
VIEWPOINTS

Roel Wieringa

Requirements researchers: are we really doing research?

Received: 20 September 2004 / Accepted: 03 March 2005 / Published online: 5 August 2005
� Springer-Verlag London Limited

1 Introduction

A few years ago, Davis and Hickey (2002) suggested that
a reason why the results of requirements engineering
research are not used in practice is that requirements
engineering researchers do not practice what they
preach: they do not analyze the problems of require-
ments engineering practice, and therefore their solutions
do not address these problems. Although I agree with
this diagnosis, I think it must be taken one step further
in order to achieve a vision of a solution. The additional
step that I propose here is to realize that currently, most
requirements engineering researchers do not do research.
Many of us create unvalidated designs, and move on
from one unvalidated design to the other. The remedy
that I propose is that we should learn to distinguish
design from research, and start doing research. What we
should do research about is the engineering process, so
let me first explain what I mean by ‘‘engineering’’.

2 Requirements engineering is not engineering

What is engineering? The most succinct definition is gi-
ven by Auyang (2004): ‘‘engineering is the art and sci-
ence of production.’’ Slightly more elaborate is the
Encyclopædia Britannica, which defines engineering as
‘‘the application of science to the optimum conversion of
the resources of nature to the uses of humankind.’’ Let
me adopt these definitions in their widest possible
interpretation: engineering is the production of useful
things, whether these things are material, symbolic (e.g.
software), or social (e.g. organizations).

If engineering is the production of useful things, then
it is the process of solving practical problems, which I
define as problems in which we want to improve some-
thing in the world. A practical problem may exist if there
is a difference between the way the world currently is

and the way we would like it to be, and we are motivated
to reduce this difference (Bossworth 1995, pp. 33–49). A
practical problem can be solved in a problem-driven
way, when stakeholders experience the problem and
commission an engineer to help them solve it. It can also
be solved in a goal-driven way, when no one experiences
a problem but someone sees an opportunity to improve
the situation nevertheless, by means of new technology.
Innovative technology often does not solve a problem
anyone experienced, but once the technology is avail-
able, many people want to have it anyway. Either way,
the improvement process consists of the following logi-
cal tasks, called the engineering cycle.

– Problem analysis. Investigation of the problem to be
solved, and of the goals to be reached.

– Solution specification. Description of one or more
possible solutions.

– Solution analysis. Investigation of the properties of the
specified solutions, and evaluation of the power of
these solutions to solve the problems and achieve the
desired goals.

– Solution implementation. Implementation of a selected
solution.

– Implementation analysis. Investigation of the proper-
ties of the solution as implemented. This might be the
problem analysis task in another engineering cycle.

There is nothing new about this list of engineering
tasks. Variations of this cycle have been identified by
various engineering methodologists, including Roozen-
burg and Eekels (1995), Pahl and Beitz (1986), and Cross
(1994). The first important point to remark here is that
this is not necessarily a temporal sequence. The tasks of
the engineering cycle may all be performed concurrently,
or interleaved in any order. A second remark to make is
that there are three analysis tasks in the engineering
cycle: problem analysis, solution analysis, and imple-
mentation analysis. In each of these tasks, the engineer
must acquire knowledge. Note in particular that the
investigation of proposed solutions is research, and can
be done using scientific research methods. Engineers
investigate structural properties of matter, dynamic
properties of fluid flows, properties of chemical pro-

R. Wieringa
Department of Computer Science, University of Twente,
The Netherlands
E-mail: r.j.wieringa@ewi.utwente.nl

Requirements Eng (2005) 10: 304–306
DOI 10.1007/s00766-005-0013-6



cesses, and properties of many other solution tech-
niques, by the same scientific methods as those used by
natural scientists. The other two tasks in the engineering
cycle are not research: solution specification is a creative
task in which a solution to a practical problem is spec-
ified, and solution implementation is an activity in which
the selected solution is realized.

