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Abstract 

The numerical solution of a singularly perturbed problem, in the form of a two-dimensional convec­
tion-diffusion equation, is studied by using the technique of over-set grids. For this purpose the 
Overture software library is used. The selection of component grids is made on basis of asymptotic 
analysis. The behavior of the solution is studied for a range of small diffusion parameters. Also the 
possibilities of rotating the grid with the convection direction is considered. 
The basic discretisation method is central differencing, and in order to fit global properties of the 
solution, the composite grid used is made parameter dependent. In view of possible e-uniform con­
vergence, in the resulting composite grid the number of grid points is kept constant for the different 
values of the small parameter. Only the grid spacing is adapted, depending on the parameters. We see 
that, even with such careful adaptation of the grid, in the discrete maximum norm no e-uniform 
convergence is achieved. 

AMS Subject Classifications: 65N50 (Mesh generation and refinement). 

Key Words: Chimera grids, over-set grids, singular perturbation problem. 

1. Introduction 

Over-set grids, overlapping grids or chimera grids are names used for the tech­
nique in which a discretization domain is covered by a set of overlapping com­
ponent grids. All of these component grids are regularly structured grids, with a 
regular rectangular topology. Figure 1 gives a typical example of a overlapping 
grids. The combination of component grids is called a composite grid. As each 
component grid is structured, it is suitable for application of finite-difference 
methods. At overlapping regions, function values must be interpolated from one 
grid to another and vice versa. 

The overlapping grid technique has a lot of advantages. The capability to generate 
a grid describing a domain with a difficult shape is often mentioned, but also for a 
simpler domain there are advantages. It is for e.g. possible to avoid polar sin­
gularities in a coordinate system, and it is also possible to construct a grid which 
handles the boundary conditions in a relatively easy way. Furthermore it is easy to 
rotate/translate a component grid, to change the number of grid lines of a grid in 
a certain direction, to change stretching parameters etc .. This great flexibility is a 
major argument for using over-set grids. 
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Figure 1. A standard example in which over-set grids are useful. The resulting grid is called a 
composite grid 

We want to apply this technique to a model singular perturbation problem. The 
Overture software system [1], to be discussed later, will be our tool. The model 
problem is described by the convection diffusion equation, with a small diffusion 
parameter e. If this parameter becomes smaller, the solution tends to a discon­
tinuous function, and sharp boundary and interior layers appear. For any fixed 
grid with a specified number of points there is always a small e > 0 for which the 
numerical solution is a bad approximation. To obtain a better solution one may 
increase the number of points, but as it increases the complexity of the compu­
tation, this is something that we want to avoid. In this paper we describe a way of 
constructing composite grids, in which a-priori knowledge about the solution is 
used for the construction. This is realized with the help of so-called stretching 
functions. These functions contain parameters used to condense the grid lines in 
regions where the solution varies rapidly. For varying t:, the number of grid lines 
will be kept constant on all component grids in order to investigate if some 
practical r;-uniformity can be achieved. 

Thus, the purpose of this paper is to study the behavior of the numerical solution 
for a range of parameters e. We start with three component grids in order to fit the 
obvious features of the solution. Since, in principle, there are many free para­
meters in the numerical method, such as the priorities of the component grids 
(that should be specified by the user), we start with a simple case in order to make 
a first general selection and reduce the number of input parameters. 

In this paper we only adapt the grids and we restrict ourselves to basic central 
difference discretisation. We refrain from stencil adaptation such as upwinding or 
exponential fitting. Other arguments, cf. [4, 13], show that it is unlikely that for 
the present non-trivial model problem such schemes could lead to essentially 
better results. 
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Our final composite grid will have a diffusion-parameter dependent grid spacing, 
and will take into account the direction of convection. The results will be calcu­
lated for the following values of the convection parameter: e = 0.01· 
4-m, m = -2, -1, 0, 1, 2. Further we select two directions of convection: a direc­
tion aligned with the x-axes (i.e., aligned with the main grid, IX = 0°) and a di­
rection at an arbitrary corner with the x-axes, for which we choose, IX= 18°. 

