Skip to main content
Log in

Computing Interval Enclosures for Definite Integrals by Application of Triple Adaptive Strategies

  • Published:
Computing Aims and scope Submit manuscript

An Erratum to this article was published on 10 March 2017

Abstract

In addition to the well-known and widely-used adaptive strategies for region subdivision and the choice of local quadrature rules, there still exists a third possibility for doing numerical integration adaptively, when interval computation is considered. Based on the Peano's kernels theorem and interval arithmetic, we are able to estimate the truncation error of a quadrature rule by means of different derivatives of the integrand, where the available orders of the derivatives depend on the degree of smoothness of the integrand and the exactness degree of the underlying quadrature rule. We classify the methods as the adaptive orders strategies, if they make use of the derivatives of different orders to improve each single local error estimation. In this paper, alternatives for adaptive error estimation are discussed. Moreover, a practical way for realization of the optimal error estimation is suggested. Numerical results for integrands of different classes as well as numerical comparisons of different methods are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. Alefeld J. Herzberger (1983) Introduction to interval computations Academic Press New York Occurrence Handle0552.65041

    MATH  Google Scholar 

  • H. Brass (1977) Quadraturverfahren Vandenhoeck & Ruprecht Göttingen Occurrence Handle0368.65014

    MATH  Google Scholar 

  • Chen, C.-Y.: Adaptive numerische Quadratur und Kubatur mit automatischer Ergebnisverifikation. PhD thesis, University of Karlsruhe, December 1998.

  • G. F. Corliss L. B. Rall (1987) ArticleTitleAdaptive, self-validating numerical quadrature SIAM J. Sci. Stat. Comput. 8 IssueID5 831–847 Occurrence Handle0627.65017 Occurrence Handle902745 Occurrence Handle10.1137/0908069

    Article  MATH  MathSciNet  Google Scholar 

  • R. Cranley T. N. L. Patterson (1971) ArticleTitleOn the automatic numerical evaluation of definite integrals Comput. J. 14 189–198 Occurrence Handle0218.65011 Occurrence Handle281343 Occurrence Handle10.1093/comjnl/14.2.189

    Article  MATH  MathSciNet  Google Scholar 

  • P. J. Davis P. Rabinowitz (1984) Methods of numerical integration EditionNumber2 Academic Press New York Occurrence Handle0537.65020

    MATH  Google Scholar 

  • C. Boor Particlede (1971) CADRE: an algorithm for numerical quadrature J. R. Rice (Eds) Mathematical Software Academic Press New York 417–449

    Google Scholar 

  • C. Boor Particlede (1971) On writing an automatic integration algorithm J. R. Rice (Eds) Mathematical Software Academic Press New York 201–209

    Google Scholar 

  • M. C. Eiermann (1989) ArticleTitleAutomatic, guaranteed integration of analytic functions BIT 29 270–282 Occurrence Handle0688.65017 Occurrence Handle997534 Occurrence Handle10.1007/BF01952682

    Article  MATH  MathSciNet  Google Scholar 

  • H. Engels (1980) Numerical quadrature and cubature Academic Press New York Occurrence Handle0435.65013

    MATH  Google Scholar 

  • Kelch, R.: Numerical quadrature by extrapolation with automatic result verification. In: Scientific Computing with Automatic Result Verification (Adams, E., Kulisch, U., eds.), pp. 143–185. Academic Publisher 1993.

  • Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, Ch.: PASCAL-XSC. Springer 1991.

  • Knuth, D. E.: The art of computer programming, vol. 3. Wesley: Addison, Mass. 1973.

  • W. Kraemer S. Wedner (1996) ArticleTitleTwo adaptive Gauss–Legendre type algorithms for the verified computation of definite integrals Reliable Comput. 2 IssueID3 241–253 Occurrence Handle0858.65020 Occurrence Handle10.1007/BF02391698

    Article  MATH  Google Scholar 

  • U. Kulisch W. L. Miranker (1981) Computer arithmetic in theory and practice Academic Press New York Occurrence Handle0487.65026

    MATH  Google Scholar 

  • M. A. Malcolm R. B. Simpson (1975) ArticleTitleLocal versus global strategies for adaptive quadrature ACM. Trans. Math. Softw. 1 IssueID2 129–146 Occurrence Handle0303.65019 Occurrence Handle371025 Occurrence Handle10.1145/355637.355640

    Article  MATH  MathSciNet  Google Scholar 

  • L. B. Rall (1981) Automatic differentiation: techniques and applications Springer Berlin

    Google Scholar 

  • U. Storck (1993) ArticleTitleVerified calculation of the nodes and weights for Gaussian quadrature formulas Interval Comput. 4 114–124 Occurrence Handle0829.65025 Occurrence Handle1305862

    MATH  MathSciNet  Google Scholar 

  • U. Storck (2000) ArticleTitleAn adaptive numerical integration algorithm with automatic result verification for definite integrals Computing 65 271–280 Occurrence Handle0967.65036 Occurrence Handle1810329 Occurrence Handle10.1007/s006070070011

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Yun Chen.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00607-017-0550-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CY. Computing Interval Enclosures for Definite Integrals by Application of Triple Adaptive Strategies. Computing 78, 81–99 (2006). https://doi.org/10.1007/s00607-006-0172-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-006-0172-4

AMS Subject Classifications

Keywords

Navigation