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Abstract 

-4rrays are a common and important class of data. This thesis addresses the fol- 

lowing questions: In a database management system for arrays, how should logical 

array manipulations be specified? How can such specifications be optimized'? The 

two main contributions of this thesis are a language, called the Array Manipulation 

Language (AML), for expressing array manipulations, and a collection of optimiza- 

tion t ethniques for AML expressions. 

AML defines a framework for array manipulation. The framework dehes  how 

arbitrary externally-defined functions can be applied to arrays in a structured man- 

ner. AML can be adapted to different application domains by choosing appropriate 

external function definitions. In this thesis, the digital image processing domain is 

used to demonstrate the utility of the AML framework. 

AML queries can be treated declaratively and sub jected to rewrite op t irniza- 

tions . Remit ing minimizes the number of applications of potentidly cos tly extemal 

functions required to compute a query result. .4ML queries can also be optimized 

for space. Query results ase generated a piece at a time by pipelined execution 

plans, and the amount of memory required by a plan depends on the order in 

which pieces are generated. &4n optirnizer c m  consider generating the pieces of the 

query result in a variety of orders, and can efficiently choose orders that require less 

space. ,4n AMLbased prototype array database system c d e d  ArrayDB has been 

built, and it is used to show the effectiveness of these optimization techniques. 
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Chapter 1 

Introduction 

Arrays are a common and important class of data, with inherent structure and 

order. -4 digital image can be modeled as a two-dimensional array. -4 digital 

video is just an ordered collection of such images aad is a three-dimensional may. 

Arrays can dso mode1 sequences (such as time series), matrices, finite element 

grids, scientific data sets, and many other types of data. With the unprecedented 

gro~vth of the Intemet and the World Wide Web, use of many of these data types 

is becoming widespread. 

Although support for arrays is needed in fields such as remote sensing, medi- 

cal imaging, CAD dratving management, geographic information sys tems, scientific 

visualization, and scientific applications [4, 40, 381, present-day database manage- 

ment systems (DBMSs) do not provide adequate array support: arrays can neither 

be easily defined nor conveniently manipulated. 

Relational DBMSs do not permit users to define relational attributes of type "ar- 

rayn. -4t most, one c a s  declare as attribute of type "binary large object" (BLOB) 



to store arrays. However. a database system treats a BLOB as a chunk of uninter- 

preted data with no semantics attached. The interpretation of a BLOB's contents 

is left entirely to the user. 

Database systems also la& language support for array manipulations. Typica l l~  

a database system only permits read and write operations on BLOBs. If m a y  

indices and values are stored in relations, SQL can be used for array manipulations. 

EIowever, SQL queries for simple array manipulations are typically cumbersome to 

mi t e  and inefficient to evaluate. 

Some modern object-relational DBMSs permit users to add new abstract data 

types (ADTs) to a database system and thus an "array" ADT (with associated 

methods) can be defined. Array expressions, however, are not optimized by the 

DBMS. Array expression optimization is important because arrays might be large. 

Evaluation of expressions involving large arrays may be time-consuming and resource- 

intensive. 

Supporting arrays in a DBMS is a multi-faceted research problem involving ar- 

ray storage and indexing, array manipulation using an array query language, anay 

query optimization, and integration of array data with other types of data com- 

monly found in a DBMS. The research reported in this thesis focuses on two of these 

aspects: array query specification and array query optimization. An array query 

language should be able to express a useful class of array queries in the language's 

intended application domain and the query optimization techniques should ensure 

t hat the queries are efficiently evaluated. 



1.1 Problem Statement 

This thesis addresses the following general questions: In n-hat language should log- 

ical array manipulations be specified in a DBàIS? Can such ana-manipulating 

queries be op timized? Are array query op timizations valuable*? This thesis con- 

centrates on arrays occurring in a database of digital images such as satellite or 

medical images. 

Notice that this thesis does not address the problem of how to select the arrays 

to be manipulated. A specific instance of this problem occurs-for esample. in 

image retrieval-when an image database system is queried for images containing 

specific sub-images such as red roses. In this thesis, the focus is on the array ma- 

nipulations and-with a view to query op timization---on some of their properties, 

such as whether a manipulation results from repeated applications of a primitive 

operation, or whether a manipulation involves some redundant computation. 

-4.n array query language should have at least some of the following properties 

if it is to be used in a database environment: declarativeness, independence from 

the physical data model, expressiveness, and ex*ensibility- Further, for efficiect 

query evaluation, it is desirable that an array query language be optimizable. The 

following description elaborates on why these properties are desirable and points 

out their interrelationships. 

With a declarative array query language, a user specifies what logical array 

manipulations have to be done and not how they are to be done. The latter decision 

is left to the query optimizer and evaluator. The query optimizer may consider such 

things as physical organization of stored arrays (to exploit clustering) and limited 



resources (such as b d e r  space available to eiduate operations) n-hile mapping a 

logical operation to one or more physical irnplementations. It can then choose a 

good evaluation strategy (plan) by comparing the costs of the alternatives avaïlable 

to it. 

An array query language that allows definitions of views promotes separation of 

logical data and its physical storage. A vien presents manipulated arrays-defined 

on base arrays-as if they were base arrays. A vien- may be the basis of future 

manipulations that may generate other vienrs- For example, one scientist's vien- 

of a satellite image database system majr consist of images shoaing features such 

as vegetation, water sources, and arid areas. Another scientist's view of the same 

database system may consists of images showhg cloud cover or levels of ultraviolet 

radiation. Both sets of images may be defined on (the same or different) base 

images and on other view images. 

-4n array query language should be expressive and possibly estensible. Expres- 

siveness is desirable because even in restricted domains, array manipulations are 

diverse. Many of them are application-specific. Extensibility is desirable because 

it may be diffidt  to make a language expressive enough for all applications. If an 

array manipulation cannot be expressed in a language directly, it may be possible 

to extend the language so that the manipulation can then be expressed. 

-4rray query optimization is an important problem. Arrays are u s u d y  large 

and therefore must be maintained on secondary storage, such as disks, or on ter- 

tiary storage, such as tapes. Accessing such arrays requires costly 1/0 operations. 

-4rray manipulations tbemselves may be CPU-intensive. Therefore, m a y  queries 



are costly in terms of CPU tirne. b a e r  space. and 1/0 bandwidth. Potential gains 

fiom array query optimization can be substantial. 

Some of the above-mentioned features of an array language are mutually in- 

compatible. For example, a language with fewer operators is usually easier to op- 

timize [40]. Such a language, however, may not be very expressive because it does 

not contain many operators. Extensibility ob tained through user-dehed functions 

may be at odds with optimizability because it may be hard to optimize an ar- 

ray query that involves user-defmed functions. Declarativeness not only facilitates 

query op timization but dso rnakes i t difficult by leaving many expression evaluation 

decisiuns to the optimizer and eduator .  

1.2 Thesis Contributions 

The two main contributions of this thesis are the following. 

1. An array data model and a query Ianguage for array manipulation. 

The array data model gives precise meaning to array data. Arrays have 

rectangulâr (hypercubical, in general) shapes and a.ll the elements in an array 

have the same type. Based on the array data model, a laquage called the 

Array Manipulation Language (-4ML) is proposed. AML is an algebra: it is a 

collection of three operators that operate on anays. AhlL has the followirig 

properties. AML expressions can be treated dedaratively by rewriting them 

to equivalent forms. It is extensible in that it permits user-defined functions 

for array manipulations. AML d o w s  view definitions and is optimizable. 



AML is novel in that it is designed to esyloit structural locality often found in 

array manipulations. Two of the three AML operators are indes-based: the 

third operator-cded ~ ~ ~ ~ ~ - p e n n i t s  applications of user-defined functions 

to an array in a structured manner. APPLY maps subarrays of arbitra-- 

shapes to subarrays of arbitrary shapes-a flexibility not aiailable in previous 

array languages . 

2. A collection of optimization techniques for efficiently evaluating 

AML queries. 

-4lvIL queries are optimized for query evaluation time and memory space. 

Query evaluation time is reduced by treating .4ML queries declaratively and 

by sub jecting them to rewrite op timizations. Rewrite rules exploit s tnictural 

information from ,4ML operators. Rewritten AML expressions reduce the 

reading and processing of unnecessary data and therefore, they usually eval- 

uate &ter than the original expressions. AML expressions c m  be evaluated 

using pipelined evaluation strategies based on iterators, tvhich generate ar- 

rays a piece at a time. An optimizer can reduce the memory required to 

eiduate a query by intelligently selecting the order in which pieces of arrays 

are generated. For example, row-by-roiv generation of an array may require 

substantially less memory than column-by-colurnn generation, depending on 

the specifics of the array operation and on the physical organization of the 

input arrays [17]. 

-4-ML query processing has been implemented in a prototype database system 

called ArrayDB. ArrayDB has been used for ernpirical evaluation of the array 



que- optimizations mentioned in the previous paragaph. The ex~eriments 

were performed on a suite of AML queries from the digital image processing 

domain. The experimental results show that the optimizations are effective. 

AML operators are structural and index-based. Not surprisingly. AalL queq- 

optimization techniques are also structural in that they do not depend on d u e s  

of individual array elements, but rat her on the spatial relationships arnong array 

elements. The results in this thesis suggest that even by restricting attention to 

such a special class of array operations, usefd array manipulations can be defined 

and optimized. 

AML is not the first language to support array manipulations, although few 

other languages are as well-suited as AML to array query optimization. Compar- 

isons of AMI, to array programming languages (such as -4PL [30, 351) and array 

query languages (such as AQL [36]) can be found in Chapter 7. 

1.3 An Illustrative Example 

In digital image processing, digital images are subjected. to a series of processing 

steps, at the end of which nem digital images are created. Commercial satellites and 

digital scanners are two of the sources for digital image data. Online digital image 

repositories and digital video also contain digital images. The example described 

here cornes from the satellite image processing domain. It is based on the digital 

image processing operations described by Lillesand and Iiiefer [37, Chapter 71. 

Fig. 1.1 shows a multi-spectral image (array A) captured by the Landsat The- 

matic Mapper sensor. Two of the array dimensions are spatial and the third is 



spectral. The seven slices through the cube along the spectral dimension are im- 

ages of the same scene, each taken using a sensor sensitive to electremagnetic 

radiation in a different spectral band- 

Fig. 1.1 also shows several other arrays that might be derived from the Thematic 

Mapper image. Array J in Fig. 1.1 holds the transformed vegetation index (TVI) 

for the scene. The TVI value at a spatial position in the scene represencs the 

amount of green biomass present there [37]. The TV1 value at any position can be 

computed from the intensity values of the third and fourth spectral bands at the 

corresponding position in the Thernatic Mapper image using the function: 

where b; denotes the intensity value from band i. 

Another useful image that might be derived from array A is a band ratio image, 

computed as the ratio of two of the spectral bands of the Thematic Mapper image. 

Ratio computation can be a useful data analysis tool because it can compensate 

for vairiations in absolute brightness (cell values) in the original image that might 

be caused by topographic features. Ratio images also convey the spectral or color 

charact eris tics of image features , regardless of scene illumination condit ions [3 71. 

Array in Fig. 1.1 is a ratio of Thematic Mapper bands 3 and 7, defhed at each 

position by 

The Thematic Mapper image may include noise from a variety of sources such 
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Figure 1.1: A Thematic Mapper image and various derived images. 



Figure 1-2: -4 noise reduction filter. 

as periodic drift or malfiuiction of a detector and electronic interference betweec 

sensor cornponents. Noise can either degrade or totally mask the true radiometric 

information content of a digital image. Hence noise removal usuaUy precedes any 

subsequent enhancement or classification of the image data [37]. The objective of 

noise ïemoval is to restore an image to as close an approximation of the original 

scene as possible. In Fig. 1.1, both the TV1 array and the band ratio array are de- 

fined using the noise-reduced versions (arrays E, F, and G) of the original Thematic 

Mapper bands (arrays B, C, and D). Many types of noise reduction are possible; 

difTerent types are suitable for different applications. For this example, noise re- 

duction is achieved using a kind of convolution filter in dich the noise-reduced 

value of a particular cell is computed using the original value in that cell and the 

values of ifs S immediate neighbors. (Noise reduction is applied independently to 

the images in the mious spectral bands.) The exact calculation, which is adapted 

from [37]. is shown in Fig. 1.2. vo is the original cell value; vl through v8 are the 

values of its eight neighbors, numbered clocbwise fiom the upper left. 

This example illustrates several points. First, there is a wide mie ty  of com- 

plex, domain-specific transformations that might be applied to arrays. An array 

query language that hopes to be able to express them must either be very ex- 



pressive or extensible. Second, there is considerable room for querJ- optimization. 

One opportuaity for optimization is the reguiarity and structure thar: ma>- esist in 

cornplex-lookîng manipulations. In Fig. 1.1: for example, given a particular cell in 

a derived array such as array J, it is possible to determine esactly which cells of 

the original Thematic Mapper image contribute to its d u e .  It is also possible to 

calculate J's cell values in any order. Techniques such as caching and view mate- 

rialization can be used to eliminate redundant calculations. For example. both the 

TV1 array and the band ratio array are derived fiom array E. Hence it mi& be a 

good idea to materialize (compute and store) array E. Third, arrays B through I ï  

are different views on the same base array -4. A scientist studying green biomass 

may be interested in only the TW anays such as the array J .  She can be pre- 

sented a view of the database system that consists of only the TV1 arrays. She 

need not be aware that TV1 arrays are views on the 1-band Thematic Mapper 

arrajrs. Fourth, the data transformation functions themselves may have properties 

that c m  be exploited by an optimizer that understands them. For esample, the 

noise reduction technique used to produce arrays E, F, and G in Fig. 1.1 is a 

discrete twdimensional convolut ion. An optimizer wi th some knowledge of linear 

systems might be able to iafer that adding two noise-reduced images is equivalent 

to applying noise reduction to their sum- 

Each of the arrays B through K in Fig. 1.1 c m  be described using an AML ex- 

pression or query. This example will be used throughout the thesis to illustrate how 

aa AMLbased database system can exploit some of the optimization opportunities 

described in the previous paragraph. 



1.4 Thesis Outline 

The rest of the thesis is organized as follotvs. The array data mode1 and the 

AML que- language are described in Chapter 2. Chapter 3 compares AhIL to 

Image Algebra-an expressive language used to specify digital image processing 

operations. The cornparison shows that A M L  c m  express a usefd subset of the 

operators in Image Pilgebra, thus providing some evidence of AML's expressiveness 

in the image processing domain. Chap ter 4 presents algorithms for processing AML 

queries. These algorithms describe how to generate an optimized evaluation plan for 

an AML query and how such a plan can be evaluated esciently to obtain the query 

result. Chapter 5 contains the descriptions of 5 digital image processing queries 

that form a query suite. Chapter 6 contains experimental results-obtained using 

the queries in the query suite-that show that the query optimization techniques 

of Chapter 4 are effective. Chapter 7 surveys the related work. The survey's scope 

is not limited to the database field because arrays have been studied by researchers 

in other areas also. The conclusions and some directions for future reseach appear 

in Chapter 8. 



Chapter 2 

The Array Manipulation 

Language 

This chapter first describes the m a y  data mode1 (Section 2.1) and then the Array 

Manipulation Language (-4ML) based on this data mode1 (Section 2.2). Many 

of the definitions have been presented in [41], in which -4ML was introduced. A 

discussion of ..\ML'S design goals appears in Section 2.3. 

2.1 Data Mode1 and Terminology 

Throughout this thesis, a vector arrow, as in Z, ddeotes an infinite vector of integers. 

The usual notation qi] refers to the element with index i. Indexing starts at zero. 

All of the elernents in the specid vector O are zeros. (The vector 1 is defined 

similady.) Expressions involving operations on vectors, such as É = LZ/fJ, refer 

to elernent-wise application of the operation; that is, qi] = LZ[ i ] / y i i ]  J . Similady, 



predicates such as I < y are true iff Z[ i ]  < $il for al l  i 2 0. 

Before defining AMI, arrays, it is necessaqi to define the concepts shape. vector 

cont ainment , and domain. 

Definition 2.1.1 (Shape) A shape d: is a n  infinite vector of  non-negative inte- 

gers. 

Wlen written, a shape7s elements are enclosed witithin angled brackets. For esample. 

(3,4) is a 3 x 4 shape. Ali elements not listed explicitly are assumed to be ones. 

Thus, the shapes (1,1,2) and (4,4) denote the infinite vectors (1,1,2.1.1,1, - -) 
and (4,4,1,1,1, - -), respectively. 

Definition 2.1.2 (Vector containment) A vector 5 Es in shape .; iff O 5 T < - . -  

We -*te '5 E -4" o r  "3F in -4". 

Definition 2.1.3 (Domain) A domain is a set  o f  values. 

Domains are written using the calligraphie letter V. 

Definition 2.1.4 (Array) An array -4 consists o f  a shape -Zr a dornain V.4 and a 

rnapping Ma. The i-th elernent of  A represents the length of the  array  in d imens ion  

i. T h e  mapping MA rnaps each vector z' in .Z t o  an elernent of the a n a y  's domain ,  

DA - 

AML arrays have an infinite number of dimensions, numbered from zero. Each 

m a y  dimension is indexed by the non-negative integers. Vectors in an array shape 

are also c d e d  points or cells. The array element values are of the form Ma(Z) 

for all 5 E 2. To refer to m a y  element values, index values (vector indices for a 



vector 5 E A) are enclosed within square brackets. For esample. -4[0. l] indicates 

an element in array -4 in the O-th rom- and 1-st column. -4U elements not listed 

esplicitly within square brackets are assumed to be zeros. Thus. both ;1[0.1] and 

A[0,1,0,0, - -1 denote the same array element. Notice that ;l[i] denotes the element 

of a one-dimensional array with the index i, whereas -X[i] denotes the length of the 

array .4 in dimension i. 

+ 

Definition 2.1.5 (Size) The size of an array A, aritten IAI, is nzO -4[i]. 

Definition 2.1.6 (Dimensionality) T h e  dimensionality of array A ïs &en 

dim(A). If  IAl is O then dim(A) is undefned;  i f  1-41 is rn t h e n  dim(.-l) is oo; 

othenvise, dim(A) i.s the smaliest i svch that -x[j] = 1 for al1 j 2 i. Ifdim(A) is 

d? t hen  A is called a d-dimensional array. 

In this thesis, arrays are restricted to have finite size. Nevertheless, it will sometimes 

be convenient to think of arrays as having infinite lengths in all dimensions. For 

this purpose, -4[d is defined to be NULL for all points z' that are not in -4: where 

NULL is a special value not found in any domain. 

An anay having a length of zero in one or more dimensions is called a null 

array. Such arrays have zero size and their dimensionality is undefined. Since there 

axe no points in a null array, it has the value NULL at every point. 

Definition 2.1.7 (Subarray) Let A and B be arrays, and let I be a vector in 

A. A m y  B is a subarray of A at Z iff Dg = DA, and for every point f in B, 

B[y7 = A[z+m. 
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Figure 2.1: Subarrays and slabs. 

Notice that Defuiition 2.1.4 implies that z'+ i j  is a point in -<. -4s Fig. 2.1 showso a 

subarray is simply an m a y  that is wholly contained ivithin another. The position 

of the subarray within the containing array is identified by the position of the 

subarray's smallest point (indicated by a dot in Fig. 2.1). 

Definition 2.1.8 (Array slab) A slab of an array A in dimension i (i-slab for 
+ 

short) is a subarruy of A with the shape (- - - , .4[i - 11, 1, .Z[i + 11, - - -). 

As illustrated in Fig. 2.1, a slab is simply a slice of unit width through an array 

along the specified climension. There are .@j i-slabs in an array A. 

2.2 AML Operators 

AML consists of three operators that manipulate mays. Each operator takes one 

or more arrays as arguments and produces an m a y  as result. SUBSAMPLE (SUB for 

short) is a unary operator that can delete data. The size of the result of subsampling 

as array A is never larger than IAl. MERGE is a b i n q  operator that combines 

two arrays defined over the same domain. APPLY applies a user-defined function 



to a n  array-in a manner described in Section 22.3-to produce a nen- a n a -  -AU 

of the AlML operators t&e bit patterns as parameters. 

Definition 2.2.1 (Bit Pattern) A bit pattern P  ̂ ( o r  P w h e n  there i- 720 POSS- 

bility of c o n . i o n )  is an infinite binary vector. 

The i-th element of a bit pattern is denoted by P[i] or P[i]. -4s for other wctors. 

indexing of bit patterns starts at zero. Sometimes, patterns are of the periodic 

form rrr - - -. written as r' , where r is a binary vector of finite length. In such cases. 

the finite vector r can be used to represent the infinite pattern r'. For esample, 

P = 1010 means P = 1010I01010 - - -. Notice that there is more than one finite 

representation of any pattern of the foïm Y. For example, Q = 10 represents 

the same pattern as P does. -4 regular-expression-like notation is used to describe 

patterns succinctly. For example, oiljO*, for positive integers i, j and k, represents 

a pattern in which j 1's are sandwiched between i O's on the left and k 0's on the 

right. The bit-wise complement of a pattern P, obtained by replacing P's ones 

with zeros and vice versa, is written P. 