2. The Mathematical Problem 

In this paper we concentrate on the two-dimensional convection-diffusion equa­
tion [3], 

e!iu - v · \lu = 0, e > 0, (1) 

which is defined on the exterior of the unit disc, i.e. on 
Q = {(x,y) E 1R2 lx2 + y2 ;::: l}, with boundary conditions: 

u = 1, 
u---> 0, 

if x2 + y2 = 1, 
for x2 + y2 ---> oo. 

(2) 

The convection in the direction v =(cos( IX), sin(oc)) makes the problem symmetric 
with respect to a line through the origin, at an angle a with the x-axis. Further the 
shape of the solution is independent of IX. 

Obvious properties of the solution are its formal smoothness, its monotonicity, 
and the fact that for smaller values of e a sharp boundary layer appears at the 
upwind side of the circle, and a long 'shadow region' appears at the down­
wind side. In the limit there is a discontinuity between the shadow 
(where the limit solution u = I), and the 'exposed part' of the solution 
(where u---> 0). At the boundary of the shadow region an interior layer appears. 

3. The Discrete Problem 

To numerically solve the problem by a discretization method, the infinite domain 
must be truncated to a finite region of interest. On the one hand the region should 
be l_arge enough to contain the specific details of the solution and on the other 
hand not too large, to reduce the amount of computational work. To make the 
decision, our a-priori knowledge about the analytic solution is used. 

3.1. Choice of the Finite Domain and Boundary Conditions 

Because for IX= 0 equation (I) describes convection to the right, we select the 
finite domain 

!l= [-3,9] x [-3,3]n{(x,y)lx2 +y2? l}. (3) 



342 E. D. Havik et al. 

In this way the domain can show a significant part of the solution: the boundary 
and interior layers, and the shadow region of the solution. 

Although on this finite domain the problem is not symmetric with respect to an 
arbitrary a, we use this fixed domain also for the case a =I- 0. For the angles oc we 
treat, the domain n is still the domain of interest for the solution of (1). For a =I- 0 
the typical features of the solution which do not align with the obvious grid, may 
cause numerical difficulties. 

For the truncated, finite domain n we have to introduce artificial boundary 
conditions at the outer boundary. We choose these also according to our a-priori 
knowledge about the problem. We apply a homogeneous Neumann boundary 
condition v . V'u(x,y) = 0 at the outflow boundary an, where v . n > 0, with n the 
outward pointing normal vector at an. Where v · n :S 0 we apply homogeneous 
Dirichlet boundary conditions u = 0. At the unit circle we always apply the Di­
richlet boundary condition (2). 

3.2. Over-Set Grids 

Here we first give some definitions of the terms we need in relation with overset 
grids. We define the open physical domain 

no= (-3,9) x (-3,3) n{(x,y)lx2 +I> l}. (4) 

We cover the closure of this domain, n = Q0 , by a number of K (boundary-fitted) 
component domains, n,(k)' so that u~, nCk) ~ n, where we take care that different 
component domains have sufficient overlap. Some of the domains n(k) are placed 
so that each part of the boundary of our domain of interest, an = n\no, is 
covered by the boundary of some component domain. Other component domains 
may be placed so that they are in some sense (hopefully) aligned with features of 
the expected solution. 

With each component domain Q(k} is related a smooth injective mapping 
,,1t(k) : (0, 1 ]2 --+ Q(k) from the unit square onto nCk), and for each Q(k} a regular 
rectangular grid tf(k) is chosen on (0, 1] 2, so that 

Thus, by means of the mappings .,1tCk} we generate (topologically) regular 
N(k) x Af(k) grids, <§(k) := .4!(if(kl) c Q(k) c Qin physical space. We say tff(k) lives 
in computational, and <§(k) in physical space. 

