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Abstract. Many real-time database applications arise in
electronic financial services, safety-critical installations and
military systems where enforcingsecurity is crucial to the
success of the enterprise. We investigate here the perfor-
mance implications, in terms of killed transactions, of guar-
anteeingmulti-level secrecyin a real-time database system
supporting applications withfirm deadlines. In particular, we
focus on thebuffer managementaspects of this issue.

Our main contributions are the following. First, we iden-
tify the importance and difficulties of providing secure buffer
management in the real-time database environment. Second,
we presentSABRE, a novel buffer management algorithm
that providescovert-channel-freesecurity. SABRE employs
a fully dynamic one-copy allocation policy for efficient us-
age of buffer resources. It also incorporates several opti-
mizations for reducing the overall number of killed transac-
tions and for decreasing the unfairness in the distribution
of killed transactions across security levels. Third, using
a detailed simulation model, the real-time performance of
SABRE is evaluated against unsecure conventional and real-
time buffer management policies for a variety of security-
classified transaction workloads and system configurations.
Our experiments show that SABRE provides security with
only a modest drop in real-time performance. Finally, we
evaluate SABRE’s performance when augmented with the
GUARD adaptive admission control policy. Our experiments
show that this combination provides close to ideal fairness
for real-time applications that can tolerate covert-channel
bandwidths of up to one bit per second (a limit specified in
military standards).
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Buffer management — Firm deadlines

? A partial and preliminary version of the results presented here appeared
earlier inProc. of 24th VLDB Conf., August 1998.
Correspondence to:J.R. Haritsa

1 Introduction

A real-time database system (RTDBS)is a transaction-
processing system that is designed to handle workloads
where transactions have individual timing constraints. Typ-
ically, the time constraint is expressed in the form of a
completion deadline, that is, the application submitting the
transaction would like it to be completed before a certain
time in the future. In addition, from the application’s perfor-
mance perspective, a transaction that completes just before
its deadline is no different to one that finishes much earlier.
Therefore, in contrast to conventional DBMS where trans-
action throughput or response time is typically the primary
performance metric, performance in an RTDBS is usually
measured in terms of the ability of the system to complete
transactions before their deadlines expire.

Many RTDBS applications arise in electronic financial
services, safety-critical installations and military systems
where enforcingsecurity is crucial to the success of the en-
terprise. For example, consider the environment of an elec-
tronic (open-bid) auction on the World-Wide Web with on-
line auctioneers and bidders. Typically, the auction database
contains “secret” information such as bidders personal de-
tails, including private keys, credit-worthiness and past bid-
ding patterns; the purchase price and ownership history of
the items that are being auctioned; the list of “in-house bid-
ders” – these are bidders planted by the auction house to
provoke other bidders by artificially hiking the maximum
bid; etc. The database also contains “public” information
such as bidder public keys and authentication certificates;
the starting bid price, the minimum bid increment and the
time for delivery for each item; the sequence and state of
bids for items currently under auction; etc. It is expected
that the secret information is known only to the auctioneers,
whereas the public information is available to both bidders
and auctioneers.

In the above environment, the auction service provider
faces a problem ofthree-dimensionalcomplexity. (1) There
is a considerable amount of data to be consulted, pro-
cessed and updated, and while doing so, thedatabase con-
sistencyshould be maintained. (2) There aretime constraints
associated with various operations – for example, a bid
is valid only if registered in the database within a pre-
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specified time period after submission (in the Flash Auction
at http://www.firstauction.com, bids that arrive more than
5 min after the previous bid is registered are invalidated).
(3) During every stage of the bidding process,data security
must be ensured — unauthorized access to the secret infor-
mation by bidders may help them gain unfair and financially
lucrative advantages over other competitors.

Our current research has focused on the design of infor-
mation systems that can simultaneously and effectively meet
the above three challenges, that is, on the design ofsecure
real-time database systems (SRTDBS). In particular, our
study is conducted in the context of real-time applications
with “firm deadlines” [16]. For such applications, complet-
ing a transaction after its deadline has expired is of no utility
and may even be harmful. Therefore, transactions that miss
their deadlines are “killed”, that is, immediately aborted and
discarded from the system without being executed to com-
pletion. Accordingly, the performance metric is thepercent-
age of killed transactions.1 Our choice of firm-deadline ap-
plications is based on the observation that many real-time
applications belong to this category. For example, in the 1-
800 telephone service, a system responds with a “circuits are
busy” message if a connection cannot be made before the
deadline. Similarly, most Web-based services employ “state-
less” communication protocols with timeout features.

For the above real-time context, we recently investigated
the design and evaluation of high-performance securecon-
currency controlprotocols [10]. We move on, in this paper,
to considering the equally important and related issue of de-
signing securebuffer managersthat can both guarantee se-
curity and provide good real-time performance. To the best
of our knowledge, this study represents thefirst work in the
area of secure real-time buffer management.

1.1 Security mechanisms

For a DBMS to be considered secure, a number of require-
ments have been identified in the literature [4]. Among these,
secrecy, that is, the prevention of unauthorized knowledge
of secret data, is an especially important requirement for an
RTDBS due to the sensitive nature of their application do-
mains. In this paper, we focus exclusively on this issue and
in the sequel use the term security synonymously with se-
crecy. More specifically, we consider environments wherein
both database transactions and data items are assigned to a
fully ordered set of disjoint security levels (e.g.,Secret and
Public) and the goal is to enforcemultilevel secrecy: the
data associated with a particular security level should not be
revealed to transactions of lower security levels.

Security violations in a multilevel RTDBS can occur
if, for example, information from theSecret database is
transferred by corrupt high-security transactions to thePub-
lic database where they are read by conspiring low-security
transactions. Suchdirect violations can be eliminated by im-
plementing the classical Bell–LaPadula security model [20],
which imposes restrictions on the data accesses permitted
to transactions, based on their security levels. The Bell-
LaPadula model is not sufficient, however, to protect from

1 Or equivalently, the percentage of missed transaction deadlines.

“covert channels”. A covert channel is anindirect means
by which a high-security transaction can transfer informa-
tion to a low-security transaction [21]. For example, if a
low-security transaction requests access to an exclusive re-
source, it will be delayed if the resource is already held by
a high-security transaction, otherwise it will be granted the
resource immediately. The presence or absence of the delay
can be used as a “signaling” or encoding mechanism by a
high-security transaction passing secret information to the
low-security transaction (e.g., no delay could signify a0,
while delay could signify a1). Note that, from the system
perspective, nothing “obviously illegal” has been done in
this process by the conspiring transactions.

Covert channels can be prevented by ensuring that low-
security transactions do not “see” high-security transactions
– this notion is formalized in [12] asnon-interference, that
is, low-security transactions should not be able to distinguish
between the presence or absence of high-security transac-
tions. This can be implemented, for example, by providing
higher priority to low-security transactionswhenever a con-
flict occurs between a low-security transaction and a high-
security transaction. From a system perspective, it translates
to implementing database managers that support the non-
interference feature. Current database systems typically have
a concurrency control manager, a buffer manager and a re-
covery manager. In our previous study [10], we presented a
novel concurrency control manager that simultaneously pro-
vided covert-channel-free security and good real-time per-
formance. We consider here the issue of designingbuffer
managerswith similar properties.

1.2 Design challenges

Buffer managers take advantage of the temporal locality typ-
ically exhibited in database reference patterns to enhance
system performance by minimizing disk traffic. In doing so,
however, they open up possibilities for covert channels –
in fact, many more than those associated with concurrency
control. For example, the presence or absence of a delay in
acquiring a free buffer slot, or the presence or absence of a
specific data page in the buffer pool, or the allocation of a
particular (physical) buffer slot, could all be used as chan-
nel mediums, whereas in concurrency control, data access
time is the primary medium. Apart from this “multitude-
of-channel-mediums” problem, there are several additional
problems that arise while integrating security into the RT-
DBS framework in general, and into the buffer manager in
particular.

1. An SRTDBS has tosimultaneouslysatisfy two require-
ments, namely, provide security and minimize the num-
ber of killed transactions. Unfortunately, the mechanisms
for achieving the individual goals often work at cross-
purposes [14]. In an RTDBS, high priority is usually
given to transactions with earlier deadlines in order to
help their timely completion. On the other hand, in secure
DBMS, low-security transactions are given high priority
in order to avoid covert channels (as described above).
Now consider the situation wherein a high-security pro-
cess submits a transaction with a tight deadline in an
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SRTDBS. In this case, priority assignment becomes diffi-
cult, since assigning a high priority may cause a security
violation, whereas assigning a low priority may result in
a missed deadline.

2. A major problem arising out of the preferential treatment
of low-security transactions is that of “fairness” – high-
security transactions usually form a disproportionately
large fraction of the killed transactions. Note that this is
an especially problematic issue, because it is the “VIPs”,
that is, the high-security transactions, that are being dis-
criminated against in favor of the “common folk”, that
is, the low-security transactions.
Unfortunately, designing dynamic mechanisms for
achieving fairness that are completely free of covert
channels appears to befundamentally impossible[18].
The issue then is whether it is possible to design fair sys-
tems while still guaranteeing that the information leakage
bandwidth (from covert channels) is within acceptable
levels.