Two pattern functions, index and count, will be needed often. 

Definition 2.2.2 (Index) I f  P is a bit pattern (P # 0) and k a positive integer, 

index(P,li) Zs the index of the k-th 1 in P (k 3 1). By definition, i f  k = O or  P = 0, 

index(P, k) = 0. index(P, k )  is undefined if P contains fewer tha2 k 1's (k 2 1). 

Definition 2.2.3 (Count) If P is a bit pattern and k a non-negatiue integer, 

count(P,k) is the nvmber of ones  in the f i t  k + 1 positions of P ,  Le., from P[O] 

t o  P[k] ,  inclusive. 



Both functions are monotonically non-decreasing in k. Suppose that index(P. k) 

is dehed. It should be obvious then that for any k 2 1. count(P. inder(P. k)) = k. 

unless P = 0. 

The following three sections describe and define the SUB. LIERGE. and APPL\- 

operations. Some of the important properties of the individual operations and of 

the expressions made up of them are also given. The proofs of the non-trivial 

properties are given in Appendix A. 

The SUB operator takes an array, a dimension number and a pattem as parameters 

and produces an array. The dimension number will be written as a subscript, as in 

B = SUB;(P, A), 

where A is an array, P is a pattern, and i is the dimension number. 

The SUB operator divides A into slabs along dimension i, and then keeps or 

discards slabs based on the pattem P. If P[k]  = 1, then slab k is kept and included 

in B, otherwise it is not. The slabs that are kept are concatenated to produce the 

result B. 

several applications of the SUBSAMPLE operator are illustrated in Fig. 2.2. FVith 

the SUB pattern "1Oy, the anay B in the top expression in Fig. 2.2 is formed by 

choosing every other 1-slab of the anay A. In the middle expression, the SUB 

pattern "10" is the same as "1010" and the latter pattern selects O-slabs (rows) 

O and 2 from the array -4. In the bottom expression, the SUB pattem "0000111" 



Figure 2.2: Examples of the SUBSAMPLE operation. 

ex<euids beyond the boundary of the array A and therefore only two 1-slabs get 

selected. 

Referring to Fig. 1.1, the SUB expression B = ~ ~ ~ ~ ( 0 0 1 0 0 0 0 ,  A) extracts spectral 

band 3 from the Thematic Mapper array A. The '1' in the third position of the 

pattern indicates band 3. Similar expressions can be given for band 4 and band 7 

arrays, C and D, respectively. SUB can also produce a low resolution version of an 

image. For example, the expression S U B ~  (10, SUB (10, J) ) produces a low resolution 

version of the TV1 array J by dropping every other row and every other column. 

Definition 2.2.4 (SUBSAMPLE) If B = SUB~(P,A) ,  then B is defined rn follows: 



for au points Z in B ,  B[. . . . - l ]?  s'[il. i'[i + l]?. - .] = -A[. . . . qi - 11. 
index(P.  ?[il + 1): Z [ i  + 11,. . .] 

Important Properties of SUEBA~ZPLE 

The following theorems follow easily from the definition of SU BS AM PL E. 

Theorern 2.1 (SUB with NULL array) SUB~(P? LVULL,) = NULL,. 

Theorem 2.2 (SUB with 'O' pattern) SUB;(O, A) = NCJLL. 

Theorem 2.3 (SUB with '1' pattern) S U B ; ( ~ , = ~ )  = A. 

The following two theorems describe hotv tn-o adjacent SUB operations can be 

combined or reordered. A proof of Theorem 2.4 can be found in Appendix -4. 

Theorem 2.4 (combining two SUBS) s u ~ i ( Q ,  S U B ~ ( P ,  A)) = S U B ~ ( R ,  A), where 

P # O,, Q # 0, end R is defined by: i n d e x ( R , j + 1 )  = i n d e x ( P ,  index(Q,  j + l )  +l)' 

fo. j 2 0. 

Theorem 2.5 (reordering two SUBS) W h e n  i # j ,  

s u ~ i ( Q ,  SUB~(P, A)) = S U B ~ ( P ,  SUB;(Q,  A)) - 

The MERGE operator takes two arrays, a dimension number, a pattern, and a defadt 

value as parameters. It merges the two arrays to produce its result. As it was for 

SUB, the dimension number is written as a subscript, as in 
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Figure 2.3: Examples of the MERGE operation. 

where -4 and B are arrays, P is the pattern, and 6 is the default d u e .  The esplicit 

reference to 6 will often be dropped if the default is not important. MERGE is 

defined only if Ve4 = VB and 6 E Da4, 

Conceptually, MERCE divides both -4 and B into slabs along dimension i. C is 

obtained by merging these slabs according to the pattern P; 1's in P correspond 

to slabs fiom A (the first array) and 0's to slabs from B (the second array). For 

example, if P = 101 (which stands for the infinite pattern 101101101 - -), then a 

slab from B is sandwiched between two slabs from A. The merging process repeats 

until al l  the slabs fiom both -4 and B are e-xhausted. 

Fig. 2.3 ihstrates the MERCE operation. The top example in Fig. 2.3 shows 

that the default value may not be needed to form the merged array. The bottom 

esample in Fig. 2.3 shows that the default value 6 rnay be used for two purposes. 

First, in a dimension other than the MERCE dimension, the lengths of the two 

arrays may not match. If so, the shorter array ( B  in Fig. 2.3) is expanded-using 

b dues-to reach the length of the longer array. Second, as the two m a y s  are 

interleaved in the MERGE dimension, one array rnay run out of slabs before the 



other does. In this case also. slabs fUed ~ i t h  6 values are used in place of the array 

slabs from the shorter array. 

In our running example in Fig. 1-1, mays  H and I c m  be formed using the 

MERGE operator. .Irray H can be expressed as XIERGE~(IO, E. F ) .  The 31 ERGE 

pattern "10' and the LIERGE dimension 2 has the effect of putting array F on top 

of array E. 

A common use of MERGE is to juxtapose two arrays. This can be achieved in 

dimension i using the AML expression MERGE~(~-'[''O'~'~, A, B). 

It is convenient to define MERGE formal- in t ~ v o  steps. The first step generates 

an array C' by interleaving slabs fiom -4 and B. as described above. Because of 

shape mismatches between -4 and B: hotvever, or because of the particular pattern 

P, some values in C' may be NULL, The second step eliminates this problem by 

transfonning any such NULL values to the default value 6. The result of this final 

step is indeed an array, and is the resdt of the hIERGE operation- 

Definition 2.2.5 (MERGE) If C = MERGE;(P,  -1, B, J) ,  the i n t e n e d i a t e  array C' 

is- defined as foilows: 

if.&] = O and G[i] = O, t hen  CI[;] = O; othenvise 

C'[il = m a r ( i n d e r ( P ,  .x[i]), indez(F, & ] ) )  + l 

for al1 points T in Cf: 



- if P[Z[i]J  = 1. then Cf[. . . . I [ i  - 11. qi]. qi + 11- -. -1 = 

A[.- - , Z [ i  - l].ccrunt(P.F[i]) - 1,z'[i+ 11.. . .]. 

- otheNnse Cr[. . . ? T[i - Il. Z [ i ] ,  qi + Il.. . .] = 

B[. . . , Z[i - 11, count (F, ~ [ i ] )  - 1 , Z [ i  + 11. . . .] 

The array C is then obtazned by removing any  NUCL. values inside of Cl: Vc = Va4: 

for all i > O, C[i] = C'[il; and for all points 5 in C ,  ifCr[ZJ = XGLL then C[q = 6. 

othePwise C[q = Cf[q - 

For some MERGE operators with particdar patterns. the arrays C and Cr- 

mentioned in Definition 2.2.5-are identical. An unbalanced M ERGE operator is 

one for Nhich the arrays C and Cf are not identical. 

Definition 2.2.6 (Unbalanced MERGE) Let a w a y  C 6e the result of the AML 

expression MERGE~(P, A, B, 6). Th& MERGE operator -k unbalanced if ut least one 

of the following two conditions hold: 

1. There exists a dimension j # a' svch that À[ j ]  # Z[ j ] .  

h Fig. 2.3, the top MERGE is balanced, whereas the bottom MERGE is unbal- 

anced. -4n -4ML expression that contains no unbdanced MERGE operators is said 

to be in merge-balanced form. Theorem 2.10 and Theorem 2.11 that foilow holc! 

ody for AML expressions in merge-balanced form. 



Important Properties of MERGE 

Theorems 2.6-2.S foLLow eady from the definition of 'IERGE. -1 proof of T h e  

rem 2.9 can be found in Appendix A. 

Theorem 2.6 (MERGE with 'O' pattern) BIERGE~(O, -4, B, 6 )  = B. 

Theorem 2.7 (MERGE wïth '1' pattern) M E R G E ~ ( ~ ,  -4: B, 6) = -4. 

-4lthough M ERGE is not a commutative operation, the fouon-ing holds. 

Theorem 2.8 (MERGE vvith reversed operands) MERGE;(P, -4, B. 6) = 

M E R G E ~ ( P ,  B, -2,6). 

Theorem 2.9 (associativity of MERGE) Suppose that the AML ezpression 

W E R G E ~ ( Q ,  MERGE~(P, A, B, 4, C, S) U merge-balanced, P # O, P # 1, Q # 0, and 

Q # 1. T h e n  

where, for j 2 O! R and S are defined by: index(R, j + 1) = index(Q, index(P, j + 
1) + 1), and S[count(R, j )  - 11 = Q [ j ]  if R[j] = O .  ~ u r t h e n n o ~ e ,  the AML expression 

o n  the right hand side is merge-balanced. 

Suppose that (AB) denotes a MERCE operation between the two arrays A and 

B. The obvious distributive laws for the MERGE operation-that is, laws of the form 

( A ( B C ) )  = ( (AB) (AC) ) ,  where the individual MERGE operation are in arbitrary 

dimensions-do not hold for the fouowing reason. The MERGE operation does not 



delete data and (A(BC)) contains one copy of -4. whereas ((-AB)(-AC)) contains 

two. 

The follon-ing tnto theorems describe how a S U B  operator can be pushed belon* 

a MERGE operator. -4 proof of Theorem 2.10 appears in Appendis A. 

Theorem 2.10 (pushing sUB through MERGE, version 1) 'uppose that 

MERGE;(P, A, B, 6 )  is merge-balanced, and P # O .  P # 1. and Q # O, 

where the resulting MERGE is balanced, and for j  > O ,  R, S, and T are defined 

as  follows. R[j] = Q[inder(P, j + l)]; S[j]  = ~ [ i n d e x ( P ,  j + l)]; and T [ j ]  = 

P[index(Q, j + l ) ] .  

Theorem 2.11 (pushing SUB through YERGE, version 2 )  Suppose that  

MERGE,(P, -4, B, 6) is merge-balanced and i # j. 

where the resdting MERGE is balanced. 

The APPLY operator applies a user-defined function to an array to produce a new 

array. In its most general form, it is written as 



where f is the function to be applied. -4 is the array to apply it  to. df and Ei/ 
are shapes. the Pios are patterns. and d = dim(.4). The parameters Bf and RI are 

called the domain shape and the range shape, respectively. Sometimes. a domain 

shape is called a domain box (and similarly for range shape). -4 special case of 

APPLY is w~itten 

B = A P P L Y ( ~ , - ~ , ~ ~ , # ! ~ ) ;  

with the assumption that Pi = I for al1 O 5 i < d. In addition, either the range 

shape or both shapes may be left unspecified when APPLY is written. These shapes 

default to (1,1,1, - -) if they are not specified. 

-4 simple way to define an operation, like APPLY, that applies a user-defined 

function f would be to insist that f map from arrays of -4's shape and domain to 

arrays of B's shape and domain. The operator would then simply compute B = 

f (A). However, mmy common array functions have some structural locality: the 

value found at a particdar point in B depends only on the values at certain points 

in A, not on the values at all points in -4. For example, if f is a smoothing function 

that maps each point in A to the average of that point and its neighbors, then to 

determine the value a t  some point in B, we need only look at the corresponding 

point and its neighbors in -4. Such information c a n  be very valuable for optimizing 

the esecution of an expression involving the array operators. 

The APPLY operation is defined so that this kind of structural relationship can 

be made explicit when it exists. The APPLY operator requires that f be defined to 

map subarrays of -4 ofshape Dtf to subarrays of B of shape Rj .  In Fig. 2.4, f (A,Z)  

refers to the result of applying f to the subarray of A of shape Df at 5. Thus, 



dim O 

B = APPLY 
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Figure 2.4: An illustration of the APPLY operation. 

f (A, Z) is an array of shape RI. The AFPLY operator applies f to certain subarrays 

of -4, and concatenates the results to generate B. This process is illustrated in 

Fig. 2.4. 

The pattern PI. can be thought of as selecting slabs in dimension i, with the 

selected slabs corresponding to the 1's in the pattern. The function f is applied at 

a point Z only if that point f d s  in selected slabs in all the d dimensions of the may; 

that is, o d y  if P;[Z[i]] = 1 for all O 5 i < dim(=l). In Fig. 2.4, the patterns select 

two slabs in each dimension, leading to a total of 4 applications of the function f. 

Several features of the application of f should be noted. First, dthough the 

selected subarrays may overlap in A, the results of applying the function do not 

overlap in the resulting array B. Second, the anangement of resulting subarrays 

in B preserves the spatial arrangement of the selected subarrays in -4. Findy, the 

subarrays to which f is applied must be entirely contained within A. In the example 

in Fig. 2.4, this means that even if the point [3,3] were selected by the patterns, 



f (A. [3.3]) xould not be evaluated. since that subarray lies partial- outside of -4. 

In the d n g  example in Fig. 1.1. array E results from applying the noise 

reduction function to array B. The expression for E is . ~ P P L Y ( ~ ~ .  B. (3.3). (1.1)). 

This implies that the domain and range shape for the function nr are (3.3) and 

(1, l), respectively. As another example, the ratio array Ii c m  be eqressed as 

li = ex amp ratio, 1, ( l , l ,  2 ) ) .  Here, 6,,,j0 = (1: 1,2) and since range shape is 
-. 

not given, %tb defaults to ( 1 , l ) .  Sometimes, domain and range box shapes are 

omitted for brevity. In such cases, those shapes are nlitten or mentioned in the 

nearby text . 

Definition 2.2.7 (APPLY) r f  B = APPLY( f, A' f i j ,  El, pil - . - , Pdim(.4)-l ). and f 

is a fitaction that maps front arrays of shape Zf over domain De4 to  arrays of shape 

over domain V, then B is f o m a l l y  defined as follows: 

for al1 i 2 0,  

If d [il > &] foc some i 3 O, then the definition above irnplies that B will be 

a null array. 



Often, it is necessary to apply a function to al1 non-overlapping subarrays of 

a particdar shape- For example, given an image -4 with shape (1021.1024). an 

inexpensive way t o  compute a Ion- resolution version of -4 is to conceptudy "tileo' 

A using non-overlapping subanays of shape (4,4) and to replace each tile with 

the average of the 16 pixels under it. Since this t m e  of function application is 

quite cornmon, the TILED-~PPLY operator is defined to support it. Xssuming that 

dim(-4)  = d, the definition is as follows: 

Important Properties of APPLY 

Logical rewrite rules that commute, combine, or decompose AP FLY operations do 

not exkt in the AML framework. Such operations would require some semantic 

information about the user-defined functions associated with the APPLY operators. 

The only information about user-dehed functions that the AML framework cap- 

tures is the shapes of their domain and range boxes. Even if some semantic infor- 

mation about the user-defined fwictions and how to use it were known, it may not 

be straightforward to combine two successive APPLY operations if there are shape 

mismat ches between their domain and range boxes. Nevert heless, t here are some 

usefd ways to masipulate expressions involving APPLY, as the following theorems 

show. Proofs of Theorem 2.13 and Theorem 2.14 appear in Appendix -4. 

Theorem 2.12 (APPLY with a 'O' pattern) When Pi = 0, 



Theorem 2.13 (pushing SUB into APPLY) Suppose that P and R are APPLV pat- 

terns in dimension i, P # O, Q # 0. and Rf[i ]  > O .  

For al1 j 2 0; R is defined as follows. IV denotes a logical OR operation on 

bits-) 

i f P [ j ]  = 1; R[j]  = O if P[ j ]  = 0. 

S is d e f i e d  as follows. For all t svch that O 5 t < R f [ i ] ,  

if P b ]  = 1 and R[j] = 1. 

Theorem 2.14 (pulling S ü B  out of APPLY) Suppose t h a t  P and R are  APPLY 

patte- in d imemion  i, P # 0 ,  and Of[;] > O. 

A P P L Y ( ~ ,  A, PO, Pi, - - , P, - - .) = APPLY( f, SUB;(Q, A), Po, Pi, - - , R, - - -) 

Q Zs defined as follows. (For notational convenience, the  definition of P[j] is 

extended such that Plj] = O for all j < O.  V denotes a logical O R  operation o n  



bits.) For ail j > O. Q [ j ]  = O i f f~ : , , -~ ,~+~P[ t ]  = 0. 

R is defined as follows. For aZZ j 3 O. R[count(Q. j) - l] = P[j ]  if Q[j]  = 1. 

In generd? it is not possible to push an APPLV operation through a UERGE 

operation because some function applications may require data from both of the 

argument arrays of the MERGE. h some specid cases, an APPLY may be pushed 

through a AIERGE. Trvo examples of such special cases are: (1) when the APPLY'S 

user-defined function has unit-sized domain and range boxes: and (2) mhen the 

MERGE combines bvo arrays and the APPLY'S function applications are tiled such 

that no tile needs data from both of the argument arrays of the MERGE. 

2.2.4 More on Patterns and Shapes 

Patterns and shapes appearing in AML expressions can be defined in terms of the 

m a y  arguments of their AML operators. -4s an example, if -4 is a two-dimensional 

array in the expression 

APPLY( f; -4. (1, .x[[1])) 

then j is applied to each row of A. Aliases (as in SQL) can be used in AML 

expressions when necessary to define names for unnarned intermediate arrays. In 

the AML e-xpression A P P L Y ( ~ ,  S U B ~ ( P ,  B )  A; ( l ~ - ~ [ l ] ) ) ,  the alias A is used to refer 

to the result of the inner SUB operation so that the APPLY'S shape argument can 

be defined. The scope of such an alias is the -4ML operator in which it is defined. 

In the case of the APPLY operator, it is also possible to refer to the domain shape 

and the range shape in the operator's patterns. An example of this can be seen in 



the definition of the TILEDAPPLY operation in section 22.3. In generd, a non- 

constant pattern or shape element can be an arithmetic expression made up of 

operators such as +. -, +? /, and !% (the modulus operator) on integer constants. 

on array shape elements (e.g., -$[II). and on domain and range bos shape elements. 

The result of such an expression must be a positive integer. 

Pattern and shape definitions are not allowed to refer to the array contents. 

Therefore, the shape of the reçult of an AML operation can always be determined 

(without actually evaluating the operator) if the shapes of the operator's array ar- 

guments are known. By induction, Rie can show that the shape of the result of 

an arbitrary .4ML e4xpression can be determined once the shapes of the expres- 

sion's terminal, or leaf, arrays are hou-n. This property is useful when evaluating 

AML expressions because it implies that the space required to implement an AML 

operation can be detennined in advance. 

As a summary of this section, -4ML definitions of each of the arrays in Fig. 1.1 are 

given below . 



A single -4ML expression for an array such as the TV1 array J can be formed by 

substituting the expressions for the intermediate arrays that are used to compute 

J -  

2.3 AML Design Goals 

-4 discussion of AML's design goals appears in this section. The section also de- 

scribes how a few peculiar design decisions affect and achieve the stated design 

goals- 

.4ML was designed with two goals in mind: query optimization capability and 

extensibility. Recall from the discussion in Chapter 1 that array query optimization 

is important because array queries may be time-consuming and I/O-intensive. Ex- 

tensibility is desirable because array operations are diverse and domain-specific. It 

seems difficult to determine a 'useful" set of array manipulations-even in a given 

application domain-to be supported in an array query language. 

It may be difEcult to design an extensible language that is also optimizable: a 

query optimizer is lib-ely to know less about the language extensions than about the 
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built-in features in the language. Thus. a query optirnizer is l ike-  to do a better 

job optimizing expressions in a language that has no estensions. 

To tackle this seeming dilemma, AbII, is defined to be a framewo~k (rather 

than a self-contained Zanguage) for m a y  manipulations. l The framen-ork permits 

user-defined functions to be applied to arrays: the intention is that - choosing 

appropriate user-defhed functions, AML can be customized to different application 

domains. To facilitate query optimization, the framework also puts a restriction on 

the way user-defmed h c t i o n s  are applied to sub-arrays of an input may. This 

restriction is still expressive enough to mode1 region-based and block-based array 

operations commonly found in image processing, for instance. The framework also 

puts a restriction on the types of user-dehed functions themselves. In particular, 

it ody supports those functions that map subarrays to subarrays. 

Adoption of such a framework permits certain types of query optimizations. 