The mappings ,,H(k) are most conveniently described by decomposing them into 
two mappings, by ,,1t(k) = T(k) o R(k) where R(k) : [O, 1]2--+ [O, 1] 2 is a mapping that 
redistributes the gridlines over the unit square, and T(k} maps the unit square into 
the physical space. The mapping R(k), being responsible for the distribution of 
the gridlines, is taken of the form R(kl(x,y) = (R\kl(x),R~k)(y)), where each 
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R?) : [O, l] -+ [O, 1], i = 1, 2, is a continuous invertible function such that 

R)kl (0) = 0 and Rjkl ( 1) = 1. These functions R)kl are called stretching functions, 

and the resulting 

(6) 

is a regular rectangular, stretched grid on the unit square. Obviously, if stretching 

is not needed in some direction, we take R)kl (x) = x. 

The component mapping T(k) is in general a (simple) smooth injection from the 

unit square into physical space: 

T(k) : (0, 1]2-+ nlk) c IR2 . (7) 

Figure 2 illustrates the above mappings, where (r, s) E g{k). The variables 

(t, u) = ( (R\k\r), (R~k) (s)) E ffe(k) note the stretched coordinates on the unit square 

and (x,y) = T(kl(t,u) denotes the physical coordinates. 

The restriction of the component mapping .,H(k) to the grid g(k) is called the com­

ponent grid mapping ,Jfkk), and Atik) ( g(k)) := <§(k) is the kth component grid in Q. 

The composite grid is the union of all component grids: 

K K 
<§ = LJ<§lk) = LJ(Ahkl(g(kl)). 

k=l k=1 

We notice that in practical applications the mapping .,H(k) may be unknown, but 

the mapping Afhk) should be available for the computation, possibly by means of a 

table. 

By the choice of the component domains Q(kl, the mappings ,,gf(k) and the grids 

g(kJ, it may appear that large parts of the physical domain are covered with large 

parts of overlapping n(kJ. Computation on all these overlapping grids might result 

in a large, superfluous computational effort. Therefore we allow an overlap al­

gorithm to cut away parts of the mutually overlapping component grids. Com­

ponent grids, with overlapping parts cut out, we still call component grids. 

UNIT SQUARE £1'l UNIT SQUARE T''' 

STRETCHING ) f===t===l==:!===l 
RlkJ 

(r,s) (~u) 

MAPPING) 

yOd 

PHYSICAL SPACE 91•1 

Figure 2. The decomposition of the mapping .ftlkJ = Tik) o RlkJ; the unit square with uniform spacing, 
the unit square with stretched grid lines and the component grid 
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To make a choice which parts of the overlapping component grids have to be cut, 
the overlap algorithm needs a priority ranking of the component grids. This 
ranking should be specified by the user. Based on this information and the ge­
ometry, the overlap algorithm determines what parts of t'§ will be considered 
superfluous, and it distinguishes between two types of remaining grid points: 
interpolation points, for which the value is obtained by interpolation from another 
grid, and discretization points, for which the value can be determined by the 
discretized PDE (i.e., a point for which a discretization stencil should be con­
structed). In this way a different specification of the priority between the various 
component grids may essentially determine the shape (and the quality) of the final 
composite grid. Compare Figs. 1 and 3 showing the influence of the priority 
ranking. 

The details of a real overlap algorithm are quite technical and we only mention 
some main features. The most recent overlap algorithm known to us, is imple­
mented in Ogen [8], which is part of the Overture framework, see Section 4. In 
fact it is an improvement of an earlier algorithm that was implemented in the 
FORTRAN-code CMPGRD. In [2] detailed information about this overlap al­
gorithm can be found. A similar algorithm, with a few nice additional features, is 
described in [15] and implemented in the C-code Xcog [14]. 