3. A simple method for eliminating covert channels is
to enforce “static” resource allocation policies, wherein
each transaction security class has a set of pre-assigned
resources. The drawback of such strategies, however,
is that they may result in very poor resource utiliza-
tion under dynamic workloads. Similarly, employing
“replication”-based data organizations wherein multiple
copies of data pages are maintained will result in con-
siderable storage overheads.
The above approaches areespeciallyproblematic in the
real-time context since they may result in a significant
increase in the number of killed transactions. The chal-
lenge therefore is to design “dynamic” and “one-copy”
policies that are demonstrably secure.

4. Unlike concurrency control, which essentially deals only
with regulating data access, a buffer manager hasmul-
tiple components – buffer allocation, buffer replacement
and buffer pin synchronization [13], all of which have
to be made secure.

In summary, for the above-mentioned reasons, making a
real-time buffer manager implementation secure involves
significant design complexity.

1.3 Contributions

We have conducted a detailed study on designing buffer
managers that address the challenges described above, and
report on the results here. Our main contributions are the
following.

1. We identify the importance and difficulties of providing
secure buffer management in the real-time transaction-
processing environment.

2. We presentSABRE, a new buffer management algo-
rithm that provides complete covert-channel-free secu-
rity.
SABRE has been carefully designed to address all three
components of buffer management – allocation, replace-
ment and synchronization. Further, it is a dynamic one-
copy policy and therefore ensures efficient usage of
buffer resources.

3. Using a detailed simulation model of a firm-deadline RT-
DBS, the real-time performance of SABRE is evaluated
against unsecure conventional and real-time buffer man-
agement algorithms for a variety of security-classified
transaction workloads and system configurations. Both
inter-transaction locality and intra-transaction locality, as
well as restart locality, are modeled in our experiments.
To isolate and quantify the effects of buffer manage-
ment on the system performance, we also evaluate two
baselines,ALLHIT andALLMISS , in the simulations.
ALLHIT models an ideal system where every page ac-
cess results in a buffer pool “hit” , while ALLMISS mod-
els the other extreme – a system where every page access
results in a buffer pool “miss”.

4. We evaluate the performance of SABRE augmented with
theGUARD adaptive transaction admission control pol-
icy, proposed in [11]. The GUARD policy (details in
Sect. 9) is designed to achieve fairness in the distribu-
tion of the killed transactions across the various security
levels, while remaining within the information leakage
bandwidth limits specified in the US military’s “Orange
Book” [6], which defines security standards.

1.4 Organization

The remainder of this paper is organized as follows. Related
work on real-time and secure buffer management is reviewed
in Sect. 2. The security framework and the buffer model that
we employ are described in Sects. 3 and 4, respectively. Our
new SABRE secure real-time buffer management policy is
presented in Sect. 5. The unsecure conventional and real-
time buffer management policies evaluated in our study are
described in Sect. 6. The performance model is described
in Sect. 7 and the results of the simulation experiments are
highlighted in Sect. 8. The GUARD admission control pol-
icy, its integration with SABRE, and its performance is pre-
sented in Sect. 9. Finally, in Sect. 10, we present the con-
clusions of our study.

2 Related work

Buffer management in traditional database systems has been
extensively studied (see [7, 13] for surveys). In comparison,
however, very little work is available with regard to either
real-time buffer management or secure buffer management.
Further, to the best of our knowledge, there has been no
prior work regarding thecombinationof these areas, that is,
secure real-time buffer management, which is the subject of
this study. In the remainder of this section, we briefly review
the existing literature on secure buffer management and on
real-time buffer management.

2.1 Secure buffer management

The only prior research we are aware of on secure buffer
management is the recent study by Warner et al. [28] in
the context of conventional (i.e., non-real-time) DBMS. A
number of design alternatives for secure buffer allocation, re-
placement and synchronization were explored in this study.
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In particular, theystaticallydivide the buffer pool among the
various security levels,2 and then employ adynamicalloca-
tion scheme called “slot stealing”, wherein buffers, currently
underutilized at low-security levels, could be borrowed by
high-security transactions. Later, if needed, these borrowed
slots can be reclaimed by the low-security transactions. They
also considered replication-based schemes wherein multiple
copies of the same disk page could be present in the buffer
pools of various security levels.

While their dynamic allocation scheme is an interesting
approach, it has two limitations. First, it is onlypartially dy-
namic, since low-security transactions are not allowed to uti-
lize the currently unused buffer slots of high-security trans-
actions. Therefore, resource wastage could still result. Sec-
ond, it must be ensured that the number of buffer slots in
the high-security buffer pool that are clean and not perform-
ing I/O mustat all timesbe as large as the number of slots
borrowed from the low-security pool. This is necessary to
support the immediate return of slots reclaimed by the low-
security transactions and thereby to prevent covert channels.
The utility of slot stealing is diminished by this constraint
since it places restrictions on the high-security accesses.

A simulation-based performance evaluation of their var-
ious policies was also presented in [28], but this evaluation
considered the buffer management componentin isolation,
not as part of an entire secure system. It is possible that
the relative performance behavior of the policies may be
impacted when integrated into a complete system.

Our work differs from the above in that, apart from ad-
dressing real-time applications, we consider (a) fully dy-
namic and unconstrained one-copy allocation policies, (b)
the buffer manager’s performance role in the context of an
entire systemwhere all remaining components are secure,
and (c) the issue of performance fairness across security
levels.

2.2 Real-time buffer management

Efforts to integrate buffer management with real-time objec-
tives have been made for over a decade. The goal here is to
ensure that the allocation and replacement of buffer slots is
implemented so as to reflect the priorities of the transactions
competing for this shared resource. For example, instead of
using the standard global LRU policy for replacement, to al-
locate the LRU slotamong those currently held by the lowest
priority transaction.

A scheme for pre-fetching data pages in an RTDBS was
presented in [29], but its applicability is limited since it as-
sumes complete apriori knowledge of the workload on which
static transaction pre-analysis techniques are applied. In [3],
buffer management policies for prioritized transaction pro-
cessing were introduced. In particular, prioritized versions
of the popular LRU [7] and DBMIN [5] policies were pre-
sented and evaluated in conjunction with a prioritized allo-
cation policy that involved suspension of low-priority trans-
actions to create buffer space for higher priority transactions.

2 A scheme where the static buffer allocation is periodically reviewed
and altered is also presented, but this scheme can result in covert chan-
nels since the redistribution mechanism itself can become the medium of
information compromise – this issue is discussed in detail in Sect. 9.

These policies were designed for systems withfixed trans-
action priority classes and are therefore not directly applica-
ble to the real-time environment where priority is usually a
dynamic assignment. To address this lacuna, real-time ver-
sions of the allocation and replacement polices of [3] were
developed and evaluated in [17] and in [19]. The results of
these studies were inconclusive, however, since they arrived
at contradictory conclusions regarding the utility of adding
real-time information to buffer management – in [17], the
results indicated that specialized real-time buffer manage-
ment schemes have little performance impact, whereas in
[19], incorporating priority was considered essential. Since
that time, although many other RTDBS aspects have been
extensively researched (see [27] for a survey), we are not
aware of any subsequent literature on real-time buffer man-
agement.

A canonical real-time buffer management policy, called
RT, against which we compare the performance of our new
algorithm, SABRE, is described in Sect. 6.

3 Security model

In this section, we describe the security framework of our
study. Database systems typically attempt to achieve mul-
tilevel secrecy by incorporating access control mechanisms
based on the well-known Bell–LaPadula model [20]. This
model is specified in terms ofsubjectsand objects. An ob-
ject is a data item, whereas a subject is a process that requests
access to an object. Each object in the system has aclassi-
fication level (e.g.,Secret, Classified, Public, etc.) based
on the security requirement. Similarly, each subject has a
correspondingclearancelevel based on the degree to which
it is trusted by the system.

The Bell–LaPadula model imposes two restrictions on
all data accesses.

1. A subject is allowedread access to an object only if
the former’s clearance ishigher than or identical tothe
latter’s classification.

2. A subject is allowedwrite access to an object only if
the former’s clearance isidentical to or lower thanthe
latter’s classification.

The Bell-LaPadula conditions effectively enforce a “read be-
low, write above” constraint on transaction data accesses
(an example is shown in Fig. 1), and thereby preventdirect
unauthorized access to secure data. They are not sufficient,
however, to protect from “covert channels”, as described
in the Introduction. For tackling covert channels, we use
thenon-interferenceformalism described in the Introduction,
wherein low-security transactions do not “see” high-security
transactions.

3.1 Orange security

For many real-time applications, security is an “all-or-no-
thing” issue, that is, it is acorrectnesscriterion. In such “full-
secure” applications, metrics such as the number of killed
transactions or the fairness across transaction clearance lev-
els are secondaryperformanceissues. However, there are
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Fig. 1. Bell-LaPadula access restrictions

also applications for whom it is acceptable to have well-
definedbounded-bandwidthcovert channels in exchange for
performance improvement [2]. For example, the US mili-
tary’s security standards, which are defined in the so-called
“Orange Book” [6], specify that covert channels with band-
width of less thanone bit per secondare typically acceptable
– we will hereafter use the term“orange-secure” to refer
to such applications.

The underlying premise of orange-secure applications is
that covert channels based on such low bandwidths are ac-
ceptable because (a) these channels will take a long time to
transfer a significant amount of information, (b) by the time
the secret information is transferred it may well be obsolete,
(c) the time taken to transfer information is long enough to
considerably increase the possibility of detection, and (d) the
performance or implementation cost associated with elimi-
nating the covert channel is much higher than the cost of
any leaked information.