In particular, since AML operators are index-based, the structural relationships 

between the slabs of the output array and the slabs of the input array(s) of APuIL 

operators can be exploited. That is, given a portion of an output array, it is 

possible to determine those portions of the input mays  that generated the output 

array portion. This lzneage detemination optimization is valuable because it can 

be ca.rried out on even complex AML expressions that are fomed by functional 

compositions of AML operators and AML expressions. The lineage optimization 

'In a language for array manipulation (or for data manipulation in generaI), one would expect 
operators that generate domain elements not found in their operands. None of AML's operators 
generate new data items (strictly speaking). The output array of a SUB or a MERGE contains 
some or al1 of the array elements in its input array(s). (For MERGE, the default value S is either 
irnplicitly or explicitly specified.) APPLY can generate new array elernents by applying a user- 
defined function to its input array but the user-defined function is not part of AML. 



also integrates well with the types of user-defined function applications that the 

hamework supports through APPLY. 

Since AML does not impose an order on the way user-defined functions are 

applied to arrays, an -4ML que- optimizer may be able to exploit different orders 

(such as row-major order or column-major order) to minimize memory used for 

query evahation. 

It is not easy to perform some types of array query optimizations in a simplified 

frameworlc such as .4ML. For exampIe, reordering two user-dehed functions may 

be a usefd optimization for some queries; decomposing a user-defined function into 

two or more functions might help others. Some queries might benefit from replacing 

two adjacent user-defined functions by their composite function. To perform such 

optimizations, an optimizer needs to understand what user-defined functions do 

and what some of their properties are (for example, dgebraic properties such as 

commutativity and decomposability) in addition to how they are applied to arrays. 

AML does not provide facilities for capturing such semantic information. Even if 

such information could be captured, how to use it during query optimization is 

another challenge. Nevertheless, the difficulty of optimizing the placement of user- 

defined functions in an array query plan does not inhibit the AML framework from 

performing lineage determination op timization and memory usage op timization. 

It is argued in this thesis that even within a restrictive framework such as 

AML, usefid index-based m a y  operations can be defined and-more importantly- 

optimized. The hamework supports array manipulations of arbitrary complexity. 

On one hand, a complex m a y  manipulation can be defined by abstracting it as a 



single application of a user-dehed function that performs the comples a n a -  ma- 

nipulation. At the other extreme. a cornples-looliing array manipulation rna- be 

built from structured applications of a few simple user-dehed functions. M I L  

gracefdly supports both types of May  manipulations. Howex-er. -\ML que- opti- 

mization techniques are likely to do a much better job of optimizing queries of the 

latter type. 



Chapter 3 

On the Expressiveness of AML 

-4 query language is expressive if it can perform many useful operations in its 

application domain. AML7s expressiveness in image processing can be judged by 

an answer to the question: What image processing operations can AML express? 

As mentioned in Section 2.3, AML can express any operation that produces an array 

from an array. It can do this by using an APPLY operator that directly maps from 

the input array to the output array. Such an operation will be called a singleton 

APPLY. 

.4ML is designed to exploit structural locality often found in array manipula- 

tions: an output array element can often be computed from a small set of adjacent 

elements of the input arrays. -4n AML evaluator is expected to optimize and ef- 

ficiently evaluate array queries that contain structural locality. Since user-defined 

functions are not interpreted by AML, e-upressions that contain singleton APPLY 

operators n-ill probably not be optimized effectively. Therefore, when considering 

.4ML7s expressiveness, the more interesting question is: Can a given image process- 



k g  operation be eqressed in AML withozlt using singleton APPLYS'? 

DXch image processing operations shodd be considered in addressing this ques- 

tion? In image processing, there is no single widel-accepted language: there is no 

universal set of image processing operations against mhich some notion of espres- 

sive Ycompleteness" might be defined. To provide some gauge of AML's ability 

to e'cpress image processing operations. this chapter presents a detailed compar- 

ison of AML to Image -4lgebra-an esqxessive language and a highly structured 

mathematical foundation for image processing and image analysis [5l, 521. Image 

-4lgebra was designed for the US. Air Force Systems Command. Image Algebra is 

programming language and computer architecture independent. Lmplement ations 

of Image -4lgebra in programming languages such as Fortran, Ada. Lisp. and Cf+ 

exist . 

There are several reasons for choosing Image -4lgebra as the basis of this dis- 

cussion. First, it is believed to be very expressive. Ritter and Wilson [52] have 

gathered over 80 computer vision algorithms and their formulations in Image Alge- 

bra. ' Second; it has served as the basis of at least one other array database system, 

RasDaMan. RasDaMan's query language RasQL [4, 731 is based on a subset of the 

Image Algebra operators. Third, Image Algebra, like AML, is an algebra. The fact 

that the two have similar structures simplifies the cornparison tasli. 

-4ML can express the following image-maaipdating operators of Image Alge- 

bra without resoiting to singleton APPLYS: (1) induced operators; (2) global re- 

duce operators; (3) some spatial transformations; (4) image catenation; (5) range 

'It should be noted that some of these algorithms use assignrnent statements and loops in 
addition to Image Algebra staternents. 



restrictions and some domain restrictions: ( 6 )  image extension: and (7) image- 

template product (non-recursive) . AP P LY can express the non-recursive image- 

template product-Image .41gebïa7s most usefd operator. AML canno t espress 

the following image-manipulating operators of Image Algebra without resorting 

to singleton APPLYS: (1) arbitrary spatial transformations: (2) arbitra' domain 

restrictions; and (3) recursive image-template product. 

The rest of this chapter presents Image Algebra, and its relationship to .Al\rIL. 

in more detail. Section 3.1 describes Image Algebra's data model. It also describes 

some restrictions that are put on the Image Algebra's point sets for a meaningfd 

comparison between Image -4lgebra and -4ML. Section 3.2 presents the various 

types of operations found in Image Algebra, and discusses which c m  be expressed 

usefdly in -4ML. Section 3.3 describes the unsharp masking computation-a simple 

yet useful image processing application. It then expresses the unsharp masking 

computation in Image Algebra to show how Image Algebra's component operators 

can be combined in an application. Finally, it also expresses the unsharp masking 

computation in AML. Section 3.4 contains a summary of the comparison between 

image processing operators in Image Pllgebra and AML. 

3.1 Image Algebra's Data Mode1 

Image -4Jgebra is a three-sorted algebra; the three sorts are point sets, value sets, 

and images. 

A point set is a topological space and thereby provides notions such as a distance 

function, neamess of two points, and neighborhood of a point. Image Algebra 
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permits arbitrary point sets: finite or infinite: hypercubical (n-hen plotted) or non- 

hypercubical: dense or spazse. For image processing, rectangular discrete point 

sets whose plots are limited to positive quadrants of the coordinate ases are most 

pertinent - 

-4 value set is a homogeneous algebra: it is a set together with a finite collection 

of operations. Some commonly used value sets in image processing are the sets of 

integers, real numbers, and complex numbers. 

An image is a function from a point set (also cded a spatial domain) to a value 

set. The notation I : X + F miIl be used to denote an image I whose point set 

is X and whose value set is F. It is often convenient to thinli of an image as a 

set of pixels, where each pixel is of the form (2, I(x)) in which x E .Y is the pixel 

location and I(x) E F is the pixel value. Image Algebra's data mode1 permits both 

flat images and nested images ( cded  templates). 

Restrictions on Image Algebra Point Sets 

AML arrays have hypercubical shapes and array elernents are indexed using non- 

negative integers. On the other hond, Image Algebra permits arbitrary point sets in 

its images. Therefore, for a meaningful cornparison between the image processing 

operators in these two languages, it vvill be necessary to put the following restrictions 

on the Image Algebra point sets. Let the notation Zt (where t 2 1) denote the set 

of non-negative integers from O to t - 1, inclusive. Then the point sets are restricted 

to the form: 
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where k - > 1 and ni 2 1 (O < i 5 k-1). In other words? the point set is discrete: the 

point coordinates are indexed by non-negative integers: and mhen plotted. the point 

sets have rectangular (hypercubical, in general) s hapes whose lower-left corners are 

located at the origin. 

-4 non-rectangular point set can be converted to a rectangular one by enclosing 

it with a minimum-bounding rectangle and then by extending the lower-left corner 

of the rectangle to the ongin. .411 the additional points thus enclosed have a special 

d u e  a, which is a designated d u e  in a value set F. Further, for unique identifi- 

cation of a values, no F-valued non-rectangular image has any pixel values equal 

to a. For brevity, fiiture references to a in this chapter will just c d  it the "spe- 

cial valuen. Usudy, image manipulating functions operating on a-values produce 

a-values. (Any exceptions to this d e  will be pointed out .) 

3.2 Image Algebra Operators 

Image -4lgebra is a heterogeneous algebra in that some of its operators convert 

operands of one sort to results of a different sort. Image Algebra operators can be 

broadly divided into h o  classes: (1) operators that map images to images, and (2) 

ail other operators. Examples of operators in the latter dass include operators that 

map points to points, point sets to point sets, values to values, value sets to value 

sets, images to point sets, and images to value sets. Point sets and value sets exist 

in AML only as pûrts of arrays (as shapes and domains, respectively). Therefore, 
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this section relates AML to ody  those operators of Image -4lgebra that map images 

to images. 

Image Algebra exists in several versions. For examplel an earlier version in [Sl] 

does not contain some of the operators that a later version [52] does. The following 

description is based on the image-manipulating operators that have been described 

for Image Algebra in [52]. 

3.2.1 Induced Operators 

Induced operators are image operators that are derived from the operators on value 

sets. Binary d u e  set operators such as addition and multiplication extend to 

binary image operators; unary value set operators-for example, applying the sine 

function or the thresholding function to a value-extend to unary image operators. 

These extensions are performed by applying the operators pixel-wise. 

Binary induced operators can be expressed in AML as follows. Let A : X -t F 

and B : X + F be two i-dimensional images with dimension numbers O, 1,2, - - - , i- 
l. A generic binary operation between them can be expressed in AML as Mows. 

A P P L Y ( ~ ,  M E R G E ; ( ~ ~ ,  A, B), (17 1, - - - , 1, S ) ,  (1,i)) 

APPLY is a unary operator and therefore, it is necessary to combine A and B using 

a MERGE. f implements the binary operation between two values; its application 

on the combined image produces the result m a y .  Br [il is 2. Equation 3.1 can 

also express induced operations between set-dued images and between images 

and constants. (Constants can be implemented as AML arrays with the same value 



everywhere. ) 

A generic u n q -  induced Mage operation can be expressed in ,ji3IL as follows. 

(f performs the appropriate u n q  operation.) 

3.2.2 Global Reduce Operators 

-4 global reduce operator is a unary operator that performs an aggregation-for 

example, summation or maximum-hding-on the values in its input image. It can 

be described in AML as follows. ( f performs the appropriate aggregation ignoring 

the a values.) 

APPLY( f, A, A, (1,1)) (3-3) 

A globd reduce operator produces a value, whereas the above A M L  expression 

produces a one-element array. 

3 -2.3 Spatial Transformations 

Image Algebra's spatial based image transformations-for example, image transpo- 

sition and image shift-change point sets of images. In its most general form, a 

spatial transformation applies a function f to each point in an image's point set. 

To capture such transformations in their full generality, a singleton APPLY operator 

'Equation 3.3 uses a singleton APPLY operator. A global reduce operation is inherently of 
the type of operations whose single applications require access to al1 of the array elements in 
their operands. Therefore, we have made an exception to include it in the list of Image Algebra 
operators that AMI, can efficiently express. 



is needed. If g is the user-defined function associated mith such an APPLY opera- 

torl g7s domain shape spans the entire input image -4 and g's range shape matches 

the shape of the spatially transformed output image B (rvhose lower-left corner is 

located at the origin: of course). The function g performs the necessaq- spatial 

transformation. For some spatial transformations such as image shift. however, 

AML does not need to resort to such singleton APPLY functions. The following 

AML expression shifts an image by an amount k on the X-axis (dimension 1). The 

mer element <r is the special value and NULL is a null a r r -  

To shift a d-dimensional image, one needs at most d MERGE operaton-each one 

shifting the image in one of the dimensions using the technique indicated in Equa- 

tion 3.4. 

3.2.4 Image Catenation 

Let A : + F and B : Y -t F be two d-dimensional images such that X C Z 

and Y C 2. The image catenation operation juxtaposes A and B in dimension i 

(O 5 i < d). (In all other dimensions j, j # i, i [ j ]  = Bk].) MERGE is weU-suited 

to express image catenation, as the following expression shows. 
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3.2.5 Image Restriction 

Image Algebra dows tmo types of restrictions of images whereby a new image is 

formed by selecting a subset of elements fiom the point set or the d u e  set of an 

original image. The point set is restricted in domain restriction, whereas the value 

set is restricted in range restriction. A restriction on one of the two sets leads to 

an irnplicit restriction on the other. 

Suppose that 1 : X -t F is an image. Domain restriction is specified by a subset 

Z of X; the range restriction is specified by a subset S of F. Image -4lgebra defines 

no general syntax for specifying the sets Z and S. However, sjntsv exists for special 

types of range restrictions. For example, thesholding is specified by the threshold 

value k E P. Thresholding can also be defhed for two images A and B with the 

same point set. A range restricted version of A c m  be formed by comparing the 

corresponding pixel values in -4 and B and by keeping the -4-values that satis6 the 

cornparison. ( 4 x )  < B ( x )  and A ( x )  # B ( x )  are two example comparisons.) 

AML can express those domain restrictions where entire slabs in a dimension 

are either kept or discarded. Suppose that the AML pattern P describes the i- 

slabs that are kept or discarded. It  is tempting to use SUB to express such domâin 

restrictions but SUB combines the selected array shbs. Nevertheless, if such selected 

slabs are appropriately spread apart-as per the folloiving AML expression-then 

an effect same as that of a domain restriction is achieved. 

Notice that the empty spaces created by the domain restriction are filled with the 



special value a. Simultaneous domain restrictions in more than one dimensions can 

be achieved likewise using a pair of SUB and MERGE operators for every dimension 

restticted. 

Range restriction can be achieved using an APPLY as foUonvs. 

f implements the restriction condition. Pixel d u e s  satisfying the restriction con- 

dition are copied to the output unchanged by f;  those failing the condition are 

converted to the special value a by f. 

To express those range restrictions involving two d-dimensional images -4 : X + 

F and B : X + F, the follotving AML expression can be used. 

APPLY(~ ,  MERGE&O, A, B ) ,  ( l , ~ ,  - - - 2), (1,l)) (3.5) 

A and B are fkst cornbined in dimension d. Dj[dj' is 2 and f compares a pair of 

pixel values (a, b) with a coming fIom A and b from B. If the pair (a, b) satisfies 

the range-restriction condition, then f (a, b) = a; otherwise, f (a, b) = a. For the 

pairs of the form (a, a) ,  f (a, a) = a. 

3.2.6 Image Extension 

The notion of image extension is symmetric to that of image restriction. Image 

extension is used to embed images into larger images. Suppose that A : X + F 
and B : Y + F are two d-dimensional images such that X E Z and Y C 2. An 



image A Image B Extension of A to B 

Figure 3.1: Image extension in Image Algebra. 

image that is the extension of A to B has pixel d u e s  coming from d for points in 

X and has pixel values coming from B for points in Y - X. A simple version of 

the image extension operation is depicted in Fig. 3.1. 

The AML query for an image extension operation is 

in which a is the special value and fir[4 is 2. f outputs the ---value if the A-value 

is not equal to a; otherwise, it outputs the B-value. 

3.2.7 Image-template Product 

Image-template product is the rnost important operation in Image Algebra. It  

models a common image processing operation called convolution. In convolution, a 

s m d  subarray (typicdy 3 x 3 , 4  x 4, or 5 x 5) called the kernel slides to d l  possible 

positions within a larger array. For each possible position of the kernel within 

the larger array, kernel elements and array elements that fall within the kernel 

participate in some computation. The results of such computations are gathered 

to form the output array. 

A template is an image whose pixel values are images. Templates wiU be denoted 
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Figure 3.2: (a) 4 template; (b) an image; and ( c )  the result of the image-template 
product . 

by lower-case boldface letters such as t. Fomdy,  a template is dehed  as t : Y +- 
(-Y -t F). Thus, the value of t at a point y E Y-denoted by t,-is an F-valued 

image. These F-values are c d e d  the template weighk For a point x E -Y, the 

template pixel t,'s weight at x is denoted by t,(x). Thus, to reach a template 

weight, two indices are necessary: y indexes a template pixel and x indexes a pixel 

in the image t,. The support of a template pixel t,-denoted by S(t,)-is defined 

to be the set of points x E X such that t,(x) is non-zero. (It is assumed that the 

value set F is an algebraic structure with a "zeron element.) 

Fig. 3.2(a) illustrates the idea of templates. The template t in Fig. 3.2(a) is 

defined on 3 points: (0,0), (0,1), and (1,O). Each point in the template contains 

an image whose point set contains 4 points: ( O )  ( O )  ( O )  d ( 1 1  As an 

example of template indexing, notice that the template weight at t ((O, 1)) is 9. 

Suppose that t : Y + ( X  + F) is a template and 1 : X + F is an image. 

An  image-template product between 1 and t produces an image G of the form 

G : Y -+ F. The value of G at a point y E Y-denoted 

follows. 

G(Y) = ~ X E X ( W  O t u ( +  

by G(y )-is determined as 

(3.10) 
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where I (x)  are the image d u e s .  ty(x) are the template weights. 0 is a binary op- 

eration between I ( x )  and t,(x) and ï is a global reduction (aggregation) operation. 

There is a one-to-one matching between the image values I ( x )  and the template 

weights t,(x) because they both are defined on the same point set S. The 0 op- 

eration combines these IXl pairs of matching values to form IXI values. The global 

reduction operation then aggregates these [-CI d u e s  and produces a single value. 

This process is repeated for each point y E Y to generate the result image G with 

I?-1 points. 

A specific instance of Equation 3.10 is 

in which the image values and the template weights are iîrst multiplied and then 

the results are sdded. Thus, Equation 3.11 expresses a weighted sum operation. 

In Fig. 3.2(b), an image with 4 points is shcwn. The point set of this image 

is identical to the point sets of the images that are present as ternplate d u e s  in 

Fig. 3.2(a). The image-template product-defined as per Equation 3-11-produces 

as image with 3 elements as shown in Fig. 3.2(c). 

The following metaphor can be used to describe an image-template product. 

(The metaphor also suggests how an image-template product can be expressed in 

AML.) -4n image occupies all possible positions within a template. For each posi- 

tion of the image within the template, the image values and the template weights 

participate in a type of operation defhed by Equation 3.10 and a result value is 

generated. The result image is formed by gathering such values. 



-4n image-template product between an image I and a ternplate t can be es- 

pressed in AML as follows- Suppose that the point sets of I and t obey the re- 

strictions mentioned in Section 3.1 and that t is available as an un-nested image. 

Suppose that an APPLY function f is dehed with Bt = and = (1.1). The 

pixel values in 1 are hard-coded into f. The image-template product can be es- 

pressed as: 

TILEDAPPLY(~,  t, f', (1,l)). (3-12) 

f is applied to t in a tiled fashion. During each application of f, 17s pixel values and 

the template weights participate in the computation of Equation 3.10 and produce 

a single result value. (The result of combining hvo a values using 0 is an a value; 

I' ignores cw values when aggregating.) 

Translation Invariant Templates 

In digital image processing, a special type of template c d e d  a translation invariant 

template is quite usefiil. A translation invariant template t is dehed by t : X + 
(X -+ F). Such a template7s point set is identical to the points sets of the images 

that it contains as d u e s .  Futther, for each triple x, y, z E X yith y + z E X and 

x + z E -Y7 t, (x) = tY+, (x + r) . In other words, in a translation invariant template, 

the images that are present as template values are merely spatial translations of 

each other. A template that is not translation invariant is called a variant template. 

An example of a variant template was shown in Fig. 3.2 (a). 

A translation inwiant template with finite support has the nice property that 

it can be drawn concisely with a picture. For example, consider the picture of such 
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1 ; ;  
x xtl 

Figure 3.3: (a) The picture of a translation invariant template n-ith finite s i ip  
port; (b) the template weights; (c) an image; and (d) the result of image-template 
product . 

a template-defined on the point set S2-shomn in Fig. 3.3(a). In that picture. 

only 4 template weights are non-zero. Their spatial relationships to the reference 

point (x, y)-cded the target point-are as depicted in Fig. 3.3(a). Suppose that 

this template paxticipates in an image-template . product with the image shown 

in Fig. 3.3(c). The image is also defined on the point set 2* but only 4 image 

values are non-zero. When the image-template product , defined by Equation 3.11, 

is calculated between this image and the template in Fig. 3.3(a), only some of 

the template weights-shown in Fig. 3.3(b)-yield non-zero results. The result of 

the image-template product is the image shown in Fig. 3.3(d). (Once again, only 

non-zero pixel values are shown. ) 

The following metaphor cas be used to explain an image-template product when 

the template is translation invariant with finite support and the image and the 

template are defined on the same point set. The target point in the "picturen of 

such a template occupies ail possible positions in the image. For each position of 

the target point, image d u e s  and template weights participate in the operation 

defined by Equation 3.10 and a result value is generated. The result image is formed 

by gathering such values. 



The above metaphor suggests how an image-template product c m  be eqressed 

in AM L using APPLY when templates are translation invariant xit h h i t e  support. 