The overlap algorithm automatically constructs an optimal overlapping (com­
posite) grid and classifies each point on the user-defined component grid. The 
points that are cut away from the component grid are also called hole points or 
void points, so that all points in the grids are classified as (i) discretization point, 
(ii) interpolation point, or (iii) void point. Interpolation points are further char­
acterized by the component grid cg{k) from which they receive the interpolation 
information. The overlap algorithm will remove excessive interpolation points 
and optimize for the number of void points. 

Figure 3. The square grid has the higher priority in this composite grid. This is in contrast with Fig. I, 
where the annular grid has the higher priority 
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In order to improve on the flexibility of the construction, we also can allow a 
component grid to contain points that lie outside Q, provided that each part of the 
boundary an is captured by a gridline of a component grid. 

Now, two interpolation techniques can be distinguished: (i) explicit interpolation, 
where the interpolation stencil for one grid contains only discretization points 
from the other grid (the donor grid), and (ii) implicit interpolation, where the 
interpolation stencil may contain both interpolation and discretization points 
from the donor grid. 

At a discretization point one should construct the required discretization stencil 
for this point on its component grid. This stencil may contain other discretization 
points, (e.g., boundary points) or interpolation points. For the computations 
reported in this paper, we have chosen to use explicit interpolation only, which 
means that more overlap is required compared with the amount of overlap needed 
for implicit interpolation. 

The composite grid, in a slightly more general sense than used above, is the 
collection of component grids, together with the information about the character 
of each grid point. Void points are not drawn in our figures. Thus, the resulting 
composite grid clearly depends on the priorities specified for the component grids 
and the width of the (interpolation and discretization) stencils. 

4. Overture 

Overture is a software system for the solution of two and three dimensional 
PDEs on complex domains by the use of over-set grid methods. It is under 
development at LLNL. It contains a comprehensive object-oriented software 
library written in C + + [I, 5]. The software, its documentation, a tutorial, etc. 
is freely available from the Overture web page http://www.llnl.gov/casc/Over­
ture. The software system contains a number of major modules: an overlapping 
grid generator (Ogen) [8], a solver for PDEs on overlapping grids (Oges) [9], a 
view facility (plotStuft) [11] and much more. It is possible to use finite-differ­
ence or finite-volume methods in an object-oriented way [6]. In the documen­
tation [12] clear examples are shown how Overture can be used for solving 
PD Es. 

Our present experience is with Overture version 15. The results in this paper are 
obtained by using Ogen, Oges plotStuff and the show-file class [10], which is a data 
format developed for visualization. The composite grid data structure (output of 
the grid generator) is stored in the Hierarchical Data Format (HOF), which is an 
efficient standard for sharing scientific data. See http://hdf.ncsa.uiuc.edu. 

5. The Use of Asymptotic Properties for Grid Generation 

Some a-priori knowledge about the solution will be used for the selection of the 
component grids and for the construction of the stretching parameters needed to 
properly place the grid lines. 
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The problem (1)-(2) is a typical example of a singularly perturbed problem. For 
small values of the parameter ewe distinguish sharp layers in the solution [3]. The 
three main solution features are: the outer solution as approximated by the re­
duced equation, a boundary layer at the upwind side of the circle and two interior 
layers at the edge of the shadow. The outer solution is approximated by the 
solution ofv · \lu = 0. It contains the 'shadow' part (u ~ 1) downwind from the 
circle and an 'exposed' part (u ~ 0) in the remainder of the domain. 

At the upwind side of the circle (x :::; -1 if a = 0°) the solution is approximated by 
u(x, 0) = eCx+l)/e, i.e., there the boundary layer is @(e).The transition between the 
shadow and the exposed part of the solution runs in the v direction. It is described 
by a parabolic internal layer with an @(e112 ) thickness, cf. [3]. We will handle this 
transition by a simple Cartesian grid. 