There are two schools of thought about requirements.
According to one school, requirements are solution
specifications. For example, the IEEE 830 standard for
requirements specification prescribes a structure for the
description of software solutions. According to another
school, represented by Jackson (1995) for example, and
Van Lamsweerde (2004), requirements are problem
descriptions. Where solution-oriented requirements
consist of functions and quality attributes of a desired
solution, problem-oriented requirements consist of
problematic phenomena and about goals to be achieved.
I do not want to enter a discussion here about the ‘‘true’’
meaning of the word ‘‘requirement’’. Instead, let me
point out that in either view, requirements engineering is
not engineering:

– In the problem-oriented view, requirements are a
theory about a practical problem. A theory is a set of
validated propositions about reality; a problem theory
consists of a set of propositions describing, for
example, what the relevant phenomena are, what their
causal relationships are, what the relevant goals and
norms are, etc. Whatever the precise contents of a
problem theory, problem-oriented requirements
‘‘engineering’’ is actually theory-building, not engi-
neering. Problem-oriented requirements ‘‘engineer-
ing’’ is not engineering because it does not attempt to
change reality but to understand the problem.

– In the solution-oriented view, requirements are a
specification of a solution. A solution specification is a
description of what we are going to implement, and
creating such a specification is a design activity, not in
the narrow sense of creating the internal decomposi-
tion of a software system, but in the general sense of
inventing a solution to a practical problem. A solution
specification is designed, in the same sense as a law
can be designed, an organization can be designed, and
a symphony can be composed. If requirements
‘‘engineering’’ is the creation of a solution specifica-
tion, then it is a design activity, which is only one
activity in the complete engineering cycle.

3 Requirements engineering research

If requirements are either problem theories or solution
specifications, then what is requirements engineering
research? Requirements engineering researchers should
be engineers of the engineering cycle. Their aim should
be to improve the problem analysis and solution speci-
fication tasks of the engineering cycle—the two
requirements engineering tasks of the engineer. Conse-

quently, the engineering cycle of requirements engi-
neering researchers themselves is this:

– Problem analysis. Investigate the requirements prob-
lems that engineers have, and the goals to be achieved
by requirements engineers.

– Solution specification. Describe one or more possible
solutions to the identified problems. This is a creative
task.

– Solution analysis. Investigate the properties of the
specified solutions, and evaluate their power to solve
the identified problems and achieve the desired goals.

– Solution implementation. Implement a solution.
– Implementation analysis. Investigate the properties of

the implemented requirements solution.

This gives us three kinds of research problems to be
investigated by requirements researchers: problem
analysis, solution analysis, and implementation analysis.
Since every practical problem will already involve the
use of solutions implemented earlier, it will be difficult in
practice to distinguish problem analysis and implemen-
tation analysis. But the issue here is not how many types
of requirements research there are, but whether there is
any requirements research to do at all. For example, to
investigate the problems of requirements engineering,
requirements research must investigate the problems as
they exist in the real world, as Davis and Hickey (2002)
pointed out. I add to this requirements researchers
should also investigate the properties of the solutions
they propose, and of the implementations of those
solutions in practice. Inventing the solutions is not re-
search but design. Requirements research consists of
investigating problems, investigating solution proposals,
and investigating implementations in requirements
practice. There seems to be an identity crisis in which we
refer to our design activity as ‘‘research’’ and are then
left without a word for real research.

In an analysis of submissions to the International
Requirements Engineering Conference (2003), my col-
leagueHansHeerkens and I (2004) found that about 30%
of the submissions (accepted or not) describe problems or
implementations. This is encouraging, although many of
these studies are narrative, first-person reports that do not
follow an accepted methodologically sound research de-
sign. It is revealing what the remaining 70% of the sub-
missions (accepted or not) were about: they consist of
solution proposals. 18% of these had some form of vali-
dation other than that the author illustrated his or her
solution bymeans of an example, or asked students to use
the technique. However, among these few validations,
thorough investigations of solution proposals using ac-
cepted research methods are very rare. Apparently, many
of us prefer creating designs to doing research.