The restrictions on the point sets mentioned in Section 3.1 apply. Suppose that 

the template is enclosed by a minimum-bounding rectangle (hypercube, in general) 

wîth shape 6 and that an APPLY filliction f is defined mhose domain shape is fi 
and whose range shape is (1,l). The weights in the template's picture are built 

into f. (Any undefined values are assumed to be a.) An application of f performs 

the computation defined by Equation 3.10 between the image values passed to f 

ôs a.rguments and the template weights built into f. f knows how to handle the a 

values: the 0 operation between two a values produces an a d u e ;  the ï operation 

ignores any a values when aggregating. Thus, the AML expression 

is equivalent to Image Algebra7s image-template product . 

Due to APPLY'S semantics, Equation 3.13 produces most of the resdt array, 

but not al of it. In particulas, the boundary conditions are not handled if ID1 > 

1 because APPLY'S domain shape does not slide outside the boundary of 1. To 

handle boundary conditions properfy, the image 1 should be expanded using a- 

values before using Equation 3.13. Dimension i of I is handled os follows. Suppose 

that in dimension i, there are ri pixels to the "rightn of the target pixel in D and 

there are 1; pixels to the "leftn of the target pixel in D. The image I is expanded- 

using MERGE operators-by adding ri i-slabs to the right of I and 1; i-slabs to 

the left of I. After all the dimensions of I are processed similarly, I is ready to 
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participate in the computation of Equation 3.13. 

.4s a concrete example of the above-mentioned eqansion procedure. consider 

the imagetemplate product depicted in Fig. 3.3. The non-zero d u e s  of the image 

shown in Fig. 3.3(c) form the shape of (2,2). That image-cd it I-gets espanded 

as per the following AML expression. 

If = U E R G E ~ ( ~ ~ ~ ,  M E R G E ~ ( ~ ~ O ,  I ,  NULL, a), NULL, a) 

More General Forms of Templates 

In Image Ngebra, the basic notion of a template-as desaibed thus far in this 

chapter-is extended in two directions to yield parameterized templates and recur- 

sive templates. 

In a parameterized template, the weights are functions of a parameter rather 

than constants. Thus, a parameterized template defines a family of templates, 

rather than just one template. Individual templates are instantiated by choosing 

a parameter value. Parameterized templates permit template weights to be varied 

in unison. This functionality is usefd in the following scenario. Suppose that in a 

discrete twedimensional convolution, the kernel shape is 3 x 3. The weight of the 

kemel's center pixel is p. The weights of the center pixel's north, east, south, and 

west neighbors âre also equal to p. The weights of the center pixel's north-east, 

south-east, south-west, and north-west neighbors are the same and are equal to 

2 - p. In this scenario, it is sensible to make the template weights a parameter of 

p if the discrete 2-dimensional convolution is to be performed using different such 

kernels . 
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A'VIL can express image-template products defined on parameterized templates 

when such templates are instantiated. -4 shortcoming of such AML espressions is 

that for each template instance, a separate APPLY h c t i o n  is needed. 

Recursive templates are defmed because sometimes pixels of an image need to 

be processed in certain order-for example, fom-ard raster scan order (row-major 

order) or serpentine scan order. In recursive templates? the points in the template 

point set Y are partially ordered according to a binary relation i. With each 

template pixel d u e ,  two images are associated: a usual (non-recursive) image I of 

the form I : X -t F, and a recursive image I' of the form I' : Y + F. (The details 

can be found in [52].) 

When an image-template product is defined using a recursive template, the 

computation of Equation 3.10 can be perfonned for a pixel y only aftet ail its 

predecessors (ordered by 4) have been computed. Thus, recursive templates enforce 

an order in which the result pixels are generated and therefore-unlike a non- 

recursive imagetemplate product-a recursive image-template product canno t be 

computed in a globally paralle1 foshion. To express a recursive image-template 

product in ,4ML, a singleton APPLY operator is needed. 

Image-template Product Versus APPLY 

-4 comparison between image-ternplate product and APPLY is interesting. Image- 

template product offers a more generd way to handle boundary conditions but 

restricts individual function applications to the form given in E.quation 3.10 so 

that a function application can only generate a scalar value, not an array. APPLY 

functions not only map subarrays to subarrays, but also have no other restrictions 



placed on them. 

In APPLY, a domain box is completely specified by just its shape n-hich means 

that kernel weights need to be hard-coded into the body of a user-dehed function: 

if weights change, a new user-defined function is needed. In contrast. in image- 

template product, the function body remains unchanged-just the template weights 

change, 

Image-template product becomes a more useful and powerful operator due to 

parameterized templates and recusive templates. APPLY can handle the templates 

in the former class (albeit? not as elegantly as Image Algebra does) without using 

singleton APPLY operators but can handle templates in the latter class ody by 

using singleton AFP LY operators. 

3.3 The Unsharp Masking Computation 

Section 3.2 described those Image Algebra operators that AML can express without 

uslng singleton APPLYS. It also translated such Image Algebra operators to .4ML 

expressions. To illustrate how various Image Algebra operations are combined and 

used in practice, this section describes a sample image processing application-the 

unsharp musking operation [52, page 631-and shows how it can be expressed in 

Image Algebra and AML. 

The unsharp masking operation blends an image's high-frequency components 

and low-frequency components to produce an enhanced image. The blending may 

sharpen or blur the source image depending on the proportion of each component 

in the ehanced image. 



Suppose that -4 is an n x n source image. The lom--frequency component of the 

source image is formed by replacing each pixel value with a n  average of that value 

and the values of the S neighboring pixels. (Boundary pixels have fewer than S 

neighbors.) Suppose that the image B contains such a low-frequency component of 

the image A. The value of the high-frequency component image C at a point (i, j )  

is defined by 

C[i, j] = A[i, j ]  - B[i, j]. (3.15) 

The unsharp masking operation produces an image D dehed by 

7 is a red  number. A y value between O and 1 results in a smoothing of the source 

image. A y value greater than 1 emphasizes the high-bequency components of 

the source image, which s h q e n s  detail. An illustration of the unsharp masking 

operation on a mammogram image for several values of y appears in [52, page 641. 

The unsharp masking operationcan be expressed in Image Algebra as foilows. 

t is a template whose picture (which has the 3 x 3 shape) contains 9 elements, all 

of which are 1. The center pixel in t 's picture is the target point. The images 
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a, b, c, and d correspond to the images nith the same names in Equation 3.15 and 

Equation 3.16. The Image Algebra expression in Equatio~ 3-17 performs an image- 

template product-indicated by a @ symbol-between a and t. The result image 

of the image-template product then participates in a unary induced operation- 

whereby the pixel values are divided by 9-that produces the low-f'requency com- 

ponent image b. The Image Algebra expressions in Equation 3.1s and Equation 3.19 

are self-explanatory both of them use binasy induced operations. Equation 3.19 

uses a unaq induced operation also. 

The u n s h q  masking operation can be expressed in AML as follows. To handle 

the boundary conditions properly-as explained in Section 3.2.7-the image A is 

first expanded by adding two rom and two columns to it. Suppose that two all-zero 

images Z o  and Z1, with shapes of (2, n) and (n + 2,2), respectively, are available. 

The expanded image A' has the shape (n + 2, n + 2) and is defined by 

X = M E R G E ~ ( ~ ~ " ~ ,  Z l ,  M E R G E O ( ~ ~ " ~ ,  20, A))  (3.20) 

Suppose that the user-defined function avg9 ,  whkh cornputes the average of 9 

values, is available. The low-frequency component image B can be defined by: 

B = APPLY(~V@, A', (3,3), (1,l)) 

The image C is defined by: 

C = ~ ~ ~ ~ ~ ( r n i n u s ,  M E R G E & ~ ,  A, B), (1,1,2), (1,l)) 
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In Equation 3.22, the APPLY h c t i o n  minus subtracts a B-pixel d u e  from from 

the matching ,4-pixel d u e .  Suppose that two APPLY functions timesy (which 

multiplies a pixel value by y)  and add (which adds two pixel values) are available. 

The resuit image D can then be formed in two steps as follows. 

Dr = ~ ~ ~ ~ ~ ( t i m e s y ,  C, (1, l), (1,l)) 

D = A P P L Y ( ~ ~ ~ ,  MERGE&O, D', B), (1,1,S). (1,l)) 

The AML expressions in Equations 3.21, 3.22' and 3.24 correspond to the Image 

Algebra expressions in Equations 3.17, 3.18, and 3-19, respectively. 

3.4 Cornparison Summary 

Image Algebra has a rich data model that permits image definitions on arbitrary 

point sets. -4 wide range of operations have been defined on point sets, value sets, 

and images. Image AJgebra has been found to be a usefd language for describing 

cornputer vision dgorithms [52]. 

Their somewhat different design goals may explain some of the differences be- 

tween Image Algebra and AML. In case of Image Algebra, the design goals seem to 

have b een expr essiveness and generality. Accordingly, t here are many operators in 

Image Algebra. The set-theoretic treatment of points and values permits powerful 

and general operator definitions. However, optimizability is not of p r i m q  concern. 

Although implementations of Image Algebra exist, its primary goal is to serve as 
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a common descriptive language for image processing operations. For AML. the 

design goals were optimizability and extensibility with an emphasis on the former 

goal. It is accurate to Say that we included ody those operators in AML that we 

knew we codd optimize. Other operations must be implemented using singleton 

APPLYS. 

3 ~ h i s  is not to suggest that Image ALgebra expressions are not optimizable. Optimizations 
that decompose a translation invariant template with finite support into two or more pieces and 
recombine such pieces exist in Image Algebra. 



Chapter 4 

AML Query Processing 

-4 user poses an AML query to ArrayDB and gets back a result array. AU of the 

activities that occw during this interaction are called query processing. Section 4.1 

gives an overview of AML query processing, which occurs at two levels: logicd 

and physical. Logical que. processing-described in Section 4.2 and Section 4.3- 

transforms an AML query E made up of SUB, MERGE, and APPLY operators to 

an equivalent AML query Et which is usually more efficient to evaluate than E is. 

Physical query processing-described in Section 4.4 and Section 4.5-trassforms 

Et to a plan, which is a recipe for the ArrayDB7s query evaluator describing how 

to evaluate the query Section 4.6 describes how the .4rroyDB7s query evaluator 

executes such a plan. -4ML query processing was originally described in [42]. 
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Figure 4.1: Overview of AML query processing. 

4.1 AML Query Processing Overview 

AML offers several opportunities for optimization. First, the structural regularity 

of the AML operators makes it relatively easy to trace data lineage through an 

AML expression. This d o w s  AML expressions to be remitten to avoid the need 

to calculate or retrieve values that are not required. Second, the AML operators do 

not speciS the order in which the cells of their output arrays are generated. Order 

can have a significant impact on the memory cost of a plan. Choosing a good order 

can make the clifference between an evaluation plan that c m  execute entirely in 

memory and one that cannot. 

As the block diagram of Fig. 4.1 shows, AML query processing occurs in four 

phases: preprocessing, logical rewriting, plan generation, and plan refinement. Each 

phase manipulates some form of an A-ML query. The first two phases of AML 

query processing are called logical query processing because they manipulate AML 

expressions made up of Zogical operators: SUB, MERGE, and APPLY. Phases 3 



and 4 of -4ML query processing perform physical qvery  processing because they 

manipulate query expressions containing physical operators. Physical operators are 

defined by Array DB to implement the logical operat ors. 

During preprocessing, an AML query E is h s t  tokenized by a scanner and then 

converted into a parse tree by a paner. The preprocessing step consults system 

catalogs that store information about arrays, user-defined functions, and data types. 

Catalog information is used to convert non-constant patterns and shapes in E 

into constants; to determine the types and shapes of different arrays (le& arrays. 

intermediate arrays, and the result array) in the query; and to convert leaf arrays to 

special types of APPLY operators whose user-defined fiinctions read array data from 

disk. The preprocessing step dso converts E into merge-balanced form, formdy 

defbed in Section 2.2.2. Merge-balancing is necessary because some of the logical 

rewrite rules-applied to E in the second phase of query processing-hold only 

when E is in merge-balanced form. 

Logical rewriting converts a merge-balanced .4ML query E into an equivalent 

form t hat is more efficient to evaluate. A variety of rewrites are performed, but the 

primary goal of this phase is to push the SUB operations d o m  to reduce unnecessary 

data retrieval and processing. Logical rewriting converts E to a canonical form. 

Evaluation of an expression in canonical form reduces the amount of data read 

from Ssk, saving costly disk 110; it also reduces the number of applications of 

user-defined functions, saving CPU time. 

The plan generation phase converts a logical AML expression into a plan-a 

directed graph of physical operators, where arcs represent data flow. Since the 



-4ML optimizer currently does not detect common subespressions, the plans it 

produces are always trees. 

Each plan operator (except Zeaf operators) consumes one or more input arrays 

and produces a single output may. Plan operators are iterators that produce and 

consume arrays a piece at a time. Iterators Save b&er space by reusing the memory 

used to store the array pieces. Every operator expects its inputs to consist of array 

chunks of a particdar shape and produces array c h d s  of a particular shape at 

its output. Each operator produces its output c h d s  in a particdar order (e.g., 

row-major or column-major) and expects input c h d s  to appear in a particular 

order. If two operators are connected by an arc in a plan, the producer's output 

chunk shape and ch& order must match the input chu& shape and ch& order 

expected by the consumer. 

The plan generation phase produces plans in which chunk orders of the phys- 

ical operators are left unspecified. The most important task of plan rehement 

is to minimize the amount of memory required for plan evaluation by determin- 

ing the order-for example, row-major order and column-major order-in which 

each plan operator will geneate its output chunks. The order assignment to the 

plan operators-the "annotations" mentioned in Fig. 4 .14s  done using a dynamic 

programming algorithm, which ensures that the memory requirement of a plan is 

minimized. 

There are numerous other possible optimizations that ArrayDB's AMI; opti- 

mizer curtently does not perform. It does not select from among multiple access 

paths for stored arrays, and it does not detect and exploit common AML subex- 



GHAPTER 4. -&!ML Q UERE' PROCESSING 

pressions. Çimilar op timizations are perforrned by relational op t imizers, and i t m a -  

not be too difficult to adapt relational approaches to the AML array query opti- 

mizer. The AML optimizer performs no optimizations that involve reordering or 

combining AP P LY opeations. Doing so would require that the op timizer unders t and 

something about the user-defined functions being applied. This issue is addressed 

in Section 8.2.i as future work. Finally, the optimizer also does not attempt to par- 

allelize query evaluation. Because AML plan operators are iterators, asynchronous 

pipelining could be introduced through the use of a n  "exchange" operator as was 

done in Volcano [21]. 1U1 of the AML operators themselves are also well-suited to 

data-pardel impiementation. Fragmentation of arrays can be accomplished easily 

using the SUB operator. Pardel evaluation of AMVIL expressions is addressed in 

Section 8.2.3 as future work. 

ArrayDB7s AML query optimizer is by no means the last word in array query 

op timization. Nevertheless, it does demonstrate that some underst anding of array 

operations c m  substantially improve the efficiency of useM array queries. It also 

shows that AML, despite its simplicity, captures enough about array queries to 

permit this. 

4.2 Preprocessing 

A scanner begins the preprocessing phase by converting an AML query E into a 

sequence of tolcens. A parser then converts the sequence-of-tokens representation 

of E into a parse tree T in which there is an interna1 node for each AML operator 

and a leaf for each instance of a leaf array. In addition to the Sus, MERGE, and 



APPLY operators, an AML query contains references to .maYs and to user-defined 

functions. In addition, AML arrays have types (reflecting their domains) and thus 

an AML query also implicitly refers to data types. Information about these three 

entities is stored in three catalogs: an anay catalog, a type catalog. and a function 

catalog. The ûnay catalog stores an array's name, its shape, the type of the array 

elements, and the tile shape used to store the array on disk. ' The type cata- 

log records a l l  amay element types understood by ArrayDB. The function catalog 

records information about user-defined iunctions used by the APPLY operator. 

During preprocessing, the three catdogs are consulted to convert any non- 

constant patterns and shapes in the query to constants and to infer the types 

and shapes of the non-leaf arrays throughout the tree T. The type and shape in- 

ference happens from the leaves of T to the root of T and is possible because AML 

is sta.ticdy typed. ArrayDB treats AML leaf arrays as special types of APPLY op- 

erators and during preprocessing, this treatment is made explicit by tuming leaves 

into leaf APPLY operators. The user-defined function f of a leaf APPLY operator A 

reads data from disk. f's domain and range shapes are identical to the tile shape 

used to store A on disk. Such a function f is always applied to A in a tiled fashion. 

(TILEDAPPLY is defined in Equation 2.1.) 

'In the current implementation of ArrayDB, arrays are stored on disk using regular tiling 
(described in Section 7.1.2). The tiles are stored on disk using UNIX flat files. Within a tile, the 
elements are stored in row-major order. The tiles themselves are also stored in row-major order. 
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Figure 4.2: Illustration of merge balancing. 

Merge Balancing 

After type and shape infercnce, merge balancing occurs. Merge balancing con- 

verts an AML query into the merge-balanced fonn that was fonnally defined in 

Section 2.2.2. Merge bdancing is necessary because in certain cases, some of the 

AML logical rewrite d e s  hold only for merge-bdanced AML queries. 

ArrayDB performs merge balancing by adding b-dued constant arrays (called 

DEFAULT arrays in ArrayDB) to the query. For example, the bottom unbalmced 

MERGE in Fig. 2.3 is balanced as illustrated in Fig. 4.2. 

Merge balancing adds MERGE operators and leaf arrays to an AML expression 

E. The following lemma gives an upper bound on the number of additional nodes 

that merge balancing can add to E. 

2ArrayDB handles a DEFAULT leaf array differently from a non-DEFAULT leaf array. A 
DEFAULT array requires constant amount of rnemory for storage-just enough to store one copy 
of the 6-element-irrespective of the array's size, 



Lemma 4.2.1 S u p ~ o s e  that  the maximum dimensionality of any array in an n- 

operator AML exp~ession E is d. Merge balancing m a y  add up t o  (d - n) additional 

MERGE operators and up to ( d  - n )  additional k a f  operators to  E.  

Proof. Let us f ist  establish the upper bound on the number of additional MERCE 

operators. If a MERGE cperator in E combines two d-dimensional arrays in dimen- 

sion i, it may be necessary to expand the two argument arrays in a l l  d dimensions. 

In the ex3reme case, the array lengths may mismatch in a l l  the dimensions but 

dunension i, and expansion in dimension i occurs when, in dimension i, one May  

runs out of slabs before the other does. One MERGE operator is needed pet di- 

mension that gets expanded, so in the worst case, d additional MERGE operators 

get added to the AML expression. E contains n nodes and in the worst case, E 

may contain up to n unbalanced MERGE nodes. Therefore? in the worst case, merge 

balancing may add (d - n) MERGE operators to E. 

Each MERCE operator that gets added to E during merge balancing also causes 

a leaf a.rray to be added to E. Therefore, merge balancing rnay add up to (d - n)  

. leaf arrays to 'E-in the worst case. O 

4.3 Logical Rewriting 

During logical rewriting, an AML query is systematicdy transformed-using AML 

logical rewrite des-into an equivalent form that is expected to be more efficient 

to evaluate. 
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Rule Description 
SUB with '0' pattern 

L 
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Figure 4.3: Summary of the AML logical rewrite d e s  used by ArrayDB. 

Theorem 

Theorem 2-2 
SUB with '1' pattern 
MERGE wlth 'O' pattern 

4.3.1 AML Logical Rewrite Rules 

Theorem 2-3 
Theorem 2-6 

A 

combines two SUB~'S  

reorders SUB; and SUBj 

pushes SUB; through MERGE; 
pushes SUB; through MERGEj 
~ushes  SUB into APPLY 

Chapter 2 described various rewrite d e s  for AML expressions. The logical rewrit- 

Theorem 2 -7 4 

Theorem 2.4 
Theorem 2.5 
Theorem 2.10 
Theorem 2.11 
Theorem 2.13 

ing phase uses 11 of those rewrite d e s  to transform AML expressions into equiva- 

MERGE with '1' pattern 

lent forms. Fig. 4.3 summarizes the 11 rules. For convenience, the 11 d e s  will be 

5 

referred to as Rule 1 through Rule 11. Theorem 2.14 (Rule 11) can only be applied 

APPLY with a 'O7 ~ a t t e r n  1 Theorem 2.12 

to a non-le& APPLY. As already mentioned in Chapter 2, proofs of the nontrivial 

d e s  (Rules 6, 8, 10, and 11) appear in Appendix A. 

An application of a rewrite d e  replaces the AML expression on the left with 

the AML expression on the right. For the nontrivial d e s ,  the theorem statements 

define the patterns on the right in terms of the patterns on the left. When imple- 

menting a nontrivial rewrite rule, a result pattern should be generated up to the 

length of the m a y  on which the pattern operates. For example, if a SU%; operator's 

input array is A, then A[i] bits of the SUB~'S pattern should be generated. 



