Skip to main content

Advertisement

Log in

Deep learning based vein segmentation from susceptibility-weighted images

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Susceptibility-weighted images (SWIs) have recently been confirmed to be more sensitive to acute ischemic stroke than diffusion weighted images in the form of the presence of small veins shortly after the symptom onset. Accurate segmentation of small veins in SWIs is critical for quantitative diagnosis, individual therapy and outcome prediction of acute ischemic stroke. It is challenging to segment veins in SWIs as they exhibit substantial variability and intensity inhomogeneity within a patient and among patients, which may even be hard for experts to delineate manually. A deep convolutional neural network is proposed to segment veins in SWIs with two main contributions: dense connection to concatenate feature maps from preceding layers to enhance network performance, and a hybrid loss function comprising of classification accuracy and global region overlap terms to handle class imbalance. Experiments have been conducted on 10 consecutive patients with acute ischemic stroke using leave-one-out validation, yielding the best Dice coefficient (0.756 ± 0.043) (p < 0.001) as compared with 3 relevant methods. The proposed method could provide a potential tool to quantify veins in SWIs with accuracy to assist decision making especially for thrombolytic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin MP, Liebeskind DS (2016) Imaging of ischemic stroke. Continuum 22(5):1399

    Google Scholar 

  2. Niu SZ, Yu GH, Ma JH, Wang J (2018) Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction. Inverse Probl 34(2):024003

    MathSciNet  MATH  Google Scholar 

  3. Niu SZ, Huang J, Bian ZY, Zeng D, Chen WF, Yu GH, Liang ZR, Ma JH (2017) Iterative reconstruction for sparse-view x-ray CT using alpha-divergence constrained total generalized variation minimization. J X-ray Sci Technol 25(4):673–688

    Google Scholar 

  4. Niu SZ, Gao Y, Bian ZY, Huang J, Chen WF, Yu GH, Liang ZR, Ma JH (2014) Sparse-view x-ray CT reconstruction via total generalized variation regularization. Phys Med Biol 59(12):2997

    Google Scholar 

  5. Niu SZ, Zhang SL, Huang J, Bian ZY, Chen WF, Yu GH, Liang ZR, Ma JH (2016) Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations. Neurocomputing 197:143–160

    Google Scholar 

  6. Chalian M, Tekes A, Meoded A, Poretti A, Huisman TA (2011) Susceptibility-weighted imaging (SWI): a potential non-invasive imaging tool for characterizing ischemic brain injury? J Neuroradiol 38:187–190

    Google Scholar 

  7. Kao HW, Tsai FY, Hasso AN (2012) Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion. Eur Radiol 22(7):1397–1403

    Google Scholar 

  8. Heyn C, Alcaide-Leon P, Bharatha A, Sussman MS, Kucharczyk W, Mandell DM (2016) Susceptibility-weighted imaging in neurovascular disease. Top Magn Reson Imaging 25(2):63–71

    Google Scholar 

  9. Chen CY, Chen CI, Tsai FY, Tsai PH, Chan WP (2015) Prominent vessel sign on susceptibility-weighted imaging in acute stroke: Prediction of infarct growth and clinical outcome. PLoS ONE 10(6):e0131118

    Google Scholar 

  10. Baik SK, Choi W, Oh SJ, Park KP, Park MG, Yang TI, Jeong HW (2012) Change in cortical vessel signs on susceptibility-weighted images after full recanalization in hyperacute ischemic stroke. Cerebrovasc Dis 34:206–212

    Google Scholar 

  11. Sun W, Liu W, Zhang Z, Xiao L, Duan Z, Liu D, Xiong Y, Zhu W, Lu G, Liu X (2014) Asymmetrical cortical vessel sign on susceptibility-weighted imaging: a novel imaging marker for early neurological deterioration and unfavorable prognosis. Eur J Neurol 21:1411–1418

    Google Scholar 

  12. Zhao GJ, Sun L, Wang ZR, Wang LQ, Cheng ZR, Lei HR, Yang DQ, Cui YS, Zhang SR (2017) Evaluation of the role of susceptibility-weighted imaging in thrombolytic therapy for acute ischemic stroke. J Clin Neurosci 40:175–179