In this study, we initially consider the design of buffer
managers for full-secure real-time applications; later, in
Sect. 9, we extend our scope to orange-secure applications.
We assume, in all this work, that the buffer manager itself
is a fully trusted component of the system.

3.2 Transaction priority assignment

As mentioned in the Introduction, assigning priorities in an
SRTDBS is rendered difficult due to having to satisfy mul-
tiple functionality requirements. Given the paramount im-
portance of security, the database system is forced to assign
transaction priorities based primarily on clearance levels and
only secondarily on deadlines. In particular, priorities are
assigned as a vectorp = (level, intra), wherelevel
is the transaction clearance level andintra is the value
assigned by the priority mechanism usedwithin the level.
Clearance levels are numbered from one upwards, with one
corresponding to the lowest security level. Further, prior-
ity comparisons are made inlexicographic orderwith lower
priority values implying higher priority.

With the above scheme, transactions of a given clearance
level have higher priority than all transactions with higher
clearances, a necessary condition for non-interference. For
the intra-level priority mechanism, any priority assignment

that results in good real-time performance can be used.
For example, the classical Earliest-Deadline-First assign-
ment [24], wherein transactions with earlier deadlines
have higher priority than transactions with later deadlines.
For this choice, the priority vector would bep = (level,
deadline) – this priority assignment is used in most of our
experimental evaluations.

4 Buffer model

Having described the security framework employed in our
study, we move on in this section to presenting the buffer
model. Buffer managers attempt to utilize the temporal local-
ity typically exhibited in database reference patterns to max-
imize the number of buffer hits and thereby reduce disk traf-
fic. Three kinds of reference localities are usually observed:
inter-transaction locality(i.e., “hot spots”),intra-transaction
locality (transaction’s internal reference locality), andrestart
locality (restarted transactions make the same accesses as
their original incarnation).

4.1 Buffer categories

At any given time, the slots in the buffer pool can be grouped
into the following four categories:pinned – buffer slots con-
taining valid pages that are currently being accessed (in read
or write mode) by executing transactions;active – buffer
slots containing valid pages that have been earlier accessed
by currently executing transactions;dormant – buffer slots
containing valid pages that have not been accessed by any
currently executing transaction (these pages were brought
in by earlier transactions);empty – buffer slots that are
empty. Further, the first three categories (pinned, active, and
dormant) can be further subdivided intoclean and dirty
groups, which contain the set of clean and dirty (i.e., modi-
fied) pages, respectively, of that category.

We also define thelevel of a buffer slot to be the lowest
security level among all the transactions that are currently
utilizing the page. For empty slots, the associated security
level is undefined – levels are assigned only when a slot is
in use.

4.2 Buffer components

There are three components commonly associated with buffer
management [13]:allocation, replacementandsynchroniza-
tion. The allocation policy determines the assignment of
buffer slots to transactions. The replacement policy deter-
mines which page is to be replaced in order to accommodate
a new page if no empty buffer slots are currently available.
The synchronization policy ensures that conflicting pins are
not held on a data page at the same time.

An additional buffer management component, not nor-
mally seen in conventional DBMS, that arises specifically
in the secure real-time domain ispin pre-emption. Consider
the case, for example, where a low-clearance transaction re-
quests buffer space, but the slots currently held by high-
clearance transactions which would normally be candidates
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for replacement cannot be forced out because they are all
pinned. In this case, one option is for the low-clearance trans-
action to wait for slots to become unpinned, but this would
immediately result in covert-channel possibilities. Therefore,
there appears to be no choice but to “break the pin”, that
is, permit the replacement with the proviso that the high-
clearance transaction holding the original pin is immediately
notified that the page it had assumed to be stable had actu-
ally been replaced – the high-clearance transaction can then
either abort or, preferably, redo the corrupted operation at a
later time.

Security considerations are not the only reason for sup-
porting pin preemption. Consider, for example, the case
where a tight-deadline transaction wishes to utilize the slot
currently pinned by a slack-deadline transaction. If the urgent
transaction is blocked, this would mean that high-priority
transactions are being blocked by low-priority transactions,
a phenomenon known aspriority inversion in the real-time
literature [25]. Priority inversion can cause the affected high-
priority transactions to miss their deadlines and is clearly
undesirable. Therefore, pin pre-emption is useful fromreal-
time considerations also.3

5 Secure real-time buffer management policy (SABRE)

In this section, we presentSABRE (secure algorithm for
buffering in real-time environments), our new secure real-
time buffer management policy. SABRE provides complete
covert-channel-free security and has optimizations built in
both for reducing the overall number of killed transactions
and for decreasing the unfairness in the distribution of killed
transactions across security levels. Further, it is a dynamic
and one-copy policy that ensures efficient use of the buffer
resources.

Our newSABRE policy provides complete covert-chan-
nel-free security. Unlike the policies proposed in [28],
SABRE is fully dynamicsince there are no allocation quo-
tas of buffer slots to security levels, andunconstrainedin
that no restrictions are placed on high- (or low-) clearance
transaction accesses. Further, onlyone copyof a data page
is maintained in the buffer pool. These features ensure effi-
cient use of buffer resources. Finally, it incorporates several
optimizations both for reducing the overall number of killed
transactions and for decreasing the unfairness in the dis-
tribution of killed transactions across clearance levels. We
describe its design in more detail in the remainder of this
section.

5.1 Security features

The first step in enforcing security is to assign transaction
priorities in the manner described in Sect. 3.2. However, note
that this isnot sufficientto make the buffer manager secure
in terms of the non-interference requirement. We describe
below the main additional security features incorporated in
SABRE to ensure covert-channel-free security.

3 Solely for intra-level pin conflicts, an alternative priority inversion-
handling mechanism ispriority inheritance[25].

1. The contents of a buffer slot are not “visible” to a trans-
action if the existence of the page in the slot is the conse-
quence of the actions performed by higher security level
transactions. Such a slot will appear as a(pseudo-) empty
slot to the requesting transaction.
More specifically, for a transaction of a specific clearance
level, all the buffer pages of all higher clearance levels
are not visible, whereas the pinned and active buffer
pages of its own level and all lower clearance levels
are visible (the visibility of dormant pages is discussed
below in feature 3). This means that, for example, a low-
clearance transaction is not given immediate access to a
page that has been earlier brought into the buffer pool
by a high-clearance transaction. Instead, it is forced to
wait for the same period that it would have taken to
bring the page from disk had the page not been in the
buffer pool (the determination of this period is discussed
in Sect. 5.3).

2. High-clearance transactions can replace the dormant slots
of low-clearance transactions.

3. Dormant pages, ofany level, are visible only to transac-
tions of thehighestclearance level – for no other transac-
tions are they visible. That is, a low-clearance transaction
is not given immediate access to a dormant page even
at its own or lower clearance levels. Instead, it is forced
to wait for the same period that it would have taken to
bring the page from disk had the page not been in the
buffer pool.

4. Pin pre-emption is supported (via transaction abort) at
all security levels.4

5. When selecting from among the set of (really) empty
slots, the slot israndomly chosenand not in any pre-
defined order.

5.1.1 Discussion

Feature 1 above is an obvious requirement to ensure the ab-
sence of signaling between high-clearance and low-clearance
transactions. Feature 2, which allows high-clearance trans-
actions to “steal” the dormant slots of low-clearance transac-
tions, is included for the following reason. If high-clearance
transactions could not replaceany pages of low-clearance
transactions, then the buffer pool would very quickly fill up
with the active and dormant pages of the low-clearance trans-
actions and after this the high-clearance transactions would
not be able to proceed further. That is,starvationof high-
clearance transactions would occur.

Note, however, that there is a price to pay for ensuring
that covert channels do not result in spite of slot stealing.
This is expressed in feature 3, wherein low-clearance trans-
actions are made to wait for access to dormant pages at even
their own and lowerclearance levels, thereby partially los-
ing the benefits that could be gained from inter-transaction
locality.5 The reason that only thehighest clearance level

4 Supporting pin pre-emption at thelowestclearance level is not essential
for security but is retained for performance reasons (see Sect. 5.2).

5 While these delays will certainly increase the execution time of the in-
dividual low-clearance transaction, note that the effect on the disk through-
put can be eliminated by using the proxy disk service optimization discussed
in Sect. 5.3.
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transactions are permitted to see dormant slots is to prevent
“transitive” covert channels: Consider a three-security-level
system composed ofSecret, Classified and Public trans-
actions. Here, if the classified transactions are allowed to
see the public dormant slots, a transitive covert channel can
arise out of classified transactions observing secret transac-
tions replacing the public dormant slots.

Feature 4 ensures that high-clearance accesses can be un-
restricted without causing covert channels since slots can be
returned immediately, even if they are currently pinned. Fi-
nally, feature 5 ensures that low-clearance transactions can-
not “guess” that they are being given a pseudo-empty slot
by virtue of the fact that the slot they receive is not the first
in the list of slots that they perceive to be empty.

We show next that the above design guarantees covert-
channel-free security.

