Skip to main content
Log in

A new matrix test for randomness

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Let \({{\mathcal S}}\) be one of the two multiplicative semigroups: M × M Boolean matrices, or the semigroup of M × M matrices over the field GF(2). Then for any matrix \({A\in {\mathcal S}}\) there exist two unique smallest numbers, namely the index and period k, d, such that A k = A k+d. This fact allows us to form a new statistical test for randomness which we call the Semigroup Matrix Test. In this paper, we present details and results of our experiments for this test. We use Boolean matrices for M = 2, . . . , 5, and matrices over GF(2) of the size M = 2, . . . , 6. We also compare the results with the results obtained by the well-known Binary Matrix Rank Test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M, Stegun IA (eds) (1970) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  2. Cycle detection. http://en.wikipedia.org/wiki/Cycle_detection

  3. Davis RM (1951) The Euler–Fermat theorem for matrices. Duke Math J 18: 613–617

    Article  MATH  MathSciNet  Google Scholar 

  4. Dichtl NM Document NES/DOS/SAG/WP2/023/2. Description of general NESSIE test tools. SIEMENS AG, Munich. http://www.cryptonessie.org

  5. Grošek O, Šiška J (2002) Signature schemes based on matrices. Congressus Numernatium, pp 154–159

  6. Gustavson H, Dawson E, Nielsen L, Caelli W (1998) A computer package for measuring the strength of Ciphers. J Comp Secur 8(13): 667–697

    Google Scholar 

  7. Heyber B (1996) Cryptometry—statistical tests for crypto-primitives. 6th IEEE, Japan-Benelux workshop, Essen, 8.1–8.3. ISBN 90-74249-09-4

  8. Landsberg G (1893) Ueber eine Anzahlbestimmungund eine damit zusammenhängende Reihe. J reine angew Math 111: 87–88

    Google Scholar 

  9. Marsaglia G (1997) http://stat.fsu.edu/~geo/diehard.html

  10. Marshall IB (1939–1941) On the extension of Fermat’s theorem to matrices of order n. In: Proceedings of the Edinburgh Math Soc 6, pp 85–91

  11. Maxfield MW (1951) The order of a matrix under multiplication (modulo m). Duke Math J 18: 619–621

    Article  MATH  MathSciNet  Google Scholar 

  12. Niven I (1948) Fermat’s theorem for matrices. Duke Math J 15: 823–826

    Article  MATH  MathSciNet  Google Scholar 

  13. NIST (2001) A Statistical test suite for random and pseudorandom number generators for cryptographic applications. Special publication, pp 800–822. http://csrc.nict.gov/encryption/aes/

  14. Schwarz Š (1970) On the semigroup of binary relations on a finite set. Czech Math J 20(95): 632–679

    Google Scholar 

  15. Schwarz Š (1974) Sums of powers of binary relations. Mat. Čas. 2(24):161–171 (in Russian)

    Google Scholar 

  16. Schwarz Š (1980) The Euler–Fermat theorem for the semigroup of circulant boolean matrices. Czech Math J 30(105): 135–141

    Google Scholar 

  17. Schwarz Š (1985) Fermat’s theorem for matrices revisited. Math Slovaca 4(35): 343–347

    Google Scholar 

  18. Schwarz Š (1981) The role of semigroups in the elementary theory of numbers. Math Slovaca 4(31): 369–395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Vojvoda.

Additional information

This material is based upon work supported under grant No. VEGA 1/3115/06 and the grant NIL-I-004 from Iceland, Lichtenstein and Norway through the EEA Financial Mechanism and the Norwegian Financial Mechanism.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grošek, O., Vojvoda, M. & Krchnavý, R. A new matrix test for randomness. Computing 85, 21–36 (2009). https://doi.org/10.1007/s00607-009-0033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0033-z

Keywords

Mathematics Subject Classification (2000)

Navigation