    Google Scholar 

  13. Lou M, Chen Z, Wan J, Hu H, Cai X, Shi Z, Sun J (2014) Susceptibility-diffusion mismatch predicts thrombolytic outcomes: a retrospective cohort study. Am J Neuroradiol 35:2061–2067

    Google Scholar 

  14. Haacke EM, Xu YB, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Google Scholar 

  15. Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13(6):819–845

    Google Scholar 

  16. Hassouna MS, Farag AA, Hushek S, Moriarty T (2006) Cerebrovascular segmentation from TOF using stochastic models. Med Image Anal 10(1):2–18

    Google Scholar 

  17. Babin D, Pižurica A, De Vylder J, Vansteenkiste E, Philips W (2013) Brain blood vessel segmentation using line-shaped profiles. Phys Med Biol 58(22):8041–8061

    Google Scholar 

  18. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. MICCAI, LNCS 1496:130–137

    Google Scholar 

  19. Shang YF, Deklerck R, Nyssen E, Markova A, de Mey J, Yang X, Sun K (2011) Vascular active contour for vessel tree segmentation. IEEE Trans Biomed Eng 58(4):1023–1032

    Google Scholar 

  20. Bogunović H, Pozo JM, Villa-Uriol MC, Majoie CB, van den Berg R, Gratama van Andel HA, Macho JM, Blasco J, Román LS, Frangi AF (2011) Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: an evaluation study. Med Phys 38(1):210–222

    Google Scholar 

  21. Bériault S, Archambault-Wallenburg M, Sadikot AF, Collins DL, Pike GB (2014) Automatic markov random field segmentation of susceptibility-weighted MR venography. LNCS 8361:39–47

    Google Scholar 

  22. Bériault S, Xiao YM, Collins DL, Pike GB (2015) Automatic SWI venography segmentation using conditional random fields. IEEE Trans Med Imaging 34(12):2478–2491

    Google Scholar 

  23. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van derLaak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Google Scholar 

  24. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

    Google Scholar 

  25. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: International conference on neural information processing systems, pp 1097–1105

  26. Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: International conference on neural information processing systems, pp 2843–2851

  27. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE conference on computer vision and pattern recognition, pp 3431–3440

  28. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234–241

  29. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: International conference on medical image computing and computer-assisted intervention, pp 424–32

  30. Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: IEEE international conference on 3D vision (3DV), pp 565–571

  31. Chen H, Dou Q, Yu LQ, Qin J, Heng PA (2017) VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170:446–455

    Google Scholar 

  32. He KM, Zhang XY, Ren SQ, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, pp 770–778

  33. He KM, Zhang XY, Ren SQ, Sun J (2016) Identity mappings in deep residual networks. In: European conference on computer vision 2016, pp 630–645

  34. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2016) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Google Scholar 

  35. Kamnitsas K, Ferrante E, Parisot S, Ledig C, Nori A, Criminisi A, Rueckert D, Glocker B (2016) DeepMedic for brain tumor segmentation. In: International workshop on Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries, pp 138–149

  36. Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. IEEE Conf Comput Vis Pattern Recogn 1(2):3

    Google Scholar 

  37. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  38. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp 448–456

  39. He KM, Zhang XY, Ren SQ, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: IEEE international conference on computer vision, pp 1026–1034

  40. Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604

    Google Scholar 

  41. Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. In: International conference on machine learning, pp 1139–1147

  42. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  43. Maier O, Menze BH, von der Gablentz J et al (2017) ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal 35:250–269

    Google Scholar 

Download references

Acknowledgements

This work has been supported by: National Key R&D Program of China 2018YFB1105600, National Natural Science Foundation of China 61671440, Shenzhen Peacock Technology Innovation Project KQJSCX20170731162830878, National Natural Science Foundation of China 61672510, and Shenzhen Science and Technology Program JCYJ20160331191401141. The authors wish to thank Dr. Ahmed Elazab from Shenzhen University for his help in enhancing the language usage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingmao Hu.

Ethics declarations

Conflict of interest

We declare that all authors have no conflicts of interest in the authorship or publication of this contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, Y. & Hu, Q. Deep learning based vein segmentation from susceptibility-weighted images. Computing 101, 637–652 (2019). https://doi.org/10.1007/s00607-018-0677-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-018-0677-7

Keywords

Mathematics Subject Classification

Navigation