Skip to main content
Log in

An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing

  • Published:
Computing Aims and scope Submit manuscript

Summary

The discrete Laplace–Beltrami operator plays a prominent role in many digital geometry processing applications ranging from denoising to parameterization, editing, and physical simulation. The standard discretization uses the cotangents of the angles in the immersed mesh which leads to a variety of numerical problems. We advocate the use of the intrinsic Laplace–Beltrami operator. It satisfies a local maximum principle, guaranteeing, e.g., that no flipped triangles can occur in parameterizations. It also leads to better conditioned linear systems. The intrinsic Laplace–Beltrami operator is based on an intrinsic Delaunay triangulation of the surface. We detail an incremental algorithm to construct such triangulations together with an overlay structure which captures the relationship between the extrinsic and intrinsic triangulations. Using a variety of example meshes we demonstrate the numerical benefits of the intrinsic Laplace–Beltrami operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bobenko, A. I., Springborn, B. A.: A discrete Laplace–Beltrami operator for simplicial surfaces. Discrete Comput Geometry (2007); DOI 10.1007/s00454-007-9006-1

  • Botsch M. and Kobbelt L. (2004). An intuitive framework for real-time freeform modeling. ACM Trans Graph 23(3): 630–634

    Article  Google Scholar 

  • Desbrun, M., Meyer, M., Schröder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Comp. Graphics (Proc. of SIGGRAPH), pp. 317–324 (1999)

  • Desbrun M., Meyer M. and Alliez P. (2002). Intrinsic parameterizations of surface meshes. Comp Graph Forum (Proc EG) 21(3): 209–218

    Article  Google Scholar 

  • Grinspun, E., Hirani, A., Desbrun, M., Schröder, P.: Discrete shells. In: Symp. on Comp. Anim., pp. 62–67 (2003)

  • Grinspun, E., Schröder, P., Desbrun, M. (eds.): Discrete differential geometry. Course Notes. ACM SIGGRAPH (2005)

  • Gu, X., Yau, S.-T.: Global conformal surface parameterization. In: Symp. on Geom. Proc., pp. 127–137 (2003)

  • Indermitte C., Liebling T.M., Troyanov M. and Clémençon H. (2001). Voronoi diagrams on piecewise flat surfaces and an application to biological growth. Theor Comput Sci 263: 263–274

    Article  MATH  Google Scholar 

  • Kharevych L., Springborn B. and Schröder P. (2006). Discrete conformal mappings via circle patterns. ACM Trans Graph 25(2): 412–438

    Article  Google Scholar 

  • Lévy B., Petitjean S., Ray N. and Maillot J. (2002). Least squares conformal maps for automatic texture atlas generation. ACM Trans Graph 21(3): 362–371

    Article  Google Scholar 

  • Mercat C. (2001). Discrete Riemann surfaces and the Ising model. Comm Math Phys 218(1): 177–216

    Article  MATH  MathSciNet  Google Scholar 

  • Pinkall U. and Polthier K. (1993). Computing discrete minimal surfaces and their conjugates. Experiment Math 2(1): 15–36

    MATH  MathSciNet  Google Scholar 

  • Polthier K. and Schmies M. (2002). Straightest geodesics on polyhedral surfaces. In: Hege, H.C. and Polthier, K. (eds) Mathematical visualization, pp 135–152. Springer, Wien New York

    Google Scholar 

  • Rippa S. (1990). Minimal roughness property of the Delaunay triangulation. CAGD 7(6): 489–497

    MATH  MathSciNet  Google Scholar 

  • Shewchuk, J.: What is a good linear element? Interpolation, conditioning, and quality measures. In: Proc. Int. Meshing Roundtable, pp. 115–126 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schröder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, M., Springborn, B., Schröder, P. et al. An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing. Computing 81, 199–213 (2007). https://doi.org/10.1007/s00607-007-0249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-007-0249-8

Keywords

Navigation