5.1.2 Proof that SABRE is covert-channel secure

The necessary and sufficient conditions for a secure interfe-
rence-free scheduler are given in [18], and this frame-
work is also applicable to the secure firm-deadline real-time
transaction-processing environment. In this framework, there
are three requirements to be satisfied for a system to be
covert-channel secure – delay security, value security and
recovery security – described below.

Delay security. A system is delay secure if the delay expe-
rienced by a subject is not affected by actions of subjects
belonging to higher clearance levels.

Value security. A system is value secure if the value of
objects accessed by a subject are not changed by actions
of subjects belonging to higher clearance levels.

Recovery security. A system is recovery secure if the oc-
currence of a transaction restart appears the same for a
subject regardless of the presence or absence of higher
level subjects in the system.

Proof. We now consider the various kinds of security vio-
lations that are possible with regard to delay security, value
security and recovery security, and show that none of these
can occur with the SABRE algorithm.

Delay security
From a transaction’s viewpoint, delay security can be
violated in five different ways. (1) A page is absent in
the buffer when it is expected to be present. (2) A page
is present in the buffer when it is expected to be absent.
(3) A free buffer slot is available when the buffer pool is
expected to be full.6 (4) A free buffer slot is unavailable
when the buffer pool is expected to be not full. (5) A
physical slot is allocated that is different than what was
expected to be allocated.
The first possibility, a page is absent in the buffer when it
is expected to be present, can occur only if a higher level

6 We assume here that the total size of the buffer pool is public knowl-
edge and that, for any given transaction, the occupancy of the buffer pool
by transactions of that level or dominated levels is visible. Hence, the buffer
pool appears full to a transaction if and only if the entire buffer pool is held
by transactions of its own or dominated levels.

transaction replaces the page.7 SABRE disallows a high-
security transaction from replacing the page brought into
the buffer by a low-security transaction.
The second possibility, a page is present in the buffer
when it is expected to be absent, can happen only if a
higher security level transaction brings in the page to
the buffer and the low-security-level transaction is given
access to the page. SABRE disallows this possibility by
setting a visibility level. The pages brought in by higher
security level transactions are not visible to low-security-
level transactions.
The third possibility, a buffer slot is known to be avail-
able when the buffer is expected to be full, can happen
only if higher security transactions can free some buffer
slots. This cannot happen since, by the visibility crite-
rion, if the buffer pool appears to be full to a low-security
transaction, then all buffers must be currently held by
low-security transactions and such buffers cannot be re-
placed by high-security transactions.
The fourth possibility, a free buffer slot is unavailable
when the buffer is expected to be not full, can happen
only if those perceived to be empty are currently held by
higher security-level transactions. However, the pin pre-
emption facility of SABRE ensures the release of these
slots.
The fifth possibility is prevented by randomizing the slot
identities.

Value security
Since value security deals with the data values read by
transactions, it is really determined only by theconcur-
rency control managerand there is no direct role for the
buffer manager in this issue. For concurrency control
protocols that ensure strict one-copy global serializabil-
ity, ensuring delay security automatically ensures value
security. This is because the actions of higher level trans-
actions have no effect on the serial order of lower level
transactions. We consider only such concurrency control
protocols in this study.

Recovery security
SABRE does not allow a high-security transaction to
pre-empt the buffer slot from a low-security transaction.
Therefore, a transaction restart can arise only due tocon-
currency controlreasons, not out of pin pre-emption oc-
curring at the buffer manager. Therefore, it ensures re-
covery security.

5.2 Real-time features

Having described the security features, we move on now to
the features incorporated in SABRE to ensure goodreal-time
performance.

1. Transactions of a particular clearance level are not per-
mitted to replace the pinned or active pages of higher
priority transactions belonging to the same level.

7 While it is certainly possible for a lower level transaction to have
replaced the page, we make the common assumption that each transaction
is aware of all transaction activities at its own and lower security levels.
Under this assumption, the transaction will know not to expect the page
to be present if it has been replaced by transactions of its own or lower
security levels.
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if (Really Empty Slots exist) then
slot = randomly chosen Empty Slot

else if (Dormant Slots exist) then
/* Slot Stealing from Lower Security Levels OR

Slot Confiscating from Higher Security Levels */
find the lowest security level at which Dormant Slots exist
slot = LRU (clean|dirty) among these Dormant Slots

else if (Slots of Higher Security Levels exist) then
/* Slot Confiscating from Higher Security Levels */
find the highest level above requester’s level for which slots exist
if (Active Slots exist) then

find the lowest priority transaction with Active Slots
slot = LRU (clean|dirty) among these slots

else /* All Slots are Pinned */
abort lowest priority transaction and release its slots
slot = LRU (clean|dirty) among these slots

else if (Slots of Requester’s Level exist) then
if (Lower Priority Transactions with Active Slots exist) then

find the Active Slots of lowest priority transaction
slot = LRU (clean|dirty) among these slots

else if (Lower Priority Transactions with Pinned Slots exist) then
abort the lowest priority transaction and release its slots
slot = LRU (clean|dirty) among these slots

else /* All Slots belong to Higher Priority transactions */
insert request in the wait queue which is
maintained in (LEVEL, DEADLINE) priority order

else /* All Slots belong to Lower Security Level transactions */
insert request in the wait queue which is
maintained in (LEVEL, DEADLINE) priority order

Fig. 2. SABRE slot selection algorithm

2. Within each clearance level, priority-based pin pre-
-emption (via transaction abort) is supported.

3. An optimized “comb” slot selection algorithm is used to
decide the slot in which to host a new data page.

Feature 1 helps to utilize the intra-transaction, inter-trans-
action and restart localities of high-priority transactions,
while feature 2 ensures the absence of priority inversions.
The optimized slot selection algorithm mentioned in feature
3 is described below in Sect. 5.2.1.

5.2.1 Search and slot selection policy

When a transaction requests a data page, thevisible portion
of the buffer pool (corresponding to the transaction’s clear-
ance level) is searched for the page, and if the search is suc-
cessful, SABRE returns the address of the slot in which the
page is present. If the page is already pinned in a conflicting
mode by a higher priority transaction, then the transaction
has to wait for it to be unpinned before accessing the con-
tents. Otherwise, it can access the page immediately after
gaining a pin on the page.

A search could be unsuccessful for one of two reasons:
(a) because the page is really not in the buffer pool, or (b)
because it is in the non-visible portion of the buffer pool.
In the first case, if really empty buffer slots are available,
SABRE brings the page into one of these slots and returns
the address of the slot to the requesting transaction. Oth-
erwise, an existing buffer page is chosen for replacement
according to the selection algorithm described below. The
victim page, after being flushed to disk if dirty, is replaced

P A D

P A D

P A D

Security
Levels

n

i

1

E

P   = Pinned
A   = Active
D   = Dormant
E   =  Empty
      =  Search Path

Buffers

Request

P A D

Fig. 3. COMB slot selection route

by the requested page and the associated slot address is re-
turned to the transaction. In the second case, the requested
page is made toappearto have been brought from disk into
the buffer slot where it currently exists by “unveiling” the
slot only after waiting for the equivalent disk access time.

The complete slot selection algorithm used in SABRE
is shown in Fig. 2. In this algorithm, starting from really
empty slots, the selection works its way up the security hi-
erarchy looking for dormant slots and then in a “comb-like”
fashion works its way downwards from the top clearance
level looking for active and pinned slots until it reaches the
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requester’s clearance level. This route is shown pictorially
in Fig. 3.8

SABRE’s comb slot selection algorithm incorporates the
security and real-time features described earlier. In addition,
it includes the following optimizations designed to improve
the real-time performance.

1. The search for replacement buffers is ordered based on
slot category – the dormant slots are considered first and
only if that is unsuccessful, are the active and pinned
slots considered. This ordering is chosen to maximize
the utilization ofintra-transactionlocality.

2. Given a set of candidate replacement slots (as determined
by the slot selection algorithm), these candidate slots are
grouped into clean and dirty subsets – only if the clean
group is empty is the dirty group considered. Within
each group the classicalLRU (least recently used) pol-
icy [7] is used to choose the replacement slot. This “LRU
(clean|dirty)” ordering is based on the observation that
(a) it is faster to replace a clean page than a dirty page
since no disk writes are incurred, and (b) the cost of writ-
ing out a disk page is amortized over a larger number of
updates to the page.

5.3 Class fairness features

As mentioned in the Introduction, due to the covert-channel-
free requirements, high-security transactions in secure RT-
DBS are discriminated against in that they usually form a
disproportionately large fraction of the killed transactions.
To partially address this issue, the following optimizations
are incorporated in SABRE.

Proxy disk service. The delays prescribed in security fea-
tures 1 and 3 (Sect. 5.1) can be easily implemented by
actually retrieving the desired page from disk into the
buffer slot where it already currently exists. Obviously,
this approach is wasteful. A more useful strategy would
be to use the disk time intended for servicing this request
to instead serve (in increasing security level order) the
pending requests, if any, of higher clearance transactions
for the same disk.9 That is, the high clearance transac-
tion clandestinely acts as a “proxy” for the low-clearance
transaction.

Comb route. In the comb algorithm, the search for a re-
placement slot among the dormant slots begins with the
lowestclearance level. This approach maximizes the pos-
sibility of slot stealing from lower clearance levels, re-
sulting in increased fairness.