To apply the over-set grids we first use a simple strategy, restricting ourself to 
three simple component grids corresponding with the three major features in the 
solution. Thus, we cover Q with the following three component domains: 

1. A background domain: {(x,y) E ~2 1(x,y) E [-3, 9] x [-3, 3]}. All boundaries of 
this domain are boundary-fitted and correspond with the outer boundary of the 
physical domain. 

2. An annulus: {(x,y) E ~2 11::::; x2 + y2 :::; 2}, with the inner side fitted to the 
boundary of the circle in the physical domain. 

3. A strip: {(x,y) E ~2 l(x,y) E [0,9] x [-2,2]} for a=O. For a#-0 the strip is 
rotated around (0,0) over an angle a. 

For the background grid we take a rectangular grid with a fixed mesh width, 
independent of the parameter e. For the annular grid in one direction a periodic 
boundary condition is introduced. In the other direction we condense the grid 
lines in the radial direction with a maximum at the edge of the unit disk, where a 
mesh-width@( r.) is used. The third component grid, the strip, should take care of 
the interior layers. For this component grid the grid lines will be condensed with 
two clusters at the interior layers of the solution. Here we make the mesh-width of 
l!J( I) along the layer and @( e112) perpendicular to the layer, as described in more 
detail below. 

The function Rjkl (x), used to control the grid refinement in the composite rg(k), is 
the 'inverse hyperbolic tangent stretching function' as introduced in [7]. It is a one­
dimensional mapping [O, l] --> [O, I] that is best described by its inverse function 
Rjkl : [O, l] --> [O, 1] so that R)kl (R)kl (x)) = x. The function R)kl is of a simple 
nature, in which one can add a finite number of m)k) so-called layer functions Ui~) 
to describe grid condensation in some neighborhood, whenever needed. As be­
fore, i denotes the axis and k the k-th component of the composite grid. We here 
choose the function R)k)(x) to be of the form 

mjkl (k) (k) 
-(k) x + Zj=l [U;,j (x) - U;J (O)] 
R; (x) = (kJ , (8) 

I + "'m, [U(k) (I) - U(k) (O)] 
WJ=l IJ ZJ 
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with the layer function u/Y defined by 

U.(~)(x) = !a(k.J tanh[b(k)(x - dk.J)] 
IJ 2 IJ IJ IJ . (9) 

We notice that (8) satisfies the conditions of Theorem l in [16] and therefore 
would lead to uniform convergence for a simple one-dimensional model problem. 
We also see that, for m)k) = 0, i = 1, 2, no stretching takes place and .~(k) will be a 
regular rectangular grid. For m}~l -/= 0, local refinement takes place in the 
x;-direction near cjj. The parameter bjj ~etermines the slope and a)~l the 
amount of the grid refinement. Thus U;~~) determines each local conden­
sation in a particular area by three parameters. 

The parameter b)~l is proportional with the maximal derivative of the stretching 
function and hence determines the minimal grid spacing. The parameter a)~l is 
proportional with the number of grid lines that are stretched. In Table 1 we show 
the parameters used for a first computation with a = 0. By the symmetry of the 
problem we can write a(ko) = a(k1) := a(k) and b(ko) = b(k1) := b(k). The parameter N 

l, l, l l, l, l 

determines the number of grid lines in each direction and will be fixed to a 
constant so that the number of grid lines will be independent of e. I.e., a strategy is 
followed that is comparable with the one leading to Shishkin meshes. For each 
stretching we take the number of grid lines inside and outside the layer of the same 
order, so that-in this sense-an essential property of a Shishkin mesh [4] is mim­
icked. In the calculations shown we take N = 5. Further, the parameters are 
chosen such that, where possible, the grid spacing at overlapping regions is of 
equal order. On all grids central discretization is used, and bi-quadratic inter­
polation is used, which means that both discretization and interpolation stencils 
are 3 x 3 points wide. Thus the overall accuracy of the method is second order. 

