Skip to main content
Log in

Methodology to quantify robustness in networks: case study—Higher Education System in Mexico

  • Regular Paper
  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this work, we propose a methodology to quantify robustness in networks. Specifically, the methodology is based on the resolution of the Vertex Separator Problem in order to find the set of nodes that the elimination of their links causes the rupture of the giant component. The methodology presented in this work was tested on a set of benchmark networks and on set of social networks modeled with the information about the main characteristics of the universities belonging to the Higher Education System in Mexico (HESM) for the period 2013–2017. The results show that the proposed methodology is able to quantify the robustness in several types of networks without using centrality measures or some other structural metric. On the other hand, regarding the HESM networks, we can assure that they are robust and that they are prone to generate communities or modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Hamming distance is defined as the number of elements that have to be changed to transform a solution into another valid solution.

  2. In Annex A, we present the numerical identifiers for each University.

References

  1. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47

    Article  MathSciNet  Google Scholar 

  2. Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378

    Article  Google Scholar 

  3. Balas E, de Souza CC (2005) The vertex separator problem: a polyhedral investigation. Math Program 103(3):583–608

    Article  MathSciNet  Google Scholar 

  4. Barabási A-L, Bonabeau E (2003) Scale-free networks. Sci Am 288(5):60–69

    Article  Google Scholar 

  5. Bian T, Deng Y (2018) Identifying influential nodes in complex networks: a node information dimension approach. Chaos Interdiscip J Nonlinear Sci 28(4):043109

    Article  MathSciNet  Google Scholar 

  6. Cohen R, Havlin S (2010) Complex networks: structure, robustness and function. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Colizza V, Pastor-Satorras R, Vespignani A (2007) Reaction–diffusion processes and metapopulation models in heterogeneous networks. Nat Phys 3(4):276–282

    Article  Google Scholar 

  8. Cordeiro M, Sarmento RP, Brazdil P, Gama J (2018) Evolving networks and social network analysis methods and techniques. In: Social media and journalism: trends, connections, implications, vol 101, issue 2. https://doi.org/10.5772/intechopen.79041

  9. Dolphins network dataset (2017) KONECT. http://konect.uni-koblenz.de/networks/

  10. Deng Z, Xu J, Song Q, Hu B, Wu T, Huang P (2020) Robustness of multi-agent formation based on natural connectivity. Appl Math Comput 366:124636

    MATH  Google Scholar 

  11. D’Agostino G, Scala A (2014) Networks of networks: the last frontier of complexity, vol 340. Springer, Berlin

    Book  Google Scholar 

  12. Erdos P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17–60

    MathSciNet  MATH  Google Scholar 

  13. Estrada E, Knight PA (2015) A first course in network theory. Oxford University Press, New York

    MATH  Google Scholar 

  14. ExECUM-Estudio Comparativo de Universidades., U.: Dirección general de evaluación institucional. UNAM. http://www.execum.unam.mx

  15. Fadem B (2012) High-yield behavioral science. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  16. Farooq A, Joyia GJ, Uzair M, Akram U (2018) Detection of influential nodes using social networks analysis based on network metrics. In: 2018 international conference on computing, mathematics and engineering technologies (iCoMET). IEEE, pp 1–6

  17. Fei L, Zhang Q, Deng Y (2018) Identifying influential nodes in complex networks based on the inverse-square law. Phys A 512:1044–1059

    Article  Google Scholar 

  18. Freeman SC, Freeman LC (1979) The networkers network: a study of the impact of a new communications medium on sociometric structure. School of Social Sciences, University of Calif, Irvine

    Google Scholar 

  19. Gleiser PM, Danon L (2003) Community structure in jazz. Adv Complex Syst 6(04):565–573

    Article  Google Scholar 

  20. Gockel C, Werth L (2011) Measuring and modeling shared leadership. J Pers Psychol 9:172–180

    Google Scholar 

  21. Hernández PM, Leyva SL, Márquez CZ, Cerda ABN (2014) Evaluación de la calidad de la educación superior en méxico: comparación de los indicadores de rankings universitarios nacionales e internacionales. RIESED-Revista Internacional de Estudios sobre Sistemas Educativos 2(4):35–51

    Google Scholar 

  22. Hodges J Jr, Ramsey PH, Wechsler S (1990) Improved significance probabilities of the Wilcoxon test. J Educ Stat 15(3):249–265