6 Comparative unsecure buffer management policies

To the best of our knowledge, the SABRE policy described
in the previous section represents thefirst secure real-time

8 The reason that active/pinned slots of higher security levels are consid-
ered before checking for similar slots at the requester’s level is to prevent
covert channels – if a page from the requester’s level is taken while there
are still active/pinned pages of the higher security level (which all appear
empty to the requester), a covert channel may be opened. Of course, this
has an adverse impact on the KillPercent of the higher security transactions.

9 Of course, if there are no pending higher clearance requests, the disk
is forced to be idle during this period.

buffer management policy. This means that there are no com-
parative algorithms in its class against whom its performance
could be evaluated. Therefore, we have instead compared its
performance with that ofunsecurebuffer management poli-
cies. These include representative choices of previously pro-
posed policies for conventional (non-real-time and unsecure)
DBMS and for real-time (unsecure) DBMS.10 A further util-
ity of this comparison is that it helps to quantify the perfor-
mance effects of including security cognizance and real-time
cognizance in the SABRE policy.

We have implemented two policies,CONV andRT, cor-
responding to conventional and real-time DBMS, respec-
tively. For both these policies, theentire buffer pool is al-
ways visible since they are not security-cognizant. In CONV,
for a successful search, the requesting transaction can access
the page immediately, unless it has already been pinned in
a conflicting mode – in this case the transaction has to wait
for the page to be unpinned before accessing its contents.
RT also follows a similar policy for successful searches, ex-
cept that in the case of conflicting pins, if the pin holder is
of lower priority than the requesting transaction, the pin is
pre-empted by aborting the lower priority holder.

For unsuccessful searches, CONV and RT follow the slot
selection algorithms shown in Figs. 4 and 5, respectively.
CONV essentially implements the classical LRU approach,
including also the (clean|dirty) and category-based search
optimizations of SABRE, while RT implements a prioritized
version of the same approach.

6.1 Baseline policies

To isolate and quantify the effects of buffer management on
the system performance, we also evaluate two artificial base-
line policies,ALLHIT and ALLMISS , in the simulations.
ALLHIT models an ideal system where every page access
results in a buffer pool “hit”, while ALLMISS models the
other extreme – a system where every page access results in
a buffer pool “miss”.

7 Simulation model

To evaluate the performance of the buffer management poli-
cies described in the previous sections, we developed a de-
tailed simulation model of a firm-deadline RTDBS. This
model is similar to that used in our previous secure RTDBS
study [10], with the main difference being the addition of
a buffer manager component. A summary of the key model
parameters is given in Table 1.

The model has six components: adatabasethat mod-
els the data and its disk layout; asourcethat generates the
transaction workload; atransaction managerthat models the
execution of transactions; aresource managerthat models
the physical resources and includes abuffer manager; a con-
currency control (CC) managerthat controls access to shared
data; and asink that gathers statistics on transactions exiting
the system. The model organization is shown in Fig. 6.

10 We do not compare our policies with those described in [28] because
their static policies require resource reservation, while their dynamic poli-
cies are not completely free from covert channels.
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if (Empty Slots exist) then
slot = any Empty Slot

else if (Dormant Slots exist) then
slot = LRU (clean|dirty) among these Dormant Slots

else if (Active Slots exist) then
slot = LRU (clean|dirty) among these Active Slots

else /* all slots are pinned */
insert request in the wait queue which is
maintained in FCFS order Fig. 4. The CONV slot selection algorithm

if (Empty Slots exist) then
slot = any empty slot

else if (Dormant Slots exist) then
slot = LRU (clean|dirty) among these Dormant Slots

else if (Lower Priority Transactions with Active Slots exist)
find the active slots of the lowest priority transaction
slot = LRU (clean|dirty) among these slots

else if (Lower Priority Transactions exist)
abort the lowest priority transaction and release its slots
slot = LRU (clean|dirty) among these slots

else /* all slots are with higher priority transactions */
insert request in the wait queue which is
maintained in DEADLINE priority order Fig. 5. The RT slot selection algorithm

Table 1. Simulation model parameters

Parameter Meaning Default value
DBSize Number of pages in the database 1000
ClassLevels Number of classification levels 2
ArrivalRate Transaction arrival rate —
ClearLevels Number of clearance levels 2
SlackFactor Slack factor in deadline assignment 4.0
TransSize Average transaction size 16 pages
WriteProb Page write probability 0.5
NumCPU Number of processors 10
NumDisk Number of disks 20
NumBuf Number of buffers 50
PageCPU Page processing time at CPU 10 ms
PageDisk Page processing time at Disk 20 ms
MinPin Minimum buffer pin time 0ms
MaxPin Maximum buffer pin time 100 ms
CCReqCPU Concurrency control overhead 1 ms
NumGPS Number of GPS (global page sets) 100
SizeGPS Size of each GPS 200
GRefCnt References from current GPS 500
InterLoc Inter-transaction locality factor 0.14
IntraLoc Intra-transaction locality factor 0.8
LocalProb Local pageset probability 0.8

7.1 Database model

The database is modeled as a collection ofDBSize pages
that are uniformly randomly distributed across all of the sys-
tem disks. The database is equally partitioned into
ClassLevels security classification levels (for example, if
the database has 1000 pages and the number of classifica-
tions is 5, pages 1 through 200 belong to level 1, pages 201
through 400 belong to level 2, and so on).

7.2 System model

The system consists of a shared-memory multiprocessor
DBMS operating on disk-resident data. The physical re-
sources of the database system consist ofNumCPU pro-
cessors,NumDisk disks, andNumBuf buffers. There is

a single common queue for the processors and the service
discipline is pre-emptive resume, with pre-emptions being
based on transaction priorities. Each of the disks has its own
queue and is scheduled according to a head-of-line (HOL)
policy, with the request queue being ordered by transaction
priority. ThePageCPU andPageDisk parameters capture
the CPU and disk processing times per data page, respec-
tively.

A single-level buffer consisting ofNumBuf identical
page-sized buffer slots is modeled and the slots are allocated,
replaced and synchronized according to the buffer manager
in use. Each buffer slot has a dirty field, and if the dirty bit
is set, the page is saved to the disk before replacement. The
buffer wait queues are maintained in the order specified by
the buffer manager in use. A page that is brought into the
buffer pool is pinned for a uniformly distributed duration in
the range [MinPin, MaxPin].

In our simulator, a separate instance of the buffer man-
ager was created for each of the buffer management policies
evaluated in our experiments.

7.3 Workload model

Transactions are generated in a Poisson stream with rate
ArrivalRate and each transaction has an associated security
clearance level and a firm completion deadline. A transaction
is equally likely to belong to any of theClearLevels secu-
rity clearance levels. (For simplicity, we assume in this study
that the categories (e.g.,Secret, Public) for data classifica-
tion and transaction clearance are identical). Deadlines are
assigned using the formulaDT = AT + SlackFactor ∗ RT ,
whereDT , AT and RT are the deadline, arrival time and
resource time, respectively, of transactionT . The resource
time is the total service time at the resources that the trans-
action requires for its data processing. TheSlackFactor
parameter is a constant that provides control over the tight-
ness/slackness of transaction deadlines. If a transaction has
not completed by its deadline, it is immediately killed
(aborted and discarded from the system).
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Fig. 6. Simulation model

An important point to note here is that, while the work-
load generator utilizes information about transaction re-
source requirements in assigning deadlines,we do not as-
sume that this information is available to the SRTDBS itself
since such knowledge is usually hard to come by in practical
environments.

Each transaction consists of a sequence of page read and
page write accesses. The number of pages accessed by a
transaction varies uniformly between half and one-and-a-half
times the value ofTransSize. The WriteProb parameter
determines the probability that a transaction operation is a
write. Due to security reasons, each transaction can only
access data from a specific segment of the database, and
page requests are generated by uniformly randomly sampling
(without replacement) from the database over this segment’s
range. The permitted access range is determined by both the
security clearance level of the transaction and the desired op-
eration (read or write), and is according to the Bell–LaPadula
specifications: a transaction cannot read (resp. write) pages
that are classified higher (resp. lower) than its own clearance
level. A transaction that is restarted due to a data conflict has
the same clearance level, and makes the same data accesses,
as its original incarnation.

7.4 Transaction execution

A transaction read or write access first involves a CC request
to get access permission. The CPU overhead required to
process each CC request is specified by theCCReqCPU
parameter. After access is provided, it is followed by either
finding the page already in the buffer pool or by initiating a
disk I/O to input the page. This is followed by a period of
CPU usage for processing the page.

7.5 Access locality

The generation of inter-transaction and intra-transaction ref-
erence locality is handled in a manner similar to that used

in [28]. In this scheme, two types of pagesets are created,
global pagesetsand local pagesets. The inter-transaction
and intra-transaction localities are associated with the global
pagesets and local pagesets, respectively.

Global pagesets are generated by sampling (with replace-
ment) from the database using identical (truncated) normal
distributions with variance 1/InterLoc2 – only the page lo-
cation of the centerpoint of the distribution is a function
of the individual global pageset. TheNumGPS parameter
specifies the number of global pagesets generated and the
size of each pageset is given by theSizeGPS parameter.
At the outset, one of the global pagesets is designated as
the current global pageset and subsequent page references
are generated from this pageset. AfterGRefCnt number of
references have been generated from this pageset, another
pageset is uniformly randomly chosen from the remaining
pagesets to become the current pageset. This mechanism is
intended to model the temporally shifting behavior of inter-
transaction locality seen in practice.