Overture constructs the composite grid by calling the grid generator 'Ogen' and 
solves the problem by using 'Oges'. The solution is stored in a 'show-file' [JO]. 
Also the graphical results in this paper are produced by using this system. As a 
measure to judge the quality of the solution, the minimum and maximum function 
values (undershoot and overshoot) of the computed solution are determined 
(using the adage 'Don't kill the wiggle, it is telling you something'). 

6. First Results 

As a first trial we calculated the solution for all six possible priority rankings of 
the three component grids. For 'large' parameter values, likes= 0.16 these pri-

Table I. Parameters used for stretching functions 

Grid k Axis i Lines N,' 11 Layers mi' 1 
(kl bik) 

ai I 

ik) IA) 
c c /,(J i.I 

0 0 I2N t I () 

() I 6N f- I () 

I () 9N t I ll 
I I 2N l 2 Q.l_(] () 

2 () 9/'v t ll 
2 I 6N -t- 2 I l.o 

4 !( 
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orities are less relevant, because the solution is smooth and all component grids 
are reasonably well able to represent the solution. But for smaller values of s the 
influence of the priority ranking becomes more clear. From our experiments we 
conclude that the best results are obtained if we give the background grid a lower 
priority than the annular grid. In all cases where this has not been done, signi­
ficant numerical errors arise at the upwind side of the circle, a peak in the 
neighborhood of (-1, 0) appears since, in that case, grid points of the annular grid 
are removed by the overlap algorithm. Having determined this, three possibilities 
remain. The best result follows if the priority of the annular grid is between the 
background and the 'strip'. This means that the strip should have highest priority. 
The criterion used is minimization of lumax - l I + lumin I, where Umin and Umax 

denote the minimum (maximum) value of the computed solution over all grid 
points. Although our decision about the priority ranking is based on the c: = 0.01 
case, we see that the highest priority of the 'strip' is consistent with the expected 
behavior of the solution for smaller values of 8. If the "strip' were given a priority 
higher than the background grid, the overlap algorithm would remove almost all 
significant grid points. In this way we are also able to catch features of the a "I 0 
case by rotating the strip. 

With our priority ranking, the solution is calculated for ex = 0 and for our range of 
diffusion parameters. The composite grid used is shown in Fig. 4 and the results 
are shown in Table 2. The case a f. 0, i.e., rotation of the strip is presented in 
Section 7. 

Figure 5 shows the two computed solutions z = u(x,y), for s = 0.01 and for 
t: = 0.0025. The solution for 8 = 0.01 is smooth except for two small regions in 
the shadow of the circle where spurious peaks appear. For s = 0.0025 these 
peaks become higher and other errors appear in the strip region. For 
t: = 0.000625 the solution becomes worse. In this case large peaks appear peri­
odically at a distance of twice the cell width, as is typical for central discreti­
zation. Thus we see that numerical problems appear even if we catch the 
asymptotic behavior in the boundary and interior layers. For large values oft: (if 
t: ~ 0.4) the peaks are not present and the solution is smooth over the whole 
domain, as expected. 

7. Difficulties and Remedy 

If we study the above composite grid in more detail for small 8, we see that the 
interpolation points in the strip interpolate from points of the annular grid, be­
hind the circle but relatively far from the circle. Since most annular grid lines are 
close to the circle, the strip interpolates from the coarse part of the annulus. This 
can be improved if we decrease the stretching of the annulus in that region. 
Indeed, we have found that the solution at the downwind region of the annular 
grid improves: the peaks disappear if the stretching parameter becomes smaller. 
The price to pay is that another peak arises at the upwind side of the circle (as 
expected for a coarser grid), because there a grid condensation is required cor­
responding with the CD(t:) behavior of the boundary layer in the solution. 
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4.00 

-2.0 0.0 2.0 4.0 6.0 8.0 
x 

Figure 4. The composite grid with the priority ranking: 0: background grid; I: annulus; 2: strip, 
constructed for e = 0.01 