Rules 7 through 11 are used to push SUB operators as far d o m  as possible in 

AML operator trees using an algorithm described in Section 4.3.3. Rule 6 rnakes the 

SUB pushdomn more efficient, so that it is not necessaq to push dowm the two SUB 

operators separatel. Rules 1 through 5 simpw- trivial AML expressions. Although 

a user is unlikely to mi te  trivial AML expressions such as M E R G E ~ ( O ~  -4. B). they 

may be generated during rewrites. For example, consider a merge-balanced AML 

expression 

E = ~ ~ ~ ~ ( 1 0 0 0 1 0 ,  MERGE;(O~OO, -4, B)). (4.1) 

Using Rule 8 (Theorem 2.10), the expression for E can be rewritten to 

E = MERGE~(O,  S U B ~ ( O ,  A), SUB~(~OO~~OO~O, B)). 

Rule 3 (Theorem 2.6) simplifies Equation 4.2 to ~ ~ ~ ~ ( 1 0 0 1 1 0 0 1 0 ,  B). 

This example also illustrates the power of AML rewrite rules. From the original 

expression in Equation 4.1, it is not immediately apparent that the whole of array 

A gets subsampled out but the equivalent expression makes this obvious. 

4.3.2 Rewrite Rules and Merge Balancing 

The following two examples illustrate that some of the AML logical rewrite rules 

may not hold when the expressions on which they operate are not merge-balanced. 



Example 1 

This example illustrates that Theorem 2.11 may not hold if the AML espression is 

not in merge-balanced form. Consider the AML expression 

+ - 
with -4 = (3,3) and B = (2,2). It is easy to verify that Ë = (1,s). Notice that the 

expression for E is not merge-balanced. If E is rewritten using Theorem 2.11, the 

following expression results: 

The shape of E' is (1,4), which is incorrect. 

If merge-balancing is done on E before applying Theorem 2.11, the problem dis- 

appears. The merge-balanced form of E,  &,,, is given in the following espression. 

(y  is a DEFAULT array with 3 = (1,2).) 

Emb = ~ ~ ~ ~ ( 0 0 1 1 ,  M E R G E ~ ( O ~ ~ I O ,  -4, M E R G E ~ ( I I ~ ,  B,  Y ) ) )  (4.5) 

Theorem 2.11, when applied to Gb, yields: 

ELb = M ~ ~ ~ ~ i ( 0 1 1 1 0 ,  S U B ~ [ O O ~ ~ ,  A), stJ~o(0011, M E R G E O ( ~ ~ ~ ,  B, y) ) )  (4.6) 

It can be verified that the arrays Emb and Emb are identical. 
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Example 2 

This example austrates that Theorem 2.10 may not hold if the -.bIL expression is 

not in merge-balanced form. Consider the AML expression 

-. 
with A = (1 ; 2) and B = (2,2). P has the shape (3,2). The expression for F is not 

merge-balitnced. Theorem 2.10, when applied to the expression for F ,  produces: 

Ff has the shape (2,2) which is incorrect. 

Again, the problem disappears if F is put in merge-balanced form before apply- 

ing Theorem 2.10. If Y is a DEFAULT array with y = (1,2), the merge-balanced 

form of F is given by: 

Theorem 2.10, when applied to Fmb, yieldr: 

Fmb = MERGE@~, SUB&, MERGEO(~~, Al y)), s u ~ ~ ( 1 0 ,  B)) 

It can  be verified that the arrays Fmb and Fmb are identical. 



4.3 -3 Logicd Rewrite Algorit hm 

The logical rewrite d e s  are systematically applied to an AML es~ression as per the 

logical rewrite algorithm (LR4). The pseudo-code of the LRA appears in Fig. 4.4. 

Suppose that the maximum dimensionality of the arrays in a merge-bdanced AhIL 

expression E is dl with the dimension numbers ranging fiom O to (d - 1 ) . Suppose 

that E is represented as a n  operator tree T, with edges that indicate data flom, and 

that T contains n nodes. The apply-reuinte procedure is called-with -Y pointing 

to the current root node of T-once  for each of the d dimensions. For simplicity's 

sake, the calling order is set to be O, 1, - - - , (d - 1): although any other dimension 

permutation would also be fine. In each dimension i, the L E 4  pushes the SUBi 

nodes in T as far dom as possible. To achieve this goal of SUB-pushdonn, the 

LRA traverses T in an order given by the apply-reunite procedure in Fig. 4.4 and 

at each node tries to apply one of the rewrite d e s  appearing in Section 4.3.1. When 

a rewrite rule is applicable at a node X in T, the rule is applied and T is modified. 

Due to the nature of the .4ML rewrite d e s ,  such modifications are local and hence 

can be done in time constant in the number of nodes in T. After modifications, the 

rewrite continues as indicated in Fig. 4-4. 

Tirrie CompIexity of the LRA 

Suppose that the LRA begins with a t-node tree T .  Determihg the time com- 

plexity of the LRA is nontrivial because t may change during logical rewrites. In 

particular, t may increase as the LRA proceeds. The following theorem establishes 

an irpper bound on t. 



logicalrewrite(AML operator tree 7") 
for i t O t o  d - 1 // for each of the d dimensions 

applyremite(root node of T, i) 

applyrewrit e(node pointer ,ri, dimension i) 
if ( X is leaf node ) 

return // No rewrite rule is ever applicable at a leaf node. 
if ( a rewrite d e  is applicable in dimension i at .rC ) 
// X refers to the root node of the AML expression on the left side of the 
// rewrite d e .  If more than one d e  is applicable at X, then choose any 
// one for application. 

Figure 4.1: Pseudo-code of the logical rewrite algorithm. 

Apply the rewrite rule a t  X, m&g local modifications to the AML tree. 
The rewrite coctinues at the nodes Yi and (possibly) Y; that are 
determined as follows. In the following table, e refers to the -4ML 
expression on the right side of the rewrite rule that fired. 

Yz 
- 

- 

second SUB; node in e 

Rule Fired 

else // no rewrite d e  is applicable in dimension i at X 
Let Yi  and (possibly) Yz be the children of X. 

applyxewrite(k;, i) 
if ( there is a node Y2 ) 

Yi 
1 , 2 , 3 , 4 , 5 , 6 , 8 , 1 0  
7, 11 
9 

root node of e 
SUB; node in e 

first SUB; node in e 



Theorem 4.1 Suppose that  the LRA begins with a t-node AML tree T in vrhich 

the rnazirnurn dimensionality of the arrays is d. During the ezec~tion of the LRA, 

the number of nodrs in T i s  at most ( ( d  + 1) . t ) .  

Proof. The number of nodes in T increases by 1 when one of the d e s  S. 9, or 11 

gets applied. For all the other d e  applications, the number of nodes in T either 

remains the same or decreases. 

Let us calculate the number of nodes niles S, 9, and 11 together can add to T. 

Suppose that before the LE4 begins, the numbers of WB, MERGE, APPLY. and leaf 

nodes in T are s, rn, a, and 1, respectively. Since s + m + a + Z = t , the number of 

nodes of each type in T is at most t. 

Consider the pushdown of the SU B; nodes that the L X 4  performs when rewriting 

T in dimension i (O 5 i < d).  Each application of one of the d e s  8, 9, and 11 

adds one SUB; node to T but the important observation is that after the LR.4 

has processed an APPLY node in dimension i, there can be at most one SUB; node 

directly above the APPLY node. Therefore. when the LRA has processed T in 

dimension i, the number of SUB; nodes in T is at most (a + 1). The L M  began 

processing dimension i with at most s SUB; nodes and therefore at a,ll times during 

the rewriting process in dimension i, the number of SU B; nodes in T never increases 

beyond (s + a  + 1) which is at most t .  Therefore, when the L M  has considered all 

d dimensions, the total number of SUB operators in T is at most (d t) .  

3Consider an arbitrary pair of APPLY nodes such that al1 of the nodes in the chain connecting 
them are of type SUB or MERGE. There could be several SUBi and MERGEi nodes in such a 
c h a h  Nevertheless, because of the way the LRA works, two SUB; nodes-whenever they become 
adjacent-are first cornbined using Rule 6 and the resultant SUBi node is then pushed down. The 
two S U B ~  nodes are never pushed d o m  separately. 



In conclusion, s ma-  gron- up to (d - t ) from its s tarting value of S. In the worst 

case! the values of n, a, and Z will remain unchanged during the execution of the 

LR4. Therefore, during the execution of the LRA, the number of nodes in T is at 

most d - t + m + a + 2, which is at most d - t + t or ((d f 1) - t) .  O 

Theorem 4.2 Suppose that a n  AML expression T which is not  rnerge-balanced 

contains n nodes. The combined run tirne of the merge balancing procedure and the  

LRA is O(@ - n ) .  

Proof. As per Lemma 4-2.1, merge balancing may add up to (den )  MERGE nodes and 

up to (d - n)  le& APPLY nodes to T. Adding each additional MERGE operator (and 

the associated leaf APPLY operator) takes time constant in terms of the number 

of nodes in T because only local modifications to T are involved. Thus, merge 

balancing takes O(d - n)  time. 

Because of the additional MERGE and leaf APPLY operators added during merge 

balancing, t in the statement of Theorern 4.1 can be as large as (2dn +n.) . Therefore, 

during the execution of the LR-4, the number of nodes in T can be as large as 

(d + 1)(2dn + n) = 2872 + 3dn + n which is O ( 8  . n). 

Testing each of the II logical rewrite rules at a node in T t&es time constant 

in terms of the number of nodes in T. Rewrites thernselves also take time constant 

in terms of the number of nodes in T because only local modifications to T are 

involved. When considering a dimension i, the LRA never revisits a node and 

therefore, logical rewriting in a dimension i takes time proportional to the nurnber 

of nodes in T which has the O(@ - n)  upper bound. Thus, logical rewriting in a 

dimension takes O(@ - n) time. Since there are d dimensions, the LRA runs in 
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O(@ - n)  tirne. The combined nin time of merge baiancing and the LRA is also 

O(@ - n )  because merge balancing can be performed in only O(d - n )  time. 0 

A Canonical Form for AML 'Ikees 

In this section, a canonical form for AML trees is defined. Canonical trees are 

defined for two reasons. First, it will be shonm that the L R 4  produces canonical 

trees. Second, it will be shown that a canonical tree minimizes the number of func- 

tion applications-user-defined function applications for non-leaf APPLY operators 

and disk reading functions for leaf APPLY operators-in an -4ML tree T. 

Definition 4.3.1 (Canonical node) Let d be the maximum dimenîionality of 

any node in a n  AML tree T. A node X in T iS a n  i-canonical node if no AML 

rewrite rules appearing in Section 4.3.1 are applicable at X in the tree T' obtained 

from T by deleting al2 the SUBj nodes foi. al1 j # i. X is a canonical node if it is 

an i-canonical node for all i such that O < i < d. 

Definition 4.3.2 (Canonical form of an AML tree) Let d be the mazimum di- 

mensionality of any  node in an AML tree T. T is in i-canonical fonn if al1 of its 

nodes are i-canonical. T is in canonical form i f  it is in i-canonical form for al1 i 

such that O < i < d. 

Due to Rule 7, it is necessary to define an i-canonicd node in terms of T' rather 

than in terms of T: once Rule 7 can be applied to a pair of nodes SUBi and S U B j  

(i # j )  in T, it can be applied to them repeatedly. In a canonical tree, a l l  the SUB 

operators have b e n  pushed as far d o m  as possible (other than such rearrangements 

of SUBi and SUBj  nodes possible due to Rule 7). 
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Theorem 4.3 Let d be the rnazirnwn dimens-ïonality of any node i n  an AML tree 

T. Suppose that the LRA és performing rewrites on T in dimension i (O 5 i < d ) .  

Suppose that during the traversa1 of T ,  the LRA is at a node -Y about to examine 

whether any rewrite rule ïs applicable in dimension i at  X .  Suppose also that the 

set V (for "visited3) includes the nodes of T that the LRA has vkzted in dimension i 

so far prior to the wkit t o  the node X .  The LRA maintains the following invariant: 

(1) for al1 the dimensions k where O 5 k < i, T is in k-canonical f o m :  and (2) 

every node v f V és an  i-canonical node- 

Proof. There are two major cases to consider depending on whether or not a rewrite 

rule is applicable in dimension i at  X. 

Case 1. Suppose that no rewrite rule is applicable in dimension i at X. The fkst 

part of the invariant holds trivially after the LRA finishes visiting X because T 

does not change. 

Now let us verify the second part of the invariant. After processing the node 

X, the new value of V ,  Say V', is given by V U { X I .  

The following reasoning shows that X is i-canonical. As per the assumption for 

this case, no d e  f ied in dimension i at X. Suppose that the tree T' is derived 

from T as  per Definition 4.3.1. If X is a leaf node, it is i-canonical because X has 

no children and thus, no rewrite rule can fire between X and its child in the Tt.  

If X is a non-leaf node, and a rewrite r d e  becomes applicable between and one 

of its children Z in T', the d e  that becomes applicable must be one of RuIe 6 ,  

8, 9, or 10 and thus X must be a SUB; node. But then, Rule 7 would have been. 

applicable in dimension i between and its child node in T. This contradicts the 



assumption that no rule fked in dimension i at ,Y. If Z is one of the children of ,Y 

in both T and T', then also the assumption that no rule frred in dimension i at S 

is contradicted, 

That the second part of the iniariant holds can be shoivn by contradiction. For 

the sake of contradiction, let us assume that a rewrite d e  becomes applicable in 

dimension i at a node Y in Y'. Y must be different from -X because ,ri' is i-canonical 

(as per the reasonilig in the previous paragraph). The rewrite d e  that became 

applicable must involve the node X because otherwise, the rewrite d e  would have 

been applicable in dimension i at Y, which would violate the second part of the 

invariant that held before the LRA7s visit to the node X. It can be verified that no 

matter which rewrite rule became eligible at node Y, the invariant before the L M ' S  

visit to the node X would not boldo thereby giving the necessary contradiction. 

As an example verification, suppose that Rule 8 became eligible at Y in the tree 

obtained by deleting a l l  of the S U B j  ( j  # i) nodes from T. Thus, Y is a SUB; node 

and ,Y is a MERGE; node. Now the node Y is not an i-canonical node because Rule 

S is applicable at Y. Therefore, the second part of the invariant did not hold before 

the LRA visited the node X, which is a contradiction. 

Case 2. For the rest of the proof, we assume that a rewrite rule &es in dimension i 

at X. Since no d e  can f i e  at a leaf node, X must be a non-leaf node. The proof 

involves a case analysis checlcing ail the 11 rewrites rules and showing that the loop 

inva.riant holds no matter which rule fies (in dimension i). We will only show the 

andysis for Rule 8; the analyses for the other rules are similar. 



Figure 4.5: S tnrcture of an AML tree before and after a rewrite. 

To verify the &st part of the invariant, it is necessary to ascertain that after 

rewrite using Rule 8, the tree T remains in k-canonical form for O 5 k < i. The 

schematic diagram in Fig. 4.5 shows the structure of T before and after the rewrite 

using Rule 8. In a test for "k-canonicaln-ness, the SUB; nodes play no part. Without 

the SUB; nodes, the structures of the trees T and T' in Fig. 4.5 are identical. 

Therefore, since the tree T is assurned to be in k-canonical form for O _< k < i, the 

tree T' will also be in k-canonical form and the &st part of the invariant holds. 

Now let us veri@ the second part of the invaxiant. Due to the application of 

Rule S, the set V does not change. Let Y be the MERGE; node that results from 

applying Rule 8 at X (a SUB; node). It is necessary to show that all the nodes 

z: E V f  (which is the same as V) continue to be i-canonical. The proof of this 

claim is by contradiction. For the salie of contradiction, let us assume that a rewrite 

rule-becomes applicable in dimension i a t  a node Z E V'. The rewrite d e  that 

became applicable must involve the M ERG ~i node because ot herwise, the rewrite 

41n general, Y'-the new value of V-is rule dependent. For example, for Rule 11, V' = VU(X), 
where X is the APPLY node that results from applying Rule 11. The values of YI and Yz given in 
Fig. 4.4 can be used to determine the Y' sets. 

When V' = V U (X), i t  is necessary to show that the node X is i-canonical and that-despite 
the addition of the node X-the other nodes in V' continue to be i-canonical, To show these 
results, arguments similar to the ones used in Case 1 for proving the second part of the invariant 
can be used. 



rule would have been applicable in dimension i at 2. which would have violated 

the second part of the invariant that held before the LR-4's visit to the node -Y. 

m e  8-n-hich pushes a SUBj belon. a MERGE;-is the only r d e  that satisfies the 

constraints of this scenario and accordingly, Z is a SUB; node- In that case. however. 

Rule 6, which combines two SUB; nodes, would have b e n  applicable between Z and 

X .  Therefore, the second part of the invariant did not hold before the LRX visited 

the node X, wbich is a contradiction. 

Thus, the invariant mentioned in the theorem statement is maintained. O 

R e c d  from Fig. 4.4 that the L M  performs logical rewrites in each of the 

dimensions O through (d - I), in that order. When the LRA finishes visiting the 

last node In T in a dimension i (O 5 i < d), the set of visited nodes V includes all of 

the nodes in T and therefore, T becomes i-canonical. After the L R 4  has processed 

dimension (d - l), the invariant of Theorem 4.3 still holds and the resulting tree is 

in canonical form. Thus, we can conclude: 

Theorem 4.4 The  logical rewrite algorithm generat e s  canonical AML trees. 

Proof. This follows jmmediately from the invariant of Theorem 4.3 at  the conclusion 

of the L X 4 .  CI 

In this section, it will be shona that the canonical trees produced by the LRA 

rninimize the number of applications of user-defined functions. The number of 

applications of user-dehed functions is a good cost Leasure because user-dehed 

functions are potentidy costly. Further, ArrayDB treats disk reads as special types 
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of APPLY fûnctions and therefore. minimizing the number of function applications 

minimizes costly disk I/O. (The numbers of applications of user-defined functions 

are minimal subject to the fact that -4rrayDB currently does not detect and elimi- 

nate common sube,upressions.) 

Definition 4.3.3 (Cost of an 4 M L  tree) Suppose that an AML tree T contai= 

k APPLY operators ( inchding leaf arrays that  are treated By AML Iike APPLYS) and 

that these APPLY operators are numbered 1 through k where k 2 1- Suppose that. 

t o  produce the result array of T ,  the  i-th APPLY function (1 < i 5 k) gets evahated 

n; t imes  (ni 2 O ) .  The cost of T, ' w ~ z ~ t t e n  cost(T)? is defined t o  be CF=, ni. 

Theorem 4.5 For a canonical AML tree T produced by the LRA, cost(T) is min- 

imal. 

Proof. It will be shown that c o s t ( T )  is minimal in the sense that if any function 

application in T were to be removed, the result of T would change. This claim is 

proved by contradiction. For the sake of contradiction, suppose that it is possible to 

remove a function application in the canonical tree T without changing the result 

of T* 

As an aid to the proof a tagging mechanism is introduced as follows. Suppose 

that each cell in the output a.rra.y of an operator in T is "taggedn with all of the 

function applications that contributed to it. The tags "pas  through" the WB 

and MERGE operations (which do not change ceIl values). suppose that an APPLY 

operator's user-defined fünction f gets evaluated j times and that the individual 

function applications are arbi trarily numbered f, t hrough fi. Concept udy, when 



Input Array 

Figure 4.6: Illustration of the tagging mechanism. 

f's function application number i (1 5 i 5 j) takes place, all of the cells in the 

resulting range box get tagged with the union of all of the tags of the ceus in the 

domain box, plus the new tag fj- 

Fig. 4.6 illustrates how APPLY perfonns tagging. In that figure, the APPLY 

operator7s user-defined function is d; dd = (2,Z); and & = (1,2). d is evaluated 

four times to generate the output array and accordingly, d's tags are named dl  

through d4. Each of the four cells of the input array that fall under the domain-box 

shape have their own set of tags that indicate their data lineage. Two of the ceUs 

in the output array of the APPLY operator in Fig. 4.6 have six tags each: the d4 tag 

. is due to the function d; each of the other five tags is present in a t  least one cell of 

the input array that falis under the domain-box shape. 

For concreteness, suppose that fj is the particular hinction application of a 

user-defined function f that could be removed fiom T without changing T ' s  output 

M a y .  This implies that none of the cells of T7s output array are tagged with fj: 

al1 of the cells with the tag fj got filtered out. Now one c m  start in T from the 

APPLY node that applied f and move up the tree towards the root until one gets 



to the h s t  intennedîate array that has no fj tags. Suppose that the intermediate 

array was generated by the operator ..Y. -Y is either a SUB node (mhich iîltered out 

the fj tags) or an APPLV node (whose patterns did the filtering). Let us consider 

the tm;o cases separately. 

Suppose that X is an APPLV node m-hich applies a user-defined h c t i o n  g. One 

or more cells in X's input array contain the f, tag. Choose an arbitrary ce11 fsom 

among such cells and c d  it t. When -Y applies g to the input amas none of the 

domain box positions within the input array include the cell t (or othernrise the fj 

tag would not get deleted). Therefore, there must exist at least one APPLY pattern 

Pi that eiiminates all of the potential domain boxes that overlap t. In other words, 

there must exist a pattern Pi such that P;[k] = O for (t[i] - dl[ij + 1 < k < t[i]). 
But then, using Rule 11 that pulls a SUB out of an APPLY, a SUB; node can be 

pulled out of X. Thus, T would not be in canonical fom-a contradiction. 