The pageset for a transactionT is created in the follow-
ing manner. Initially a local pageset is created. This local
pageset is obtained by uniformly randomly choosing pages
from the current global pageset and the number of pages
chosen is given by the formulaLocalPageSetSizeT =
max(1, ((1 − IntraLoc) × TransSizeT )). After this, the
transaction’s pageset is created by successively choosing
pages randomly from within the local pageset or from within
the current global pageset. The probability that a given page
access is chosen from the local pageset is specified by the
LocalProb parameter. This mechanism is intended to model
the intra-transaction locality.

Finally, restart locality is modeled by ensuring that a
transaction that is restarted due to a data conflict has the
same clearance level and makes the same sequence of data
accesses as its original incarnation.

7.6 Priority assignment

The transaction priority assignment used at all the RTDBS
components,excepting the buffer manager, is p = (level,
deadline) to ensure non-interference in accordance with
the discussion in Sect. 3.2. Among the buffer managers,
SABRE also employs thep = (level, deadline) pri-
ority assignment to ensure security. RT, however, uses
p = (deadline) since it is security-indifferent while CONV
is completely priority-indifferent.

7.7 Concurrency control

The secure version [10] of the 2PL–HighPriority (2PL-HP)
real-time protocol [1] is used for concurrency control and,
for simplicity, only page-level locking is modeled.11 The
2PL-HighPriority protocol ensures strict one-copy global

11 In our earlier study of secure concurrency control [10], a validation-
based protocol called S2PL-WAIT was found to provide the best real-time
performance. However, since open problems remain with respect to in-
tegrating validation schemes with buffer management [15] and since the
focus here is on buffer management, not concurrency control, we have for
simplicity used 2PL-HP in this study.
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serializability and therefore ensures value security, as dis-
cussed earlier in Sect. 5.1.2.

In the 2PL-HP scheme, the classical strict 2PL proto-
col [8] is modified to incorporate a priority conflict resolu-
tion scheme which ensures that high-priority transactions are
not delayed by low-priority transactions. When a transaction
requests a lock on a data item that is held by one or more
higher priority transactions in a conflicting lock mode, the
requesting transaction waits for the item to be released (the
wait queue for a data item is managed in priority order).
On the other hand, if the data item is held by only lower
priority transactions in a conflicting lock mode, the lower
priority transactions are restarted and the requesting trans-
action is granted the desired lock.12 Note that 2PL-HP is
inherently deadlock-free if priorities are assigned uniquely
(as is usually the case in RTDBSs).

7.8 Performance metrics

The primary performance metric of our experiments is
KillPercent , which is the percentage of input transactions
that the system isunableto complete before their deadlines.
We compute this percentage also on aper-clearance-level
basis. KillPercent values in the range of 0 – 20% are taken to
represent system performance under “normal” loads, while
KillPercent values in the range of 20 – 100% represent sys-
tem performance under “heavy” loads [16].13

An additional performance metric isClassFairness
which captures how evenly the killed transactions are spread
across the various clearance levels. This is computed, for
each classi, as the ratio100−KillPercent(i)

100−KillPercent . With this formu-
lation, a policy is ideally fair if the fairness value is 1.0 for
all classes. Fairness values greater than one and lesser than
one indicate positive bias and negative bias, respectively.

7.9 Default parameter settings

The default settings used in our experiments for the work-
load and system parameters are listed in Table 1 and, except
for the buffer parameters which are new, are similar to those
used in our earlier study [10]. These settings were chosen to
ensure significant locality in the data reference patterns and
significant buffer contention, thus helping to bring out the
performance differences between the various buffer man-
agement policies. While the absolute performance profiles
of the buffer policies would, of course, change if alternative
parameter settings were used, we expect that therelativeper-
formance of these protocols will remain qualitatively similar
since the model parameters are not policy specific.

8 Experiments and results

Using the real-time database model described in the previ-
ous section, we evaluated the performance of the various

12 A new reader joins a group of lock-holding readers only if its priority
is higher than that ofall the waiting writers.

13 A long-term operating region where the kill percentage is high is ob-
viously unrealistic for a viable RTDBS. Exercising the system to high kill
levels, however, provides valuable information on the response of the al-
gorithms to brief periods of stress loading.

buffer managers for a variety of security-classified trans-
action workloads and system configurations. The simulator
was written using the Simscript II.5 discrete-event simu-
lation language [22]. In this section, we present the perfor-
mance results from our simulation experiments. Due to space
constraints, we present results for only a set of representa-
tive experiments here – the others are available in [9]. In our
discussion, only statistically significant differences are con-
sidered – all the performance graphs show mean values that
have relative half-widths about the mean of less than 10%
at the 90% confidence level, with each experiment having
been run until at least 10,000 transactions were processed
by the system.

The simulator was instrumented to generate a host of
other statistical information, including resource utilizations,
buffer hit ratios, transaction restarts, etc. These secondary
measures help to explain the performance behavior of the
buffer management policies under various workload and sys-
tem conditions.

8.1 Overview of experiments

In our first experiment, we profile the performance of the
buffer management policies for the default parameter set-
tings, wherein both intra- and inter-transaction locality are
present in the workload. In the subsequent set of experi-
ments, we isolate the performance effects independently of
inter-transaction locality and intra-transaction locality. While
these experiments are reported for a two-security-level sys-
tem, our final experiment evaluates the performance behav-
ior in the context of a five-security-level system.

8.2 Experiment 1: inter- and intra-transaction locality

In our first experiment, we evaluate the cost of providing
covert-channel-free security in the real-time environment for
a system with two security levels:Secret and Public, and
where there is significant inter- and intra-transaction locality.
For this configuration, Fig. 7a shows the overall KillPercent
behavior as a function of the (per-second) transaction arrival
rate for the SABRE, CONV, RT, ALLHIT and ALLMISS
buffer policies. We observe here that, as expected, the ALL-
HIT and ALLMISS baseline policies exhibit the best and
worst performance, respectively. What is more interesting
is the vast gapbetween the performance of ALLHIT and
that of ALLMISS, indicating the extent to which intelligent
buffer management can play a role in improving system per-
formance and highlighting the need for well-designed buffer
policies.

Among the practical protocols, we observe that the real-
time performance behaviors of SABRE and RT are similar,
with RT holding the edge, whereas CONV is significantly
worse, especially under heavy loads. RT shows better per-
formance than CONV because it gives preferential treatment
to urgent transactions in the following ways. (1) They derive
more intra-transactionandrestart locality since their active
pages cannot be replaced by low-priority transactions; and
(2) they get “first pick” of the available slots due to the
prioritized queuing for buffer slots.
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ity (Experiment 1):a Overall KillPercent,
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The reason that SABRE performs slightly worse than
RT is that, since priorities are decided primarily based on
clearance levels, it is still possible for a slack-deadline pub-
lic transaction to restart a tight-deadline secret transaction,
resulting in the secret transaction missing its deadline. This
effect is highlighted in Fig. 7b, which shows thelevel-wise
kill percentages – with SABRE, secret transactions (dashed
lines) form a much larger proportion of the killed transac-
tions. This is further quantified in Fig. 7c, which captures
the ClassFairness metric for the secret transaction class, and
clearly demonstrates that SABRE is extremely unfair to se-
cret transactions, especially under heavy loads.

It may appear surprising in Figs. 7b and 7c that RT and
CONV, although not security cognizant, are still somewhat
unfair to secret transactions. This behavior is not due to the
buffer policies themselves, but is aside effectof the rest of

the system being secure and therefore discriminating against
secret transactions.

In Fig. 7d, we show thebuffer hit ratio, that is the av-
erage probability of finding a requested page in the visible
portion of the buffer pool, for the various protocols on a
level-wise basis. The first point to note is that in all the pro-
tocols there is acrossoverbetween the secret and public hit
ratios – at normal loads secret is better whereas under heavy
loads public is better. This is explained as follows: in CONV
and in RT, the normal load hit ratios should have been simi-
lar since they are not security cognizant, but again there is a
side effect arising out of the rest of the system being secure
– more secret transactions are restarted forconcurrency con-
trol reasons than public transactions and therefore there is
more restart locality derived for secret transactions. Under
heavy loads, however, this effect is overtaken by the public
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transactions hogging most of the buffer slots and thereby
making the secret transactions hot spot mostly absent from
the buffer pool.

In SABRE, the secret transactions do better at normal
loads, not only because of the restart locality mentioned
above, but also due to two additional factors. (1) The whole
buffer pool is visible to secret transactions; and (2) the “slot
stealing” feature. Under heavy loads, however,even moreof
the buffer slots are occupied by public transactions as com-
pared to CONV and RT, since secret transactions cannot re-
place the active pages of public transactions, and therefore
the secret hit ratio is markedly worse. Another interesting
observation with respect to SABRE is that, although its de-
sign prevented the use of much of the dormant page locality
(as described in Sect. 5), yet its overallhit ratio is not materi-
ally worse than that of CONV or RT. This is because, except
under very light loads, most of the pages in the buffer pool
will be active since they represent the hot spot and therefore
active page locality predominates.

Finally, Fig. 7e shows thebuffer utilization, that is, the
overall average number of pinned buffer slots, and it is
clear here that CONV utilizes the buffers more than RT and
SABRE. However, this does not result in better real-time
performance because CONV is deadline-indifferent, whereas
RT and SABRE selectively give the pinned slots to tight-
deadline transactions.