Table 2. Minimum and maximum values for the computed solution, obtained with the best priority 
ranking: 0: background grid; 1: annulus; 2: strip (highest priority) 

E Umin Umax 

0.16 0.0000000 1.0000000 
0.04 -0.0008200 1.0000000 
0.01 -0.0035112 1.1419837 

0.0025 -0.0837866 1.2844765 
0.000625 -1.0026414 1.7415791 

The remedy is to divide the annular grid in two parts, one in the upstream and the 
other in the downstream direction. Technically we did this by adding a hall 
annular grid at the upwind side of the circle. The overlap algorithm removes a part 
of the underlyingjull annular grid due to the given priorities. We will give the part 
at the upwind side of the circle a smaller grid spacing in the radial direction than 
the radial grid spacing at the downwind side of the circle, which is handled by the 
full annular grid. Corresponding with the asymptotic properties the latter will get 
(()( e213 ) thickness. Furthermore, taking into account more detailed asymptotics [3], 
an improvement will also follow from stretching all grids, except the background 
grid, in the direction along the layers. For this we introduce an cn(e113) behavior, 
which is also obtained from [3]. 

7. 1. The New Patch 

The new part, the half annulus, with a priority higher than the full annular grid, 
but lower than the 'strip' lies in the following region: 

-
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Figure 5. The solution fore= 0.01 and £ = 0.0025 for the composite grid consisting of three components 
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{ ~ '.: 00 '.. {(x,y) E IR2 1l :::; x2 + y2 ~ 2,x ~ O} 
_,. / The same domain rotated around (0, 0) over an angle°'· 

To determine the parameters, we use Table 3, which shows the derivatives of the 
stretching function R.?) (x) for large values of bjkl (i.e., the mesh-density for small 
values of e). This determines the asymptotic mesh width in the inner and outer 
region. At the points of maximum clustering we couple R.jkl to the asymptotic 
behavior of the solution in the following way: 

(k) 
- 1tk) (k) _,11i (kl K; 
R. (c. 0 )=R. (c. 1)=-k. 

l l, l l, £Vi, 
(10) 

By this the relation between e and b is determined. The constant K?) denotes a 
chosen ratio between the maximum slope of the stretching function and the as­
ymptotic behavior of the solution, which requires a layer thickness @(e'''·1 ). 

In Section 5 we took v;,k = 1 for the annular grid and a value ~ for the 'strip'. 
Corresponding with the additional a-priori knowledge about the asymptotics that 
we want to use, we now choose some new parameters corresponding with the 
details shown in Fig. 6. Table 4 summarizes all parameters of the improved 
composite grid in order of the priority ranking. The rotation of the full annular 
grid is performed by changing the location of the two layers. 

For the constants K(k) we take K(Il = 1 K(I) = 0 005 K( 2l = 1 Kl2l = 0 05 
1 0 , I • ' 0 , I · ' 

K~31 = 1, Kl 31 = 0.1. To prevent the value of b becoming too small (or even 
negative) for larger values of e, we replace b by max(b, 1 ), which is allowed since in 
that case the precise stretching of the grid becomes irrelevant. Figure 7 gives the 
resulting composite grid for the case rx = 0°. As can be seen from this figure, only 
the background grid takes the outflow boundary conditions and the 'strip' in­
terpolates from this grid and vice versa. Since the 'strip' will be rotated it is not 
possible to fit this grid with the outflow boundaries. 

