. Lazarov M. R. Cole G. Jones C. R. Johnson J. Simpson (2004) Using a virtual telemetry methodology for dynamic data driven application simulations F. Darema (Eds) Dynamic data driven applications systems Kluwer Amsterdam

    Google Scholar 

  • M. Loève (1977) Probability theory EditionNumber4 Springer Berlin

    Google Scholar 

  • D. Oliver L. Cunha A. Reynolds (1997) ArticleTitleMarkov Chain Monte Carlo methods for conditioning a permeability field to pressure data Math. Geology 29 61–91

    Google Scholar 

  • C. Robert G. Casella (1999) Monte Carlo statistical methods Springer New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Douglas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, C., Efendiev, Y., Ewing, R. et al. Dynamic Data Driven Simulations in Stochastic Environments. Computing 77, 321–333 (2006). https://doi.org/10.1007/s00607-006-0165-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-006-0165-3

AMS Subject Classications

Keywords

Navigation