4 There is nothing as practical as a good theory

Nineteenth-century anthropologists ‘‘studied’’ cultures
from their armchair by imagining what it would be like

305



to live in the cultures they had read about. Validation
consisted of writing bulky books about these exotic
cultures (Frazer 1992). Similarly, some of us practice
"armchair engineering’’ where we propose solutions for
practical problems that we never encountered and do
not bother to validate those solutions—I am not
excluding myself from this judgment.

What we should do to make our results applicable is,
first of all, stop calling design activities ‘‘research’’.
Designing is a fascinating and potentially useful activity,
and we need to publish our designs in order for ourselves
and others to validate them. But designing is not the
only thing we should do. We should start doing research:
investigate problems in the requirements process,
investigate solution properties, and investigate imple-
mentations of these solutions. This will yield us theories
about problems in requirements practice, about tech-
niques that could solve those problems, and about
implementations of those techniques in requirements
practice, that will be useful to practitioners. We should
heed the words of Abraham Kaplan (1998, p. 295), who
said the following.

‘‘The criticism that a plan of action is ‘all-right in
theory but it won’t work in practice’ may well be a
just one, but it must be properly understood. The
theory may specify conditions which are not fulfilled
in the particular case before us; the criticism then
amounts to saying that the proposal is a good solu-
tion, but to another problem.’’

Scientific theories of problems, solutions and imple-
mentations of requirements practice will be the means by
which we can make clear when and where our solution
designs are applicable in practice. We do not have to
look far to find advice on how to conduct our research.
Software engineering research has been observed to lack
in validation as well (Tichy et al. 1997; Zelkowitzh and
Wallace 1997), and some recent papers give good advice
about how to do software engineering research (Zelko-
witz 1998; Kitchenham et al. 2002). I see no reason why

requirements researchers could not use this advice to
their advantage as well.

References

Auyang SY (2004) Engineering—an endless frontier. Harvard
University Press, Cambridge

Bossworth MI (1995) Solution selling: creating buyers in difficult
markets. Irwin, IL

Cross N (1994) Engineering design methods: strategies for product
design, 2nd edn. Wiley, New York

Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed
requirements acquisition. Sci Comput Program 20:3–50

Davis AM, Hickey AM (2002) requirements researchers: do we
practice what we preach? Require Eng J 7(2):107–111

Frazer JG (1922) The golden bough. MacMillan, New York
Jackson MA (1995) Software requirements and specifications: a

lexicon of practice, principles and prejudices. Addison-Wesley,
Reading

Kaplan A (1998) The conduct of inquiry. Methodology for
behavioral science. Transaction publisher, 1998. First edition
1964 by Chandler Publishers, San Francisco

B.A. Kitchenham, S.L. Pfleeger, D.C. Hoaglin, K.E. Emam, J.
Rosenberg. ‘‘Preliminary guidelines for empirical research in
software engineering’’. IEEE Transactions on Software Engi-
neering. 28(8), August 2002. Pages 721–733.

van Lamsweerde A (2004) Goal-oriented requirements engineering:
a roundtrip from research to practice. In: Proceedings of 12th
IEEE joint international requirements engineering conference,
IEEE Computer Science Press, pp 4–8

Pahl G, Beitz W (1986) Konstruktionslehre: Handbuch für Studi-
um und Praxis. Springer, Berlin Heidelberg New York

Proceedings of the 11th IEEE International Requirements Engi-
neering Conference (2003) IEEE Computer Science Press

Roozenburg NFM, Eekels J (1995) Product design: fundamentals
and methods. Wiley, New York

Tichy WF, Lukowicz P, Prechelt L, Heinz EA (1997) Experimental
evaluation in computer science: a quantitative study. J Syst
Softw 28:9–18

Wieringa RJ, Heerkens H (2004) Evaluating the structure of re-
search papers: a case study. In: Gervasi V, Zowghi D, Sim SE
(eds) Second international workshop in comparative evaluation
of requirements engineering

Zelkowitz MV (1998) Experimental models for validating tech-
nology. Computer 31(5):23–31

Zelkowitz MV, Wallace D (1997) Experimental validation in soft-
ware engineering. Inform Softw Technol 39:735–743

306


	Sec1
	Sec2
	Sec3
	Sec4
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17