8. Results and Conclusion 

Table 5 shows the results obtained with our composite grid. If we compare these 
results with those obtained with the previous grid (Table 2) we see they have 
much improved. There is less overshoot as we can see in the table or in Fig. 8. 
For e = 0.01 the peaks almost completely disappeared. However, for smaller 
values of e the results become less accurate again. For e = 0.000625, for instance, 
several peaks appear in the shadow region of the solution, although the result is 

Table 3. The derivatives of the function!?.', at the relevant points 

Location of layer(s) 

(' = 0 

C1 = ~, C2 = ~ 

c1 = 0, c2 =I 

Derivative at layer(s) 

R'(O) = 11:~ 
-, I~ 
R (cu) = T+2a 

k'(O) = R'(I) = ~:: 

Derivative far from layer(s) 

R'(I) = il~ 
R'(O) = R'(~) = R'(I) = 1} 2,, 

R'(~) = 1!,, 
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Table 4. A summary of the parameters, here 0 is the background grid, 1 the full annular grid, 2 the half 
annular grid and 3 the 'strip'. For cc =I 0 grids I, 2 and 3 are rotated 

Grid k Axis i Lines N?1 Layers mjkl lkl 
a; b)k) (k) 

c;.o 
ikl 

ci,l 

0 0 12N+l 0 
0 1 6N+1 0 

0 18N+l 2 I K'" c+4a'") l :..:JL :....:.....::n. _ _L 
4 i;I ') a~), I a;/ I 4 

2N+l ~ ~ _i_ K'" c+ ''') 
r.1 ~ 0~11 a\l ! 

0 

'" c '"') 2 0 12N+l 2 I Ku -+-0 n 2 0 4 ~ ~ -~ 

2 2N+ 1 ~ (2+•\'') 2 
e a~11 - a\~l 0 

3 0 9N+I K,\" (2+a;,") 2 0 ~ -LlJ- -GJ 
au ao 

3 6N+I 2 Kt.'' (2+4a:'') _ 2 ! ~ l~) (II 
0 1 °1 

much better than would be possible with a composite grid consisting of three 
simple components. We note that, for securing stability, a first-order Neumann 
boundary condition is applied at the right side of the grid (i.e., at x = 9) instead 
of the default second order accuracy Overture uses. Figure 9 shows the skew 
grid and the corresponding solution obtained. Since the standard second-order 
Neumann boundary condition is applied in this case, this gives rise to errors at 
the boundary as can be seen in this figure. For a first-order Neumann boundary 
condition this error will not occur, and the calculated solution will show a 
smooth outflow as we have seen for the a= 0° case (where the first-order 
condition was applied). 

Nevertheless, these experiments clearly show that for our non-trivial model 
problem we do not get a numerical method that is e-uniformly accurate with 
respect to the number of mesh points, even if we make use of more advanced 
asymptotics. With the solution method as described in this paper one can never 
get a perfect composite grid for values of e that can become arbitrarily small. 
Because for any choice of components, the use of stretching for adapting each 
individual grid to the local asymptotic behavior without increasing the number of 
grid points, will always imply that next to overlapping regions with roughly equal 
grid spacing there will exist overlapping regions with grid spacing that differ in 
order of magnitude. 

Table 5. Minimum and maximum values for the computed solution (rx = 0), obtained with the priority 
ranking shown in Fig. 6 

Umin Umax 

0.16 0.0000000 1.0000001 
0.04 -0.0073076 1.0000011 
0.01 -0.0060746 1.0063686 

0.0025 -0.0074955 1.0435394 
0.000625 -0.0226137 1.1181593 
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Figure 7. The resulting composite grid constructed for r. = 0.0025; a global view, b detail. Priority 
ranking as in Fig. 6 is used 

Thus, it remains an open question whether it is possible to find i:-uniformly 
accurate methods for this model problem, and - seeing that the use of even 
detailed a-priori knowledge does not yield such result - one might raise the 
question if it makes sense pursuing such direction rather than using non-e-uni­
form, but efficient, self-adaptive solution strategies. 
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Figure 8. The solution for 1: = 0.01 and r. = 0.0025. First-order accurate Neumann boundary condition applied to the right boundary 
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Figure 9. The rotated grid and the solution for 1: = 0.01. A second-order accurate Neumann boundary condition applied at the outflow boundaries 
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