    Article  Google Scholar 

  23. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  Google Scholar 

  24. Latora V, Marchiori M (2005) Vulnerability and protection of infrastructure networks. Phys Rev E 71(1):015103

    Article  Google Scholar 

  25. Latora V, Nicosia V, Russo G (2017) Complex networks: principles. Methods and applications. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316216002

    Book  MATH  Google Scholar 

  26. Li X, Zhang Z, Liu J, Gai K (2019) A new complex network robustness attack algorithm. In: Proceedings of the 2019 ACM international symposium on blockchain and secure critical infrastructure, pp 13–17

  27. Li X, Zhang Z, Liu J, Gai K (2019) A new complex network robustness attack algorithm. In: Proceedings of the 2019 ACM international symposium on blockchain and secure critical infrastructure, pp 13–17

  28. Mo H, Deng Y (2019) Identifying node importance based on evidence theory in complex networks. Phys A Stat Mech Appl 529:121–538

  29. Montes-Orozco E, Mora-Gutiérrez RA, Obregón-Quintana B, de-los-Cobos-Silva SG, Rincón-García EA, Lara-Velázquez P, Gutiérrez-Andrade MÁ (2020) Mexican University ranking based on maximal clique. Educational networking. Springer, Cham, pp 327–395

  30. Nagurney A, Qiang Q (2012) Fragile networks: identifying vulnerabilities and synergies in an uncertain age. Int Trans Oper Res 19(1–2):123–160

    Article  MathSciNet  Google Scholar 

  31. Newman M, Barabási A, Watts D (2006) The structure and dynamics of networks. Princeton University Press, Princeton

    MATH  Google Scholar 

  32. Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  MathSciNet  Google Scholar 

  33. Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582

    Article  Google Scholar 

  34. Ouyang M, Hong L, Mao ZJ, Yu MH, Qi F (2009) A methodological approach to analyze vulnerability of interdependent infrastructures. Simul Model Pract Theory 17(5):817–828

    Article  Google Scholar 

  35. Sayama H (2015) Introduction to the modeling and analysis of complex systems. Open SUNY Textbooks, New York

    Google Scholar 

  36. Schneider CM, Moreira AA, Andrade JS, Havlin S, Herrmann HJ (2011) Mitigation of malicious attacks on networks. Proc Natl Acad Sci 108(10):3838–3841

    Article  Google Scholar 

  37. Shao S, Huang X, Stanley HE, Havlin S (2015) Percolation of localized attack on complex networks. New J Phys 17(2):023049

    Article  MathSciNet  Google Scholar 

  38. Shore KA (2018) Complex networks: principles, methods and applications. Contemp Phys 59:223–224

    Article  Google Scholar 

  39. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  40. Team RC (2013). R: A language and environment for statistical computing

  41. Wang Y, Wang S, Deng Y (2019) A modified efficiency centrality to identify influential nodes in weighted networks. Pramana 92(4):68

    Article  Google Scholar 

  42. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440

    Article  Google Scholar 

  43. Xiao-Ping S, Yu-Rong S (2015) Leveraging neighborhood structural holes to identifying key spreaders in social networks. Acta Phys Sin 64(2):020101-1–020101-11

  44. Yang Y, Sun B, Wang S, Li Y, Li X (2020) Controllability robustness against cascading failure for complex logistics networks based on nonlinear load-capacity model. IEEE Access 8:7993–8003

    Article  Google Scholar 

  45. Zhang H, Fata E, Sundaram S (2015) A notion of robustness in complex networks. IEEE Trans Control Netw Syst 2(3):310–320

    Article  MathSciNet  Google Scholar 

  46. Zhong-Ming H, Yang W, Xu-Sheng T, Da-Gao D, Wei-Jie Y (2015) Ranking key nodes in complex networks by considering structural holes. Acta Phys Sin 64(5):058902

  47. Zio E (2016) Challenges in the vulnerability and risk analysis of critical infrastructures. Reliab Eng Syst Saf 152:137–150

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the National Council for Science and Technology of Mexico (CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Montes-Orozco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Table of university identifiers

A Table of university identifiers

Next, the numerical identifiers of the universities that are part of the networks modeled from the information of the EXECUM repository are shown. Here, the first and third column show the numerical identifier, while the second and fourth column the full names and respective acronyms in Spanish.

Table 11 Numerical identifiers for universities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montes-Orozco, E., Mora-Gutiérrez, R.A., Obregón-Quintana, B. et al. Methodology to quantify robustness in networks: case study—Higher Education System in Mexico. Computing 103, 869–893 (2021). https://doi.org/10.1007/s00607-021-00909-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-021-00909-x

Keywords

Mathematics Subject Classification

Navigation