Suppose that X is a SUBi node and that T' is the tree that is obtained from T by 

deleting d of the SUBj nodes (j # i). (The tree T' is used because i-canonical-ness 

of X is going to be tested.) Suppose that X's child in Tt is called Y. If Y is a 

MERGEj  node (for any j ) ,  X c m  always be pushed below Y using either Rule 8 or 

Rule 9. If Y is a SUBi node then X and Y could be combined using Rule 6 .  Finally, 

suppose that Y is an APPLY node which applies a user-defined function g. (g may 

be equal to f .) Y's output array is an ordered collection of range boxes and because 

of the way tagging is performed, X must delete at least one complete range box if 

61f an AML expression contains more than one APPLY operators that apply f, then distinct 
aliases can be created for the name 'f'. Alternately, function application numbers for f can be 
chosen in such a way that a function application number uniquely identifies the instance off  that 
caused the function application, 



it is to delete the fi tags. Therefore, S ' s  pattern rnust be of the form -a000 - - - Obu. 
where a. b E (O + 1)' and there are %[il 0's sandwiched between a and b. But then. 

such a SUB; pattern pennits the application of Rule 10 that pushes a SUB into an 

APPLY. Thus, in all the three cases, a rewrite rule would be applicable at -Y and T 

would not be in canonical fom-a contradiction. 

An Example of the Logical Rewrites Using LRA 

Let us demonstrate how the LRA works on a variant of the TV1 queqr introduced 

in Chapter 1. Suppose that the shape of the 7-band thematic mapper array A is 

(1024,1024,7). The TV1 array will  then be of shape (1022,1022,l). Suppose that 

A has been laid out on disk in band-major order and that a function fA is used to 

read A one band at a t h e .  Suppose that a new query, fTVI, is posed on the TV1 

array. !TVI extracts one-fourth of the TVI array fiom the middle. The clipping is 

achieved using two W B  operators in Equatioa 4.11. (The tile shape F is equal to 

(1024,1024, l).) 

When the :TV1 query in Equation 4.11 is rewritten using the LRA, the ex- 

pression in Equation 4.12 results. In Equation 4.12, the two SUBZ operators have 



been pushed into the leaf nodes as reflected b -  the Pz patterns in the leaf nodes. 

The and S U B ~  nodes have been pushed as far d o m  as possible. The original 

clipping window of shape (51 1,511) has gronn slightly to (513.313): the additional 

elements are required to noise reduce the pixels on the boundaq of the window. 

The rewritten AML expression in Equation 4.12 shows that. to generate a haction 

of the TVI array, it is sufficient to process only portions of bands 3 and 4. 

4.4 Plan Generation 

The plan generation phase takes as input a tree containing logical AML operators 

and produces as output a plan tree containing physical operators. ArrayDB uses the 

physical operators to implement -4ML's logical operators. The physical operators 

are implemented using the iterator paradigm. Iterat or-based plms generate the 

arrays in pieces rather than in full and reuse the memory used to store the array 

pieces. Therefore, iterator-based plans usually run in less buffer space than the 

equivalent plms that generate intermediate arrays in their entirety. In a database 



management system, buffer space is usually at a premium. and therefore plans 

requiring less bufEer space are preferable. 

4.4.1 ArrayDB Physical Operators 

-4n:ayDB has six physical operators (iterators): A P P L Y S ,  REPLICATEJ,  REGROUP-P. 

COMBINEP, LEAF-P, and R E O R D E R P .  (The  suffi-^ "2" emphasizes that these are 

physical operators.) Together, APPLY-P and REPLICATEJ irnplement APPLY; COM- 

B I N E ~  implements an ,4ML subtree containing only SUB and MERGE nodes; and 

LEAF-P implements AML's leaf arrays. REGROUPP and RE OR DER^ ensure that 

the data stream tbat flows through the pipeline formed by connecting the physical 

operators has certain properties. 

Each of _4rrayDB7s physical operators has a specific number of input streams 

associated with it: L E A F P  has no input stream; A P P L Y P ,  REPLICATE-P, RE- 

G R O U P S ,  and RE0RDER-P have one input stream each; and C O M B I N E 2  has k 

input streams ( b  > O). Each physical operator has exactly one output stream. 

.4rrayDB7s physical operators are implemented using the iterator paradigm. 

Specifically, each phy-sicd operator is a chu& iterator in that it produces and con- 

sumes array chunks. (Chunks of an array are non-overlapping subarrays contained 

within it.) Each iterator can answer three calls: I d ( ) ,  GetNezt(), and Close(). 

The Init() c d  initializes an iterator so that the iterator is ready to provide data 

upon request. In answer to a GetNext () call, an iterator produces the "next" array 

ch& and puts the chu& in the iterator's unique output stream. The Close() 

causes a n  iterator to perform some final housekeeping and the iterator closes itself 



dom. T-pically? an iterator receives one Init() c d 7  followed by several GetKext() 

c d s ,  and then a Close() c d .  Each iterator makes just one pass over its input ana!-. 

(Notice that iterators cannot answer Reset() calls.) 

Iterator-based implement ation of ArrayDE3's physical operators offers several 

benefits. First, compatible iterators can be connected to one another to form a 

pipeline through mhich data travels and gets processed; no cornples control routines 

axe necessary. Second, it becomes unnecessary to store intermediate arrays on disk 

during query evaluation: array data produced by an iterator is passed directly to 

the iterator that needs it. Third, the three interface routines Init(), GetNext(), and 

Close() provide a nice design abstraction: iterators can be designed independently 
- 

of one another as long as their interfaces are well-understood. ' 

Each physical operator expects its input chunks to appear in a particular order 

and produces its output chunks in a particular order. For all the physical operators 

except the REORDERP operator, these two iteration orders are the same. 

Definition 4.4.1 (Chunk iteration order) Suppose that d is the maximum di- 

mensionality of any  amay appearing in a n  AML plan. Chu& iteration order i 

(i-order for short), where O 5 i < d ,  for array A rneans that the chunks of A are 

sorted vsing their position in dimension i as the primary sort key, and that the re- 

rnaining dimensions are seconda7 sort keys, taken in order of increasing dimension 

values, starting from O .  

For example, when d = 4, Zorder means the c h d s  axe sorted in dimension 2, 

'Graefe [22] gives many other advantageç of iterators and gives several examples of iterator 
functions. Iterators are frequently used during query evaluation in RDBMSs. Garcia-Molina et 
al. [19, Chapter 61 describe iterators for several SQL physical plan operators- 
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then dimension O, then dimension l1 then dimension 3: 1-order sorts b -  dimension 

1, then O, then 2, then 3; and O-order sorts by dimension 0. then 1. then 2. then 

3. For d = 2, if dimension O is the row dimension and dimension 1 is the col- 

dimension, O-order is the row-major order and 1-order is the column-major order. 

ArrayDB 's physical operators are summarized in Fig. 4.7. For each operator. 

the following parameters are given: input chu& shape, output chu& shape. b d e r  

space requirement assuming that the operator generates its output chunks in i- 

order, and any pammeters specXc to an operator. In Fig. 4.7 and in the physical 

operator descriptions that follow, the generic names A and B refer to a physical 

operator7s input and output array, respectively; 6 and 2 refer to a physical o p  

erator's input and output ch& shapes, respectively; and dl and Rf refer to an 

APPLY node's domain and range box shapes, respectively. For REGROUPP and 

REPLICATEP operators, the b&er space requirement is given p a d y  in terms of 

number of i-slabs. When docating i-slabs, ArrayDB7s unit of memory allocation 

is a chunk slab of height d[il of the operator's input array -4, assuming that the 

operator is producing its output array in the i-order. The size of such a c h d  slab 

is ( #) . d[i] arrôy elements. 

- ~ P P L Y P  and REPLKATET 

APPLYP and REPLIC.4TE-P implement the logicd APPLY operator. A user-defhed 

h c t i o n  that maps a subarray of the shape of a domain box to a subarray of the 

shape of a range box is associated with each APPLYP operator. Each GetNextO 

c d  to A P P L Y S  resdts in one application of such a function. The REPLICATES 

keeps track of an APPLY'S patterns and forwards from its own bdFer (possibly 
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Operator 
Name 

A P P L Y P  

C O M B I N E S  

Input 
Chunk 
Shape 

Output 
Chunk 

Iff(ti1e shape) 

Buffer Space 
Required (for 
i-order ) 

-. 
1 Rf 1 elements 

- 
Df F I  i-slabs 

eiement s 

slabs of -4 + lETl 
elements 
1 element 

lRll elements (1 
for a DEFAULT 
leaf ) 
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terns; array ref- 
erence 
the only iterator 
with 2 orders 

Figure 4.7: Properties of ArrayDB's physical operators. 



Figure 4.8: REP L ICATES operat or's b d e r  space requirement . 

overlapping) domain boxes on demand to its parent APPLYP node. Froïn APPLY 

patterns, a REPLICATE-P node knows which of the resdt chunks (of shape al) are 

to be generated, and supplies the parent APPLY_P with only the necessary domain 

boxes - 

-4n APPLYP requires enough b a e r  space to store one range box. AR i-order 

REPLKATE* requires b&er space equal to Dl[i] i-slabs of B plus the size of 

one domain box (for output). Fig. 4.8 illustates how the fif[i] i-slabs are used. 

Fig. 4.S(a) shows the b d e r  of a O-order REPLICATEP operator. All the array 

elements that are totally contained within the window are bufFered and the d u e  of 

Br [il is 3. After the parent APPLY-P node has performed the function applications 

that require the array elements in the bottom row of the buffer in Fig. 4.8(a), the 

REPLICATEJ node "slides d o m n  (ar[i] - 1)-which is 2-i-slabs and refills the 

"topmost" i-slab using the necessary GetNext() c d s  to its child. (Recall from 

Fig. 4.7 that a REPLKATE* node's input chu& shape is (1, l).) The new position 

of the window is as shown in Fig. 4.8(b). The shaded portion in Fig. 4.8(b) shows 

the "topmost" O-slab. The two bottom O-slabs in Fig. 4.S(b) are obtained from the 

two top O-slabs in Fig. 4.8(a) as suggested by the dashed arrows. 



The COMBINEP operator implements ari AML subtree consisting of o d y  SUB and 

MERGE operators. If the subtree has k leaf nodes (k > O ) ,  then the COhIBISE-P 

operator has k input streams, each one coming fiom a leaf. Such a tree can be 

thought of as implementing a function that maps the cells of the leaf arrays to the 

cells of the root array. The function is one-teone and onto, and is, in general. 

partial. 

A data structure called a rnap is associated with each input stream of a COM- 

B I N E ~  operator. A rnap encodes the mapping functioa from input cells (of a 

subtree leaf array) to output ceus (of the subtree root array). SUB and MERGE o p  

erations are defined such that the mapping function can be expressed as a mapping 

of input slabs (in each dimension) to output slabs. That is, in every dimension, if 

two ceus are located in the same slab in the input, then both cells will be mapped 

to a common slab in the output if they are mapped at all. The nuinber of slabs of 

dim(A)-1 ' dimiA)-1 an array A is Ci=, A[i], whereas the number of cells is ni=, A[i]. Since 

the former is usually much smaller than the latter, a map has a compact encoding. 

The encoding can be computed-as described in Section.4.4.3-from the patterns 

used by the SUB and MERGE operations that the C O M B I N E S  implements. 

The COMBINE* operator's input and output chunlc shapes are (1,l) and its 

buffer space requirement is just one array element. 

LEAFP provides access to arrays stored on disk and is the only physicd opera- 



tor with no child. .4.rrayDB treats AML's leaf arrays Iike APPLY operators and 

therefore, LEAFT operations look much like APPLYP operations. 

ArrayDB assumes that leaf arrays are stored on disk using regular tiling [5S. lS]. 

A GetNext cal l  to a LEAFP operator reads one tile of shape from disli into the 

LEAFS~S buf3er. Thexfore, a L E A F S  operator's b&er space requirement is [gf 1 

a a y  elements. DEFAULT LEAFP nodes have a constant value stored in all the 

array ceus. They require 1 element of b d e r  space-just enough to store 1 copy of 

the constant value, 

-4 LEAFP node has APPLY patterns associated with it. LEAF-P uses these 

patterns to read only those tiles that are needed for AML expression evaluation, 

avoiding unnecessary disk 110. In the curent implementation of ArrayDB, arrays 

are stored on disk using UNIX flat files. A tile is read using one read system c d .  

The REGROUPP operator is used to change the chu& shapes. It takes a stream of 

c h d s  of one shape as input, and produces a stream of c h d s  of another shape 

as output. This requires that the REGRoUP? operator buffer a certain amount of 

data-a topic which will be treated in detail in Section 4.5. 

It is complicated to define the behavior of a general REGROUPJ operator that 

translates an arbitrary input chunk shape to an arbitrary output chu& shape be- 

cause the c h d  length in some dimension may not divide evenly into the array 

length in that &mension. To avoid this dBiculty, ArrayDB7s REGROUPT operator 

has output chu& shape equal to (1,l). ArrayDB's physicd operators do not pro- 

duce partial output chunks and therefore, the length division problem never occurs 



in a REGROUPP operator's input stream. -4 REGROUP-P operator's buffer space 

requirement is (to hold one output c h d )  plus ([a] - 6[i]) i-slabs of -4 (to 
D[tl 

change chu& shapes). A R E G R O U P ~  aode with both d and Rt equal to (1.1) is a 

neop. 

Like REGROUPS, the REORDERP operator is used to ensure that a stream of 

c h d s  has a p a r t i d a  property that is expected by domstream operators. .As its 

name suggests, the R E O R D E R P  operator changes the order in which c h d s  appear 

in a stream. -Ml other operators produce output chunks in the same order in which 

they consume input chunks. If a ch& producer wishes to use one chunk order 

and the c h d  consumer wishes to use another, a REORDERP operator must be 

inserted between them to re-order the chunks. 

For changing the chunk order, a REORDER* node must materialize its entire 

output array B and so it needs (BI elements of buffer space. The motivation for 

having REORDER-P operators in an Ah/IL plan is that by materializing some arrays, 

it may be possible to generate some other downstream arrays in favorable orders- 

orders that require less b d e r  space. The topic of whether to insert R E O R D E R 2  

operators in a plan and where to insert them is treated in detail in Section 4.5. 

4.4.2 Plan Generation Algorithm 

The iterator plan tree is generated by a recursive, top-down trasslation of an AML 

expression tree T. The action taken by the translater depends on the type of node 
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it encounters in T: 

If the root node of the expression tree is a non-leaf XPPLY node with d e  

main box fif and range box zf, an A P P L Y P  node. a REPLICATES. and a 

REGROUPP node are added to the plan as shown in Fig- 4-9. The APPLYP 

node's input c h d  shape is fif and its output chu& shape is Rf. The REPLI- 

CATEP node7s input chu& shape is (1,l) and its output chunk shape is 6,. 

The REPLIC.4TE-P also gets the APPLY'S patterns so that it c m  fonvard ap- 

propriate domain boxes to the parent APPLYT node. The REGROUPP node's 

output chu& shape is (1,l) and its input chunk shape matches the output 

ch& shape of its chitd iterator- 

If the root node of the expression tree is a s U B  or a MERGE, the translater 

h d s  the maximal tree of SUE3 and MERGE operations rooted at that node. 

The tree is translated into a k-ary COb1BINE-P operator and k R E G R O U P P  

operators, where k is the number of leaves of the tree. This translation is 

shown in Fig. 4.10. The output ch& shapes of ail the REGROUPT nodes 

are (1, l), which match the input chu& shape of the parent COMBINES node. 

Each REGROUPT node's input chu& shape is the same as the output chunli 

shape of its child iterator. The  COMBINE^ node dso gets k maps-one for 

each input stream-that are derived from the SUB and MERGE patterns. The 

map derivation is described in Section 4.4.3. 

If the root node of the expression tree is a leaf APPLY, a L E A F S  operator is 

generated. The LEAFJ operator gets its leaf APPLY patterns from the APPLY 

operator. 



APPLY + APPLY-P 
I I 

Figure 4.9: Plan for an APPLY node. 

MERGE + COMBINE P 
/ \  

SU8 / \ Y  
1 REGROUFJ EGROUPJ 

I I 

Figure 4-10: Plan for a subtree made up of SUB and MERGE nodes. 

The plan generation algorithm converts the AML expression given in Equa- 

tion 4.12 for the optimized +TV1 query to the iterator plan shown in Fig. 4.11(a). 

In Fig. 4.11(a), a shape shown next to an edge indicates the shape of the chunks 

in the data stream represented by that edge. Some of the physical operators that 

appear in such an iterator plan tree may be winecessary. Such operators-indicated 

by arrows in Fig. 4. Il (a)-are eliminated during plan refinement. 

4.4.3 Map Spreading 

This section describes an algorithm called Mapspread that shows how to replace 

an AML subtree containing ody SUB and MERGE operators with a COMBINE2 

operator. The deleted SUB and MERGE operators ieave their footprints behind 

as maps that are associated with the COMBINEJ operator. Map spreading helps 
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Fiowe 4.11: lllustrating plan generation and plan r e h e m e n t  . 

because it achieves data filtering (SUB'S effect) and data combining (M ERGE'S effect ) 

without generat ing a.ny intermediate arrays. 

Definition 4.4.2 (SUB-MERGE-only tree) A SUB-MERGE-only tree G i.s a subtree 

of  a n  AML tree T such that al1 t h e  nodes  in G are of type SUB o r  MERGE; the  parent 

of the root node of G is a n  APPLY node '; and al2 t h e  chitd~en of G 's Ieaf nodes are 

a b o  APPLY nodes (leaf APPLY o r  non-leaf APPLY). 

Definition 4.4.3 (Exterior nodes and exterior edges) For  a SUB-MERGE-only 

tree G ,  the  APPLY nodes  identi f ied in Definit ion 4.4.2 are exterior t o  G. The  APPLY 

node thut is the parent o f t h e  root node o f G  is called t h e  t o p  ex ter ior  node of G; the 
- -- -- - 

81f the root node of G is also the root node of T, then such an APPLY node does not exist. 
Nevertheless, for uniformity and to simplify the presentation, such a root node will be assurned 
to have as parent a neop APPLV node. This no-op A ~ P L Y  node performs simple data copy. 
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B: APPLY ( tvi ) 

C: MERGE , ( 10) L- -i 
D: APPLY ( nr) G: APPLY ( nr) 

1 

Figure 4.12: SUB-MERGE-ody trees. 

edge that connects the root node of G t o  the APPLY node is called the top exterior 

edge of G .  The APPLY nodes that are the chddren of G ' s  leaf nodes are called the 

bottom exterior nodes of G; the edges that connect G's leu.. nodes to these APPLY 

nodes are called the bottom exterior edges of G. 

Notice that a SUB-MERGE-only tree G has one top exterior node but can have 

one or more bottom exterior nodes- 4- A-ML tree T with at least one SUB or 

MERGE node contains one or more SUB-MERGE-ody trees within it. (If T contains 

only APPLY nodes, it has no SUB-MERGE-ody trees in it .) MapSpread replaces each 

SUB-MERGE-ody tree with a COMBINE2 operator. 

For examples of SUB-MERGE-ody trees, consider the AML expression for the 

rewritten form of the $TV1 query given in Equation 4.12. The most important 

parts of Equation 4.12 have been reproduced in the form of a tree in Fig. 4.12. 

(Ai and Az are alïases for the base array A.) The tree in Fig. 4.12 containç three 

SUB-MERGE-only trees as shown. The SU B-MERGE-ody tree containing the MERGE 

operator has three exterior nodes: one of them is top exterior and the other two 

are bot tom exterior. 



Definition 4.4.4 (Map) Suppose that  t he  maximum dimensionality of a n y  a m a y  

appearing in a n  AML tree T is cl. A map C is a p a k  (3. W ) .  where 3 denotes 

a set of filter patterns and W denotes a se t  of \\-rite patterns. T h e  set  o f f i l t e r  

patterns F 6 vrrzvrrztten ( fO, f 1 , . . , fd-L ) , where fi is  the filter pattern fo r  dimelbsion 

i. The set of -te p a t t e r n  W is similarly wri t ten (wO, wl, - - -, u ; ~ - I ) -  

MapSpread associates a map with each edge of a SUB-MERGE-only tree G and 

with the top exterior and bottom exterior edges of G. Each such edge connects a 

child node  to its parent node. The child node7s output array is c d e d  the input  

array o f  the map associated with the edge. Thus, each map has a unique input 

may. The target amay o f  a map is the output array of the SUB-MERGE-ody  tree 

in which the map occurs. Thus, all the maps in a SUB-MERGE-only tree share the 

same target array. 

Definition 4.4.5 (Effect of filter and write patterns) Suppose that  the  input  

and the target arrays for a m a p  X are Y and 2, respectively. For euery dimension 

i (O 5 i < d )  and for j > 0 ,  the i-slab of Y at  the  index i n d e x ( f ; ,  j + 1)  is mapped 

t o  the i-slab o f  Z at the index i n d e x ( w i ,  j + 1). 