In summary, the results of this experiment highlight
the benefits of using deadline-cognizant buffer management
policies. Further, it shows that SABRE provides security
with only a modest drop in real-time performance. The

non-interference requirement, however, causes SABRE to be
rather unfair to high-clearance transactions, especially under
heavy loads.

8.3 Experiment 2: inter-transaction locality

The goal of our next experiment is to study, in isolation,
the impact ofinter-transaction locality on the system per-
formance. All parameters remain the same as those used in
the previous experiment, except that the theIntraLoc pa-
rameter is set to 0.0 to eliminate intra-transaction locality.
The performance characteristics obtained for this environ-
ment are shown in Figs. 8a–c.

In Fig. 8a, the overall kill percentages of all the buffer
managers are given. We see here that at normal loads all of
them perform almost identically, but at higher loads, CONV
performs the worst, whereas RT provides the best perfor-
mance and SABRE performs almost as well as RT. The
miss percentage values in this experiment are significantly
higher, for all policies, than their respective kill percentage
values in Experiment 1. This is due to two reasons. First,
the lowered buffer hit ratio. Second, the global skew in data
accesses results in hot spots. These hot spotsincreasedata
conflicts and, consequently, increase the number of deadline
misses.

The level-wise split-up of kill percentage values is given
in Fig. 8b. The secret kill percentage for RT is less than
that of CONV due to its priority-cognizant, but security-
indifferent characteristic. Turning our attention to the public
miss percentages, CONV shows the worst kill percentage at
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heavy loads, whereas the RT public kill percentage is lower
due to its priority-cognizance. Public transactions in SABRE
have significantly better performance than their secret coun-
terparts. This is again because the public transactions do
not “feel” the secret transactions in the buffer, due to the
non-interference feature of SABRE.

The fairness characteristics shown in Fig. 8c indicate
that SABRE is highly unfair at heavy loads. This happens
because most of the buffer slots will be made either active
or pinned by the public transactions, thereby leaving little
room for secret transactions in the buffer.

To conclude, the inter-transaction locality in the work-
load gives rise to increased restarts and thereby reduced real-
time performance. Though the real-time features of RT and
SABRE make them marginally better than CONV in terms
of kill percentage performance, the improvement is relatively
minor.

8.4 Experiment 3: intra-transaction locality

This experiment was conducted to study, in isolation, the ef-
fect of intra-transaction locality on the system performance.
All parameter values are the same as those of Experiment 1,
except that theInterLoc parameter is set to 0.0 to eliminate
inter-transaction locality. The results for this environment
are shown in Fig. 9a-c.

We first note that the overall kill percentages (Fig. 9a) are
considerablyreducedfor all the policies, compared to their
values in Experiment 1. This may seem surprising given
the reduced locality modeled in this experiment, but arises

because the intra-locality increases the hit ratiowithout at-
tracting the penalty of data conflicts (unlike inter-transaction
locality).

Another interesting point to note here is that CONV
performs much worse than RT and SABRE, unlike in Ex-
periment 2, where there was only a marginal difference
in real-time performance. This is due to the fact that the
deadline-cognizance of SABRE and RT ismore effective
under intra-transaction locality. This is because they re-
tain the active/pinned pages of the urgent transactions in
the buffer, and therefore these pages are usually available
when re-referred. This helps the urgent transactions to com-
plete before their deadlines, thereby resulting in performance
improvement. At heavy loads, however, SABRE’s perfor-
mance becomes worse than RT. This is because the security-
cognizance of SABRE gains prominence over its real-time
cognizance in this region.

Similar to earlier experiments, we see that with SABRE
the secret transactions lose heavily to the public transactions
at heavy loads as is evident from the level-wise kill percent-
ages shown in Fig. 9b and from the fairness characteristics
shown in Fig. 9c. Again, this is due to SABRE’s enforce-
ment of covert-channel security constraints.

In summary, with intra-transaction locality, the real-time
features of RT and SABRE deliver significant performance
benefits. Howeve, SABRE continues to be unfair as in the
previous experiments.
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8.5 Experiment 4: five security levels

The previous experiments modeled a two-security-level sys-
tem. In our final experiment of this section, we study the
performance behavior of the buffer managers in a system
with five security levels (TopSecret, Secret, Confidential,
Classified andPublic) for both data classification and trans-
action clearance. All the remaining system and workload
parameters are the same as those of Experiment 1.

Before presenting the results, it is important to note that
in a five-level system, priority is much morelevel-basedthan
deadline-based. Therefore, we might expect that the real-
time features of SABRE will have correspondingly reduced
effect, resulting in significantly degraded real-time perfor-
mance.

The results of this experiment are shown in Fig. 10a–c.
With respect to the two artificial baseline policies, ALLHIT
and ALLMISS, we note again that there is a vast gap in
their performance. This highlights the fact that there is a
good potential for a sophisticated buffer management policy
to improve the real-time performance.

Moving on to the SABRE policy, we see that at normal
loads, contrary to our concerns mentioned above, it performs
only slightly worsethan both CONV and RT. This indicates
that even in a system with many levels, the normal load
performance of SABRE can be almost as good as that of a
pure real-time policy. It is only in the heavy load region that
the overall KillPercent for SABRE becomes somewhat more
than that of RT but is at the same time better than CONV.

The level-wise kill percentages for SABRE are shown in
Fig. 10b. These graphs clearly show the extent to which the
kill percentages are skewed among the various transaction
security levels, with topsecret transactions having the most
number of missed deadlines and public transactions having
the least.

The corresponding fairness factors for the top four secu-
rity levels (Top Secret, Secret, Confidential and Classified)
are shown in Fig. 10c. These figures clearly show that as
the loading factor increases, progressively more and more
security classes become discriminated against by the lowest
security class (Public).

In summary, in a five-level system SABRE performs
slightly worse than both CONV and RT at normal loads.
Under heavy loads, however, SABRE performs better than
CONV and worse than RT. Another observation is that the
security requirements make SABRE unfair to the higher se-
curity classes, especially under heavy loads.

8.6 Other experiments

Our other experiments, described in [9], explored the sen-
sitivity of the above results to various workload and sys-
tem parameters, including the number of security levels, the
buffer pool size, the locality factors, etc. The relative perfor-
mance behaviors of the policies in these other experiments
remained qualitatively similar to those seen here.
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Initial condition: Admit[Public] = 1.0, KillPercent[Public] = 0.0,
KillPercent[Secret] = 0.0

LOOP: if KillPercent[Secret] > 5.0 then
FairFactor = KillPercent[Public] / KillPercent[Secret]
if (FairFactor < 0.95) then

Admit[Public] = Admit[Public] * 0.95
else if (FairFactor > 1.05) then

Admit[Public] = min(Admit[Public] * 1.05, 1.0)
else

Admit[Public] = 1.0
sleep T seconds
measure KillPercent[Public] and KillPercent[Secret]
goto statement LOOP

Fig. 11. The GUARD admission control policy (two-
level)

9 Achieving class fairness

In the previous section, we quantitatively showed that the
SABRE policy provides good real-time performance without
violating security requirements. However, a markedlack of
fairnesswas observed with respect to the performance of the
high-security classes. We address the fairness issue in this
section.

Policies for ensuring fairness can be categorized into
staticanddynamiccategories. Static mechanisms such as re-
source reservation can provide fairness while still maintain-
ing full security. However, they may considerably degrade
the real-time performance due to resource wastage arising
out of their inability to readjust themselves to varying work-
load conditions.

Dynamic mechanisms, on the other hand, have the abil-
ity to adapt to workload variations. However, as observed in
[18], providing fairness in a workload-adaptive manner with-
out incurring covert channels appears to befundamentally
impossible, since the dynamic fairness-inducing mechanism
can itself become the medium of information compromise.
For example, consider the following situation. A conspir-
ing secret process submits a workload such that the secret
class performance degrades. The fairness mechanism subse-
quently tries to improve the secret class performance by al-
locating more resources for the secret class. A collaborating
public transaction could now feel the reduction in the avail-
ability of system resources and thereby sense the presence of
the secret process in the system. Therefore, this mechanism
could be exploited for covert signaling.

In summary, for full-secure applications, unfairness can
only be mitigated to an extent by a judicious choice of buffer
management policy, but not completely eliminated. There-
fore, we move on to considering in the remainder of this
section the more tractable problem of whether it is possible
to dynamically provide fairness while guaranteeingOrange
security(i.e., covert-channel bandwidth of less than one bit
per second). In particular, we evaluate whether integrating
the GUARD transaction admission control policy proposed
in [11] with the SABRE buffer manager, a combination we
will hereafter refer to asOSABRE, can achieve this goal.
The GUARD policy decides, for a newly arriving transac-
tion, whether the transaction is permitted to enter the RTDBS
or is shut out permanently – in the latter case, the transaction
is guaranteed to miss its deadline and is killed at deadline
expiry.

In the remainder of this section, we first describe the
GUARD policy and then profile OSABRE’s performance.

9.1 The GUARD admission control policy

For ease of exposition, we will assume for now that there
are only two security levels,Secretand Public. Later, in
Sect. 9.3, we present the extension of the GUARD design
to an arbitrary number of security levels.