Fig. 4.13 illustrates the effect of filter and write patterns. In that figure, 3 is 

{ f ~  = oolo, fi = 10)  and W is {tuo = 00100, wl = 0011). The four elements fÎom 

Y get selected and written to the four selected positions in 2. 

A superscript to F, W, and C denotes an edge,  or equivdently, the array associ- 

ated with that edge. For example, .FX refers t o  the set of filter patterns associated 

with the edge (or the array) X. Individual patterns in F and W default  to "1"s if 

they are not written explicitly. A set of filter patterns is called an ident i ty  if ail o f  



input array Y 

Figure 4.13: Effect of filter and write patterns. 

the patterns are Y i " s .  Identity W sets are dehed  similarly An identity rnap has 

an identity 3 and an identity W. 

Here is a high-level overview of how MapSpread works on a SUB-WERGE-ody 

tree G. ..in identity rnap is associated with the top exterior edge of G. This rnap 

spreads downwards to d the bottom exterior edges of G. For each and MERCE 

node along the way, the rnap is modified so that the eEect of that SWB or MERGE 

node is absorbed in the map. 

After a rnap reaches an edge X, the following inmriant holds: the filter and 

write patterns in describe how to rnap the selected array elements from the 

input array of C" to the selected array elements of the target array of (as 

per Definition 4.4.5). Because of this invariant, the maps that reach G's bottom 

exterior edges map the selected elements from the leaf arrays of G to the output 

array of G. Therefore, d of the Sus and MERGE nodes in G c m  be replaced by a 

single COMBINEP node. If G had k leaves, then the COMBINEP node wiLl have k 

maps associated with i t - une  f ~ r  each leaf. 

The MapSpread algorithm appearing in Fig. 4.14 traverses a SUB-MERGE-ody 

tree G (which is contained in an AML tree T )  in preorder so that the maps can 



be spread from edge to edge in a topdovm fahion, The tree-traversal code is not 

explicitly mentioned in the algorithm steps. Suppose that for a node -4 in G. the 

edge connecting A to its parent node (possibly the top ex$erior edge) is called the 

parent edge and that the edges comecting -4 to its (one or two) children (possibly 

bottom exterior edges) axe calied the child edges. Throughout MapSpread, it is 

assumed that when a map spreads from a parent edge to a child edge, the child 

edge gets a copy of the parent edge's map, but some patterns in this copy get 

modified according to the computations of MapÇpread. In the algorithm steps 

shown in Fig. 4.14, only such map-mod%ing computations are mentioned. 

Proof of Correctness of the MapSpread Algorithm 

MapSpread replaces a SUB-MERGE-ody tree G with k (k > O )  leaves w-ith a COM- 

BINE> operator that has k maps associated with it- MapSpread is correct if G's 

output array is identical to the COMBINEJ operator's output array. Before proving 

MapSpread's correctness? it is necessary to define the C O M B I N E S  operation. Since 

COMBINEJ'S effect is a combination of the effects of the SUB and MERGE oper- 

ations, the following definition is less formal than those for the s ü B  and hlERGE 

operations (Definition 2.2.4 and Definition 2.2.5, respectively ) . 

Definition 4.4.6 (COMBINEP) Suppose tha t  a C 0 M B I N E - P  operator hm k (X- > 0) 

i npu t  arrays and t ha t  a m a p  CJ is ussociated with the inpu t  amay  j (1 5 j 5 k).  

The C O M B I N E 3  opera to r3  output array Zs t h e  target  array  for al2 of the  k maps.  

COMBINE-P m a p s  the  elements of i npu t  array j t o  elements of the  target array 

vs ing m a p  Ci as described in Definition 4.4.5. T h a t  is, the  filter pattern fi E Fj 
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1. .4ssociate an identity map with the top exterior edge of G. 

2. MapSpread7s action depends on the type of node that it encounters while 
traversing G in preorder. 

Suppose that MapSpread visits a SUB; node whose pattern is P. Suppose 
that the WB node's parent edge is Y and that its (only) child edge is 
X .  Let 3y = {foi fi, - , fi, - - 0 ) .  FX wilI be { fo7 fi, - - - ,fi, - -); where, 
for all j 2 O7 f: is defined by: f;>[j] = P[j] A fi[counf(P,j)  - 11. 
(For notational convenience, the definition of fi is extended such that 
fi[-l] = O-) 
If X is a bottom exterior edge, then assign the n a p  CX to the COMBINEP 
node. 

Suppose that MapSpread visits a WERGEi node whose pattern is P. 
Suppose that the MERGE node's paxent edge is Y, that its left- 
child edge is XL, and that its right-child edge is -6- Let FY = 
{fol fi3 - - , fi, - - -) and let wY = {WC), wl, - - - , wi, . -1. C ~ L  consist s of 

. . -)- \non- FX" = Ifo7 f i 7 - - - ,  f i , - -*}  and WXL = {w~,w17--- ,wi7 
sists of FXR = { fO, fi, - - - f;, - a) and W X ~  = {wO, w17 - , wY7 - - .). f:, 
w:; fy, and w; are defined as follows. 

(a) For all j 2 O, f;>b] = fi[index(P, j + l)]. For all j 1 O, w : [ j ]  = 
wi[j] P[indez( f i ,  count(wi, j))]. 

(b) For all j 2 O, fy[j] = fi[index(P, j + l)]. For all j 2 0, wyb] = 
wib] A P[index( f i ,  count(w;, j))]. 

If XL (or XR) is a bottom exterior edge, then assign the map C"L (or 
CXR) to the COMBINET node. 

Figure 4.14: The MapSpread algorithm. 
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determines which slabs of the input array appear in the target. and the urrite pattern 

w; E W j  de temines  where in the target they appear. 

Notice that, like SUB and MERGE ope ration^^ COMBINES operation does not 

reorder the i-slabs that it processes. It also does not permute the array elements 

within an i-slab. More precisely, consider two arbitrary i-slabs numbered ji and 

(ji 2 O, jî 2 O) in the target array such that ji and j2 came from the same input 

array A. Suppose that the i-slabs and j2 are numbered j; and j;, respectively, 

in A. Then, 5 < j2 implies j; < j;. This observation is useful when proving 

MapSpread7s correctness. In particular, it tells us that when proving the correctness 

of the steps that fold a WB; or a MERGE; operator into a map, it is suficient to 

consider mappings among the i-slabs only. 

Theorem 4.6 Suppose that ikf is the output array generated by a WB-MERGE-only 

tree G vi-th k leaves (k > O ) .  Suppose that MapSpread replaces G with a COMBINES 

operator vith k maps and that the C O M B I N E 3  node's output array is N .  The arrays 

M and JV are identical. 

Proof. Some of the notation used in this proof cornes from Fig. 4.14. In each 

step, MapSpread folds in a S U B ;  or a MERGE; operation into a map. The proof is 

by induction on the number of such foldings (that is, on the number of SUBi and 

MERGE; operators in G). We s h d  only prove the correctness of an arbitrary folding 

step. There are two cases to consider based on whether the operator to be folded 

in is a SUB operator or a.MERGE operator. 

Case 1 (Folding a SUB; operator): Suppose that, before a SUB; operator is folded 

into the map c', the output ôrray of the operator tree is Y, and that after folding 
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Figure 4.15: Folding a WB; operation into a map. 

the suei operator into CY, the output array of the operator tree is Y'. The aim is 

to show that Y and Y' are identical. 

Suppose that the SWB; node's input array is and that its output array is Ul. 

The map CY maps elements in Ut to those in Y. That mapping-fomdy defined in 

Definition 4.4.5-cm be thought of as occurring in two steps. First, Fy filters out 

the unnecessaxy elements in Ul and produces an intermediate array U2. Second, 

wy maps the elements of Ci2 to those in Ir. The new map cX (conceptually) 

performs similu operations on the input array X and produces an intermediate 

array before mapping it to Y'. The arrangement is os shown in Fig. 4.15. 

Since wY = W X ,  it is sufhcient to show that the intermediate arrays U2 and 

V2 are identical. This will be shown by proving that the i-slab j ( j  2 0) of X is in 

U2 iff it is in K. A proof of this daim follows. 

The i-slab j ( j  2 O) of X is equal to the i-slab (count (P, j) - 1) of Ul iff Pb] = 1. 

The i-slab (count(P, j) - 1) of Ul is in U2 iff fi[count(P, j) - l] = 1. Therefore, the 

'Recall that MapSpread explicitly mentions computations of only those filter and write patterns 
that change. 



Figure 4.16: Folding a MERGE; operation into a map. 

i-slab j ( j  / O )  of X is in U2 iff (Pb] = 1) A (fi[c<nrnt(P, j )  - l] = 1). 

The i-slab j ( j  2 O) of is in V2 iff f:lj] = 1. According to the definition of f;', 

the i-slab j (j 2 O )  of X is in 1/2 iff (Pb] = 1) A (f,-[count(P, j )  - 11 = 1). 

Case 2 (Folding a MERGEi operator): suppose that, before a MERGEi operator is 

folded into the map CY, the output array of the operator tree is Y, and that after 

folding the MERGEi operator into CY, the output array of the operator tree is Y'. 

The aim is to show that Y and Y' are identical. 

Suppose that the MERGE; operator's left input array is ..YL, that its right in- 

put array is XR, and that its output array is Ul. After folding, two new maps 

are generated: C X L  = { .FX~,  W X ~ ) ,  and CXR = (FXR, w ~ R ) .  Suppose that the 

intermediate mays  U2 and Vz are defhed sirnilady to th& definitions in Case 1. 

The arrangement is as shown in Fig. 4.16. We s h d  ody  prove that the map C X L  

is formed correctly. A sy-etnc proof can be used to prove that the map cXR is 
formed correctly. 

That CXr is formed correctly will be shown by proving the following three 

statements: (1) the i-slab j ( j  2 O) of XL is in Y iff it is in Y'; (2) the i-slab j 



( j  2 O) of Y comes from XL iff the i-slab j ( j  > O )  of Y'' comes from *YL: and (3) 

for all j 2 O: wi[j] = 1 wib] = O. The third statement ensures that the i-slabs 

that are contributed to Y by C ~ L  are not ovenvritten by those contributed by C"R. 

(It is unnecessary to prove wll j ]  = 1 + w:l j ]  = O because this statement is just the 

contrapositive of the third statement.) It is also unnecessary to consider the wi te  

patterns of the other maps (shom using the arronrs attached to the C O M B I N E 2  

operator in Fig. 4.16) because they do not interfere with one another because of the 

induction hypotheçis and because they do no t change during t his MERG E-folding 

step. 

The first statement can be proved as  follows. The i-slab j ( j  > 0) of XL is 

equal to the i-slab index(P, j + 1) of Ul. The i-slab indez(P, j + 1) of U; is in Y 

iff fi[index(P, j + l)] = 1. 

The i-slab j (j 2 O) of XL is in Y' iff fi[j] = 1. From the definition of f:, the 

i-slab j (j 2 O) of XL is in Y' iff fi[index(P, j + l)] = 1. 

The second statement can be proved as follows. The 2-slab j (j 2 0) of Y comes 

from XL iff (wi[j] = 1) and the 2-slab (count(w;, j) - 1) of U2 comes from XL. The 

i-slab (c<runt(wi, j) - 1) of U2 comes from XL ifE the i-slab (index(f;, count(wi, j))) 

of Ul comes kom XL. The i-slab (index( fi, count(wi, j))) of Ul comes from XL iff 

P[index(f i ,  count(wi, j))] = 1. Therefore, the i-slab j ( j  3 O) of Y cornes from XL 

iff (wib] = 1) A (P[index(fi, count(w;, j))] = 1). 

The i-siab j ( j  2 O) of Y' comes from XL iff wfb] = 1. According to the 

definition of wj, the i-slab j ( j  3 O) of Y' comes from XL iff (w;[j] = 1) A 

(P[index(f;, count(w;, j))] = 1). 



Figure 4.17: Illustration of MapSpread. 
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The third statement can be proved as folIows. Consider the definition of w:. If 

C 
D 

= 1, then (wib] = 1) and (P[index( f ; ,count(w; ,  j))] = 1). In other words, 

identity 
identity 

{ fo = 02s515i3025~ 
{ fo = 02551513Q254 , fl = 02551513025" ) 

if w:L] = 1, then (w ib ]  = 1) and (P[ index ( f , ,  count(wi, j ) ) ]  = O ) .  From that 

E I identitv " 

identity 
identity 

conclusion and the definition of wy, wylj] = O follows immediately. O 

An Example Illustrating the MapSpread Algorithm 

identity 
identity 

{ fo = 025515~302~4 1 
255 513 254 { fo = 0255151302M, fi = O 1 O } 

When map spreading is performed on the three SUB-MERGE-ody trees in Fig. 4.12, 

{ w , = O l }  
identity 
identity 
identity 

the maps s h o k  in Fig. 4.17 result. In Fig. 4.17, the map associated with an edge 

connecting a child node to a parent node is shown as belonging to the child node. 

4.5 Plan Refinement 

The plan refbernent phase begins by deleting no-op REGROUPJ nodes and n e  

op C O M B I N E S  nodes fiom an iterator plan tree. A R E G R O U P T  is a neop if its 

input chu& shape and output chunk shape are the same. A COMBINE* node is 



a n w p  if the following two conditions hold: (1) the COMBIXE-P node has only 

one child; and (2) the map in the COMB~NEP node for its only child is an identity 

map. Eliminating neop REGR0UP-P and C0MBiNE-P nodes avoids unnecessary 

data copying. 

The plan shown in Fig. 4.11(a) contains 5 neop R E G R O U P S  nodes (indicated 

by arrows). They are deleted in this step of plan refinement and the plan shown in 

Fig- 4.11(b) results. 

The most important task of the plan refinement phase is to determine the chu& 

ordering to be used by each operator in an iterator plan tree. Chunb: reordering 

operators (REORDERS) are added to the plan if necessary to ensure that each 

operator can consume chunks in the expected order. 

Chu& iteration order is important because it affects the amount of data that 

must be buffered by physical operators. The amount of buffering required depends 

on severd factors: the input and output chu& shapes, the shape of the whole 

array, and the order in which c h d s  are processed. Fig. 4-18 illustrates this in 

two dimensions. The left hand side of the figure shows an array with shape (8,8) 

being regrouped in O-order (row-at-a-time) from chunks of shape (1,4) to c h d s  

of shape (2,2). Clearly, the REGROUP-P operator must buffer 2 rows of ceus, or a 

total of 1 input chunks. The right haad side of the figure shows the same regrouping 

operation, but this time in 1-order (column-at-a-time). The REGROUPP operator 

must now buffer 4 columns of the array, or a total of 8 input chunks, twice as much 

as was required in O-order. Mod*ing the shape of the array would change this 

cornparison. For example, if the array were twice as wide, the memory requirement 
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O-order 1 -order 
chunk production/consurnption chu& production/consumption 

Figure 4.18: Regrouping in O-order and in 1-order. 

for O-order would double, but the requirement for 1-order would remain unchanged. 

The optimizer attempts to minimize the total memory requirements of a plan 

by considering a large space of possible evaluation orders for the operators in an 

AML i terator plan tree. Minirnizing the memory requirement is important because 

it can make the difference between a plan that can execute entirely in memory and 

one that cannot. In the latter case, it is necessary to split the plan by materiolizing 

partial results on secondaxy storage, with a corresponding increase in execution 

cost. 

If a physical operator consumes a total of k c h d s ,  there are k! ways those 

chunks could be ordered. The optimizer does not consider all such orderings. In- 

stead, it considers d possible iteration orders for each operator, where d is the 

maximum dimensionality of ony array appearing in the AML plan. These d orders 

are the i-orders defhed in Definition 4.4.1 for O 5 i < d. Other orders, such as 
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the Zcurve or the Hilbert curve described in Section 7-12?, are also possible and 

possibly even usefd, especially if chu& in the base mays have been laid out in 

such an order on secondaxy storage. For sirnplicity's sake, the optimizer does not 

consider them. 

Because an array consumer's c h d  ordering must match that of the ana- pr* 

L ever- ducer, the ordering decisions for the various operators are not independent. \i 

theless, a producer and a consumer can use different ch& orders if a REORDERP 

operator is inserted between them in the plan. A REORDERT operator itself has 

a memory cost, since the entire array must be buffered to change the chunk or- 

dering. '' In considering a change in ch& order, the optimizer must balance the 

additional cost of reordering with the potential downstream benefits it may bring. 

In an n-operator plan, dn possible assigpments of iteration orders to operators 

exist . A dynamic programming algorithm is used to find a minimum memory cost 

assignment of iteration orders to plan operators in time O(nk) .  For each operator 

x and order i, the algorithm determines Ci(x), the minimum cost of the plan subtree 

rooted at x assuming that x's output is in i-order. Let K be the set of children of 

x in the plan. The minimum subtree cost can be expressed recursively as: 

where ~ ( x )  is the memory cost of operator x itself in i-order, and c,i(reord(y)) is 

the cost of a j-order to i-order REORDER-P operator inserted between y and x in 

1°~rrayDB uses random access to read chunks (tiles) of an array stored on disk. Therefore, a 
LEAFS operator does not materialize its entire input array in memory. 
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the plan. In other words, to produce x's result in i-order, each child of x either 

produces its resdt in i-order or it produces its result in some other order and a 

REORDERP is inserted after that child to convert its output to i-order before it 

reaches x. If x is a L E A F T  operator, then Ci(x) = c;(x).  

The dynamic programming algorithm proceeds bottom up through a plan tree. 

generating the costs C i ( x )  for a node x once dl the costs C';(y) are linowu for all 

the children y of the node x. To each plan tree node x with k children, the dy- 

namic programming algorithm associates a cost table containing d rom of the form 

(Ci(x), choicei, choice2, - - - , cha'cec), where O 5 i < d and &&cej is the iteration 

order for the j-th child (1 5 j 5 k) to achieve the subtree cost C ; ( x ) .  When 

the dynamic programming algonthm finishes, d plans are available to evaluate the 

AML expression, each one generating the result array in a certain order. Out of 

these d plans, the cheapest plan is chosen for evaluation. The iteration orders of 

the operators in the cheapest plan are determined using a topdown traversal of the 

plan tree to select the appropriate Uchoicen entries from the cost tables. 

4.5.1 Physical Operator Memory Cost Estimation 

Optimization depends on memory cost estimates c i ( x )  for each operator x in a 

plan. The cost of a particular operator depends on details of its implementation- 

for example, in what size units it allocates space. ui general, each operator has an 

associated costing method which can be invoked by the optimizer to obtain a cost 

estimate for eduation of that operator in a particular order. The cost estimates 

that are currently being used in ArrayDB are based on the simplifying assumption 



that the unit of buffer space allocation when i-order is being used is a slab of 

input c h d s  in dimension i. The size of such a slab depends on the length of the 

chu& in dimension i and on the lengths of the entire input array in the remaining 

dimensions. Under this assumption, the cost estimate for each type of physical 

operator is given in Fig. 4.7 under the column heading "Buffer Space Required (for 

i-order)". In general, the cost vector for a L E A F ~  operator can be mrtintained 

in system catalogs, and it would depend on the access method implemented by 

the leaf. Currently, L E A F ~  operators take input fiom flat fdes ancl have costs as 

described in Fig. 4.7. 

4.5.2 An Example Illustrating the Dynamic Programming 

Algorit hm 

When the dynamic programming algorithm is applied to the plan in Fig. 4.11(b), 

the cost tables shom in Fig. 4.19 result. The node names in Fig. 4.19 refer to 

those in Fig. 4.U(b). The costs in Fig. 4.19 are calculated based on the following 

assumptions. The array element size for the leaf arrays is 1 byte. For the noise 

reduce function, both the input element size and the output elements size are 1 

byte each. For the TV1 function, the input element size is 1 byte and the output 

element size is 8 bytes. 

From Fig. 4.19, we leam that there are two cheapest plans for evaluating the 

'TV1 query: all the iterators can iterate in O-order or al1 can iterate in 1-order. 4 



Figure 4.19: The result of the dynamic programming algorithm. 

Node 

B 

4.6 Query Evaluation 

M e r  plan refinement, the plan is ready for evaluation. Suppose that root is the 

root node of such a plan. From the output chu& shape and the output array shape 

Dimension O 

of roof it is easy to determine n, the number of GetNext() calls to be made to 

cost in KB 
4195 

root, by dividing the size of the latter by the size of the former. The ~seudecode 

Dimension 2 
cost in IiB 1 choice 

4721 1 O 
choice 

O 

Dimension l 

in Fig. 4.20 describes how the output array of root can be generated one chu& 

cost in KB 
4195 

at a time. " The chunb-s arrive in a particular order (such as row-major order or 

choice 
1 

column-major order) and can be processed immediately by the application or they 

can be stored in a buffer for later use. 

"Other methods are possible. For exarnple, by adding as the root node of the plan tree a 
REGROUPJJ operator whose input chunk shape is the output chu& shape of mot and whose output 
chunk shape is the output array shape, the output array can be generated by one GetNextO cal1 
to the new REGROUPP operator. 
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Determine n, the number of GetNext() calls to the root iterator; 
Init(root); // initiaIize the root iterator 
for i t l to n 

GetNext (root ) ; 
Process this c h d  of the result array or store it for later use: 

end for // for loop ends 
Close(root); // close the root iterator 

Figure 4.20: Pseud-code to generate the result array of aa ,4ML eqression. 