For the two-level environment, the GUARD admission
control policy is shown in Fig. 11. The basic idea in the
policy is that, based on the imbalance in the transaction kill
percentages of the secret and public classes, the admission of
public transactions into the system isperiodicallycontrolled
everyT seconds (the setting ofT is discussed below). The
FairFactor variable, which is the ratio of the kill percent-
ages for the public and secret classes, captures the degree
of unfairness during the last observation period. Ideally the
FairFactor should be 1.0 and so, if there is a significant im-
balance (FairFactor < 0.95 orFairFactor > 1.05), what
is done is to decrease or increase the admit probability of the
public transactions accordingly.14 The increase or decrease
margin has been set to a nominal 5%. The hope is that this
mechanism will eventually result in the multiprogramming
level of the public transactions reaching a value that ensures
that the secret transactions are not unduly harmed. Finally,
to ensure that the admission control becomes operative only
when the secret transaction class is experiencing sustained
missed deadlines, a threshold kill percentage of 5% is in-
cluded.

One danger associated with admission control policies
is that, although providing fairness, they may cause unnec-
essary increases in the kill percentages ofboth the public
and secret transactionsas compared to the corresponding
values without admission control. Such “pseudo-fairness”
is obviously not useful. However, as will be borne out in
the experimental results described later in this section, the
GUARD policy does not suffer from this shortcoming – it
evenly redistributes the “pain” without really increasing its
overall magnitude.

9.2 Guaranteeing orange security

In the GUARD policy, covert channels can arise due to the
admission control mechanism. For example, a corrupt secret
user can, by modulating the outcomes (increase, decrease,
or constant) of the Admit[Public] computation, signal in-
formation to collaborating public users. Corresponding to

14 No restrictions are placed on the admission of secret transactions.
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Initial condition: Admit[1:N-1] = 1.0, KillPercent[1:N] = 0.0
LOOP: fo r i = 1 to N-1

if OverallKillPercent > 5.0 then
FairFactor = KillPercent[i] / OverallKillPercent
if (FairFactor < 0.95) then

Admit[i] = Admit[i] * 0.95
else if (FairFactor > 1.05) then

Admit[i] = min(Admit[i] * 1.05, 1.0)
else

Admit[i] = 1.0

sleep T seconds
measure KillPercent[1:N]
goto statement LOOP Fig. 12. The general GUARD admission control policy

each computation, at mostlog23 = 1.6 bits of information
can be transmitted (based on information-theoretic consider-
ations [26]), and since the computation is made once every
T seconds, the maximum channel bandwidth is 1.6/T bits
per second. By setting this equal to 1 bit per second, the
condition for being orange-secure, we getTmin = 1.6 s to
be the minimum re-computation period.

9.3 Extension to N security levels

The GUARD policy described above assumed a two-secu-
rity-level system. It can be easily extended to the generic
N -security-level scenario, as shown in Fig. 12. Note that the
channel capacity in the general case islog23N−1 = 1.6(N −
1) bits and thereforeTmin = (N − 1) ∗ 1.6 s.

9.4 GUARD implementation

The GUARD implementation comprises of asensory mech-
anismand aregulatory mechanism. The sensory mechanism
operates once everyS seconds and calculates the kill per-
centage of each security level over the last observation pe-
riod. These observations are continuously made available to
the regulatory mechanism, which operates once everyT sec-
onds. The regulatory mechanism computes ageometrically
weightedcombination of the sensed values received in the
lastT seconds15 and uses this value to determine the desired
multi-programming level for each of the security levels. The
sensory mechanism operates once everyS seconds, while the
regulatory mechanism is scheduled once everyT seconds.
The T value is set such that orange security is guaranteed
as per the discussion in Sect. 9.2, whileS is set such that
a reasonable number of samples are taken within each reg-
ulatory period – for example, the heuristic followed in our
experiments is to setS = T/16.

Transactions belonging to the highest security level are
always given admission. For other transactions, however,
based on the admit probability currently associated with the
security level of the transaction (as determined by the Admit
array of Fig. 12), the new transaction is either allowed to
enter the system or is shut out permanently (and eventually
killed when its deadline expires).

15 This is similar to the system load computation method used in the Unix
operating system [23].

9.5 Class fairness experiments

We conducted experiments to evaluate the performance of
the GUARD admission policy and present a representative
set of results here. In the following experiments, we com-
pare two systems: (1)FSABRE: A full-secure SRTDBS
equipped with secure 2PL-HP CC manager and SABRE
buffer manager; (2)OSABRE: An orange-secure SRTDBS
that is equipped with secure 2PL-HP CC manager, SABRE
buffer manager, and the GUARD admission controller. Note
that the FSABRE system was already evaluated in Sect. 8 –
we reproduce its results here for comparison purposes.

9.5.1 Experiment 5: fairness with two-security levels

In our first experiment, we evaluated the performance of
FSABRE and OSABRE for a two-security-level system. For
this experiment, the GUARD parameters,T andS, were set
to 1.6s and 0.1s, respectively.

The results of this experiment are shown in Figs. 13a–
c, which capture the overall kill percent, the level-wise kill
percent, and the class fairness, respectively. In these fig-
ures, we see that OSABRE achievesclose to ideal fairness.
Further, at normal loads, OSABRE causes onlya small in-
crease of the overall kill percentagewith respect to FSABRE,
whereas at heavy loads, OSABREactually does slightly bet-
ter. At normal loads, due to the inherent lag involved in the
feedback process, OSABRE sometimes tends to be over-
conservative, preventing public transactions from entering
even when strictly not necessary, and thereby increasing the
public kill percentage. In contrast, under heavy loads, be-
ing conservative does less harm than being too liberal, and
therefore its performance shows minor improvement over
that of FSABRE.

In summary, the results of this experiment show that
OSABRE achieves its fairness very efficiently and that the
admission control component functions as intended in its
design.

9.5.2 Experiment 6: fairness with five security levels

In our next experiment, we compare the FSABRE and
OSABRE systems for afive-security-level environment sim-
ilar to that evaluated in Experiment 4. The results of this
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experiment are shown in Fig. 14a-c. Note that for this ex-
periment, the GUARD parameters,T andS, are set to 6.4s
and 0.4s, respectively (as per the discussion in Sect. 9.3).

In Fig. 14a, which shows the overall KillPercent charac-
teristics, we see that the results are similar to those seen in
the previous two-security-level experiment: OSABRE per-
forms marginally worse than FSABRE at normal loads,
whereas under heavy loads, it performs slightly better. In
Fig. 14b and 14c, the fairness characteristics of the FSABRE
and OSABRE systems are shown. As is evident from
Fig. 14c, OSABRE exhibits reasonably close to ideal fairness
characteristics throughout the loading range in this many-
security-level environment as well.

10 Conclusions

In this paper, we have quantitatively investigated, for the
first time, the performance implications of the choice of
buffer manager in both full-secure and orange-secure firm-
deadline RTDBS. This is a followup to our earlier work on
secure real-time concurrency control [10]. Making real-time
buffer managers secure is complicated due to the multiplic-
ity of covert-channel mediums and buffer components, and
due to the inherent difficulties of simultaneously achieving
the goals of full security, minimal KillPercent and complete
ClassFairness. Our new SABRE policy addresses these chal-
lenges by (1) making buffer pool visibility a function of the
clearance level, (2) not pre-allocating buffer slots to secu-
rity levels, (3) sacrificing dormant page locality to permit
unrestricted slot stealing by higher clearance transactions,

(4) supporting pin-pre-emption, (5) implementing a novel
Comb slot selection policy, and (6) incorporating optimiza-
tions such as proxy disk service. The SABRE policy was
proved to guarantee all requirements of an interference-free
scheduler, namely, delay, value and recovery security.

Using a detailed simulation model of a firm-deadline RT-
DBS, the real-time performance of SABRE was evaluated
against the CONV and RT unsecure conventional and real-
time buffer managers. Our experiments showed that (a) it is
essential to include deadline-cognizance in the buffer man-
ager for good real-time performance, thereby supporting the
conclusions of [19], (b) SABRE efficiently provides security
in that its real-time performance is not significantly worse
than that of RT, especially for applications that have only a
small number of security levels, and (c) SABRE’s sacrifice
of dormant page locality has little impact since active page
locality is predominant.

SABRE’s main drawback of bias against higher clear-
ance transactions was addressed by the OSABRE system,
which incorporated the GUARD transaction admission con-
trol mechanism. The bandwidth of the covert channel in-
troduced by this mechanism was bounded by appropriately
setting the feedback period. An orange-secure version (band-
width less than 1 bit per second) of OSABRE was found to
provide close to ideal fairness at little cost to the overall
real-time performance.

In closing, we suggest that SRTDBS designers may find
the SABRE buffer manager, either alone or in conjunction
with the GUARD admission policy, to be an attractive choice
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for achieving high-performance in secure real-time transac-
tion processing.

10.1 Future work

In this paper, we have taken the first step towards address-
ing the secure real-time buffer management issue. A lim-
itation of our work is that we have only considered envi-
ronments wherein the security levels arefully ordered– in
general, however, security hierarchies may bepartially or-
dered, typically in the form of lattices. It is therefore im-
perative to extend the SABRE buffer manager to this more
general framework. Further, apart from multilevel secrecy,
additional security requirements such as preventing denial-
of-service attacks [4] should also be supported.
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