The simplicity and generality of the pseud-code in Fig. 4.20 are due to the 

iterator paradigm used to implement the physical operators. First, the I d ( )  c d s  

spread in an iterator pian tree from the root to the leaves. Then, the GetNext() 

c d s  cause the result array to be generated ch& by chunb; and bal ly ,  the Close() 

c d s  spread from the root to the leaves. The simple for loop in Fig. 4.20 hides a 

cornplex sequence of Init 0, GetNext (), and Close() c d s  that get made to generate 

the result array. 



Chapter 5 

The Query Suite 

One way to evaluate performance ofa DBiMS is to run it on a benchmark. For exam- 

ple, the 007 benchmark [7] is intended to measure the performance of an object- 

oriented DBMS. The Transaction Processing Performance Council offers several 

benchmarks for transaction systems and decision support systems [14]. However, 

it appears that no benchmark for an array DBMS exists. Therefore, a suite of 

array queries was created to measure ArrayDBys performance. The queries in the 

suite are described in this chapter. The empirical results obtained by measuring 

ArrayDB's performance on the queries in the suite are presented in Chapter 6. 

Three queries in the SEQUOI.4 2000 storage benchmark [65] deal with rasters, 

and they can be considered array queries. However, AML can express only ar- 

ray manipulating portions of those queries. Further, when measuring ArrayDB's 

performance in Chapter 6, the effect of image clipping-the common operation per- 

formed by all the three raster queries-will be considered. The three raster queries 

also perform things such as selecting a band from a multi-band satellite image, 



conputing an arithmetic function of several wavelength band values. and lon-ering 

the image tesolution by a constant factor. The queries described in this chapter 

perform similas image manipulations. 

The suite contains five queries from the digital image processing domain. For 

easy reference, the queries in the suite are given the following names: TVI. NDVI, 

DESTRIPE, MASK, and w.4VTLET. TVI, NDVI, and DESTRIPE are based on 

common image processing operations descnbed in [3î]. MASK was inspired by 

a query described in a paper by Lohman and colleagues [3S]. W.4VELET uses 

wavelet reconstmction os a method of constructing a high-resolution image from 

four low-resolution images [63]. 

The following five sections describe the query suite. For simplicity and unifor- 

mity, all the queries except WAVELET are constructed such that they manipulate 

one or more bands of a multi-band satellite image such as the image A shown in 

Fig. 1.1. For brevity, bands 1 through 7 of that image will be denoted by the names 

Al through AT- 

5.1 DESTRIPE 

The destriping procedure [37, page 4831-a noise r e m o d  operation-is an exam- 

ple of an image rectification and restoration operation. Such operations correct 

distorted or degraded image data to create a more faitMd representation of the 

origind scene. 

Some multispectral scanners aboard satellites sweep 

taneously. To do that, they have multiple detectors in 

multiple scan lines sirnul- 

each band. The multiple 



detectors-for example, six-are careWy calibrated and mat ched prior to the satel- 

Lite launch. However, their radiometric response tends to drift over time, resulting 

in relatively higher or lower values along every sixth line in the image data (for 

example). Valid data is present in the defective lines but it must be normalized 

with respect to their neighboring observations. The normalization is performed by 

subtracting a value 6 from every sixth Line in the original image. The value d is 

determined by computing a histogram for scan lines 1, 7, 13 and so on; a second 

one for lines 2, 8, 14, and so on; and so forth. These histograms are compared in 

terms of their mean and median values to arrive at the value of 6. Lillesand and 

Kiefer show an illustration of the destriping procedure [37, page 4841. 

For concreteness, let S = 25. Suppose that the APPLY function deduct25 with 

unit-sized domain and range boxes performs the noise r e m 0 4  for one pixel d u e .  

The APPLY pattern in dimension O can be used to apply deduct25 selectively to 

the scan lines 1, 7, 13, and so on. The corrected lines can then be merged with 

a subsampled version of the original image where the problem lines have been 

eliminated. In the AML expression below, it is assumed that destriping is performed 

on band five. The AML expression for As is ~ ~ ~ ~ ( 0 0 0 0 1 0 0 ,  A); the other bands can 

dso be extracted from A similady. 
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Computing vegetation indices using between-band differeoces and ratios is a com- 

mody used image enhancement method. Image enhancement aims to create en- 

hanced images from the original image data to increase the amount of information 

that can be visudy interpreted from the data. As the name suggests. vegetation 

indices indicate presence and condition of green vegetation. 

Chapter 1 described the computation of the TVI array shown in Fig. 1.1 in 

detail. The AML expressions for the TV1 array and for the intermediate arrays 

used to compute it appeared in Section 2.2.5. Therefore, only the AML expression 

for the final TV1 array appears here. 

5.3 NDVI 

Like TVI, NDVI (Normalized Difference Vegetation Index) is also a vegetation 

index. NDVI is computed from data in AViHRR (Advanced Very High Resolution 

Radiometer) sensor's bands 1 and 2 using the formula 
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where bi and & represent data fiom bands 1 and 2? respectively [ 3 f .  page 4481. 

Vegetated areas have positive XDVT values: areas with clouds. water. and snow 

have negative NDVI values; rock and bare soi1 give NDVI values near O. It is 

preferable that the data values bi and b2 be in tems of radiance or reflectance [37, 

page 4481, ' rather than in u n i t s  of pixel intensities. 

Suppose that the pixel intensities in bands -41 and A2 are in the range O to 255. 

Pixel intensity and absolute radiance are related to each other by the following 

formula [37, page 4811: 

Here, bout is the absolute spectral radiance d u e ,  b;, is the pixel intensity, L M I N  

is the spectral radiance corresponding to the pixel intensity of 0, and L M A X  is 

the spectral radiance required to generate the maximum pixel intensity of 255. The 

constants LikfIN ând L M A X  are sensor-specific. 

Suppose that the APP LY function dn2ar performs the conversion described by 

Equation 5.4 and that the A P P L ~  function ndvi cornputes the NDVI as per Equa- 

tion 5.3. dn2ar has unit-sized domain and range boxes. The AML query for the 

NDVI computation can now be given as follows. 

'Radiance is a measure of the "brightness" of a point on the ground, whereas reflectance is a 
measure of the amount of light reflected by a surface. Radiance and reflectance are related [37, 
page 22 1. 



5.4 MASK 

W4SK is an example of an image classification operation. Image classification 

categorizes d the pixels in a digital image into one of several classes. 1LASE;'s 

computation is described as follows [3S]: In an image, retrieve ail the pixels whose 

intensities, when averaged with all the neighboring pixels. are betnreen two constant 

values, Say 10 and 100. 

The result pixels of the MASK query might not form an -4ML m a y  and there- 

fore, M.4SK7s result is a binary image containing a '1' in each position where the 

pixel satisfis the criterion and a 'O' in ail the other positions-these are the two 

classification classes. 

Suppose that band 1 contains the original n x n image and that the function - 
avg9 with Da,@ = (3,3) and = (1,l)  calculates the average of the 9 pixels 

(a central pixel and its 8 neighbors), compares it to the two constants 10 and 100, 

and returns either O or 1. The AML expression for MASK is as  follows. 

A P P L Y ( ~ V ~ ~ ,  Ai, (3,3), (1,1)) (5.6) 

Due to APPLY'S semantics, the output array of MASK has the shape (n-2, n-2). 

If necessary, such a ma& can be expanded-using MERGE operators-by adding 

îmo rows and two columns to it. The boundary pixels can be arbitrarily assigned 

to the class '0'. (Other ways of handling the boundary condition are also possible.) 
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C components of 

Figue 5.1: Wavelet decomposition. 

5.5 WAVELET 

WAVELET's computation is an example of multi-resolution image processing. In 

multi-resolution image processing, images need to be viewed at multiple resolut ions. 

For example, in remote sensing, the spatial resolution requù-ed to study an urban 

ârea is usudy much different than that needed to study an agricdtural area or 

the open ocean [3?, page 5991. The wavelet transfonn is one nTay to decompose a n  

image into many components so that the image can be reconstructed at multiple 

resolutions as needed. To understand how wavelet reconstruction morks, it is first 

necessary to describe the wavelet-based image decomposition. 

Fig. 5.1 shows an n x n image A on the left. Wavelet decomposition transforrns 

each row of A as  follows. -4 row is logically divided into 5 groups of 2 adjacent 

pixels each. (n is even.) Suppose that the pixel values in a group are b and c. As 

per the wavelet transform with the H m  b a i s  [63], two functions hi and h2, defined 

by the following equations, are applied to b and c. 
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-2: Wavelet reconstruction. 

In Fig. 5.1, image B gathers the results of ali the hl function applications and 

image C gathers the results of all the h2 function applications. Images B and C 

have shapes n x 5. Next, the decomposition just described is applied to a,ll the 

columns in images B and C. As a result, the column lengths shrink by half and a 

set of four 5 x 5 images D,  E, F, and G is generated. D contains the low-frequency 

compooents of A, whereas G contains the high-frequency components of A. The 

decomposition may then proceed recursively on the image D. (n is conveniently 

chosen to be a power of two.) The decomposition ends when a set of usmaUn-for 

example, 32 x 32-images is generated. 

Wavelet reconstruction combines four low-resolution images to fom a high- 

resolution image. Fig. 5.2 illustrates wavelet reconstruction. Image names have 

been retained from Fig. 5.1. Suppose that D, E, F, and G are 5 x 5 images. 

Wavelet reconstruction begins by combining D and E by putting one atop the 

other in dimension 2 to generate the image H. Likewise, F and G combine to form 



1. Suppose that (d, e) is a pair of matching pisels in H with d coming from D 

and e from E. According to the Haar wavelet transfom. two functions and h; 

are applied to the pair (d, e) thus: 

In Fig. 5.2, the function ?r performs the tasks of KI and h2 by producing a 2 x 1 

array with values (d + e, d - e) as output for each pair of pixels (d, e). Therefore, 

the result of applying h to H (image B) is hvice as high as H. Similady, applied 

to I produces the image C. The images B and C of shapes n x 5 are put one atop 

the other to form the image J .  The function & is similar to L except that one 

application of IZ- produces a 1 x 2 may. Therefore, applying & to J produces an 

n x n high-resolution image -4. Wavelet reconstruction can continue on the image 

-4 by combining it with three other n x n images. 

Both wavelet decomposition and wavelet reconstruction can be expressed using 

AM L queries; the following description only shows how wavelet reconstruction is 

achieved using AML. SpecificaUy, it is shown how AML can express one step of 

wavelet reconstruction whereby the four low-resolutions images D, E, F, and G 

in Fig. 5.2 combine to form the high-resolution image A. The four low-resoiution 
-- - - - 

*These tmo steps are unnecesary; they are included only because later on in this section, AML 
will be used to express the wavelet reconstruction computation. Having these steps facilitates a 
simple translation of wavelet reconstruction to AML. 

30nce again, this step is perforrned only because it facilitates a simple translation of wavelet 
reconstruction to AML. 
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images are typically stored together in one array Suppose that the array ..Y stores 

D, E, F, and G concatenated in dimension O. D can be estracted from -Y a s  

follows; the other three images can be extracted fiom S simiiarly 

The AML eupressions for the images B, C, and A are as follows. 

It is an interesting fact that al l  the wavelet decomposition and reconstruction 

transforms (and not just the ones with the Haar ba is  functions that we have 

chosen) have recursive structures simila to the ones s h o w  in Fig. 5.1 and Fig. 5.2. 

Therefore, AML cari express all such transforms. 

WaveIet decomposition and reconstruction can also be used to obtain a lossy 

image compression algorithm. During wavelet decomposition shom in Fig. 5.1, the 

image G containhg the high-fiequency components of A is not stored. Due to the 

nature of wavelet decomposition, mmy of the coefficients in G are zero (or close to 

it). In addition, the human eye is less sensitive to high-frequency componeats than 

it is to low-frequency components and therefore, discarding G does not introduce 

noticeable degradation in image quality. For higher compression ratios, images 

such as E and F in Fig. 5.1 can also be disczded at the expense of drops in image 
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quality 

The image decompression proceeds as per the wavelet reconstruction shown in 

Fig. 5.2. W l e n  one or more of images E, F, and G are absent (because they were 

discarded during image compression), d-zero images are used in their places. 



Chapter 6 

Experimental Results 

ArrayDB's performance was measured using many experiments. This chapter de- 

scribes the results of some of the more informative experiments. 

Section 6.1 describes the workload, which consists of the five queries from the 

query suite described in Chapter 5. Section 6.2 describes the experimental setup. 

The remainder of the chapter presents the experimental results and makes three 

points. First, Section 6.3 shows that the w a y  query optimization techniques are 

effective. Second, Section 6.4 shows that the query optimization techniques are not 

too costly. Third, Section 6.5 shows that ArrayDB's iterator-based evaluation plans 

are usually able to evaluate array queries efficiently. In particda, ArrayDB 's query 

evaluation performance scales up. Moreover, for three out of the five queries in the 

query suite, k a y D B 1 s  query evaluation performance comes relatively close to that 

of custom C++ programs. The experimental results also suggest some possible 

enhancements to ArrayDB that could lead to performance improvements. 



Figure 6.1: Characteristics of queries in the suite. 

6.1 The Workload 

XML expression 
Equation 5.2 
Equation 5-5 
Equation 5-1 

The empirical results reported in this chapter were obtained using a workload con- 

sisting of the five queries described in Chapter 5 .  Fig. 6.1 stimmarizes the query 

suite. (For WAVELET, n in Equation 5-11 is 1024.) The ikst four queries are posed 

on a 7 MB base array A. -4 contains a 7-band Landsat Thematic Mapper image 

of the Washington, D.C. area. WAVELETys base array contains four 512 x 512 

images that are concatenated in dimension 0, as would have been produced by the 

wavelet decomposition procedure described in Section 5 .S. Thus, for WAVELET, 

is (2048,512) with [Al = 1 MB. The output arrays of TVI and MASK have &es 

slightly less than 1 MB; the other three queries produce exactly 1 MB output data. 

The suite in Fig. 6.1 will be referred to as the "7 MB" suite. For the experiments 

described in Section 6.5.1, the suite size is scaled up by increasing the sizes of the 

two spatial dimensions of the base arrays appropriately. Queries in the scded up 

suites generate scaled-up output arrays. 

Output Array Shape 

(1022.1022.1) 
(1024.1024,l) 
(1024,1024,l) 

Query ( Shapes of Input Arrays 

MASK 1 x (1024,1024,7) 

TV1 
NDW 

DESTRIPE 
(1022~ 1022.1) Equation 5-6 

\Vv4VELET 

2 x (1024,1024.7) 
2 x (1024: 1024.7) 
2 x (1024,1024,î) 

(1024,1024,l) 1 x (2043,512) Equation 5.14 



6.2 Experimental Setup 

The performance e'rperiments were run on a computer cded  Mattawa. Mattan-a is 

a Sun Ultra-10 computer running the Solaris 2.6 operating system and has 12s MB 

of main memory. During the experiments reported in this chapter for d i c h  running 

times were measured, Mattawa's buffer cache was disabled using the "direct I/O" 

feature available in Solaris 2.6. This avoids the problem of caching of the input 

arrây during one experimental run affecting the running times of successive runs. 

Unless stated otherwise, measured ninning times are wall-clock times, which 

include CPU time and 1/0 time. To obtain the timings reported in this chapter, 

Mattawa mas nui in single-user mode to ensure that wall-clock times were not af- 

fected by other usexs7 processes. For timing experiments? each query was run 21 

times and confidence intervals were calculated for the mean Nnning time. The 

t-distribution with 20 degrees of freedom was used to establish the confidence in- 

tervals. The confidence level was set at 0.99 or 99%. In the graphs of query ninning 

times that appeu in this chapter, confidence intervals are not plotted unless their 

widths are greater than &5% of the mean ritnning times. (This was done to reduce 

clutter in graphs.) 

Unless stated otherwise, the experiments were run on the "7 MB" suite in 

which the input arrays were laid out on disk using tiles of shape (64,64). Each 

m a y  element is one byte, so the total tile size is 4 KB. The output chu& shapes 

of the LEAFP operators (which implement AML7s leaf arrays) were made to match 

the tile shapes. Accordingly, each tile was read using one 110 operation. 

In the descriptions of empiricd resul ts, the phrase "optimization onn means 



that all the .4ML query optimizations discussed in this thesis were enabled: the 

phrase '-optimization off" means that the logical rewriting step and the step in 

the plan refinement phase that deletes no-op physical operators from an -1'1 L plan 

were disabled. 

6.3 Effectiveness of Optimization 

This thesis describes Mo important array query optimization techniques. The 

f i s t  one saves di& 1/0 and CPU time by reducing the reading and processing of 

unnecessaq array data. The experiments reported in Section 6.3.1 demonstrate 

the effectiveness of this technique. The second technique reduces the buffer space 

requirement of a n  array query plan by choosing iteration orders of iterators intel- 

ligently. The experiments reported in Section 6.3.2 show the effectiveness of this 

technique. 

6.3.1 Effect of Optimization on Query Evaluation Time 

To show that SUB-pushdown reduces unnecessary dislc 1/0 and CPU processing, it 

is necessary to introduce some unnecessary computation in the queries. This was 

achieved by placing square clipping windows that were located at the centers of the 

result mays of the queries. Fig. 6.2 shows a clipping window (shown shaded) that 

is situated within an output array. The clipping fraction is defined as the size of the 

dipping window divided by the size of the output array. For example, in Fig. 6.2, 

the clipping fraction is 5 assuming that both the clipping window and the output 

m a y  are squore. The clipping fraction was m i e d  from i (no clipping) to &. 



1 l-> clipping window 

Figure 6.2: Clipping widow- 

For each of the queries in the suite, clipping windows were placed by prefkxing 

the query with two SUB operators. For example, the fTVI query is given by 

S U B ~  ( o ~ ~ ~ ~ ~ " o ~ ~ ~  , SUBO(O 2551511~256, TVIQWERY)), 

where T VIQUERY is the TV1 query defined by Equation 5.2. 

Fig. 6.3 plots the query running times as a function of the clipping fraction, 

with optimization on. As Fig. 6.3 shows, the Nnning times of queries decrease 

as  more data is clipped. Ideally, the ninning times should decrease by a factor 

of 4 as we move almg successive points on a curve because the amount of data 

produced by the query also decreases by a factor of 4 for successive points. In 

practice, as the speedup -es in Fig. 6.4 demonstrate, gains reduce as the result 

mays  get smaller. The falloff of the speedup curves c k  be attributed to at least 

two reasons. First, there are some data-size-independent overheads in AML query 

evaluation. Two examples of such overheads are the time to generate and optimize 

a plan and the time to open asd close files that contain base arrays. Such times do 

not depend on the amount of data processed by a plan, and therefore, for smoller 

result arrays (leadhg to smaller evaluation times), they contribute (relatively) more 

to the total ninning times. Second, a shrinliing clipping window may cause a 
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Figure 6.3: Running times of -4rrayDB with optimization on. 

higher percentage of overhead in I/O. The number of tiles touching the boundary 

of a clipping window is proportional to the perimeter of the window, whereas the 

number of tiles enclosed within the clipping window is proportional to the area of 

the window. As a clipping window starts to shrinbr, the former quantity starts to 

dominate the latter. Therefore, smaller clipping windows cause a higher percentage 

1/0 overhead. Further, array data from tiles in the former class needs to be filtered 

and this filtering adds a higher percentage of CPU overhead. 

Fig. 6.5 shows the performance of ArrayDB with optimization off. The graphs 

are flat because the clipping ÇUBs are not pushed down in AML trees. Each query 

generates its fidl result array and then performs the necessary clipping. The Nnning 

times show a siight drop between the and a points because by default, physical 

operators doing clipping are put on top of each AML plan tree. For f queries, these 

operators do data copy-a degenerate form of clipping. ui queries, such operators 
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Figure 6.4: Speedup c w e s  for ArrayDB with optimization on. 
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6.5: Running times of ArrayDB with optimization off. 



do clipping and therefore copy less data. 

A cornparison of the f points of the curves from Fig. 6.3 and Fig. 6.5 shows 

that eialuation is faster with optimization on even at f points (when there are no 

clipping SUB operators to push down). This is because the plans generated with 

optimization off may contain neop physical operators that introduce additional 

data copying cost S. ArrayDB's query op timizer eliminates such neops. 

6.3.2 ~ # e c t  of Optimization on Buffer Space Requirement 

The experiments in this section show that the dq~amic-programming-based buiffer 

space optimization is effective in that it intelligently pi& iteration orders for plan 

iterators. For brevity, the memory costs of only the TV1 plans are presented. 

However, the observations made are also valid for other queries in the suite. 

ArrayDB stores AML leaf arrays on disk using regular tiling, and tile shapes 

affect memory costs of AML plans. In the first experiment, the tile size is fixed 

at 4 KB and the tile shapes are wied.  TVI's base array is three-dimensional and 

therefore the dynamic programming algorithm produces the cheapest plan that 

generates TVI's result w a y  in corder, in 1-order, and in 2-order. Fig. 6.6 shows 

the costs of the plans generated by ArrayDB for the TV1 query, with and without 

optimization. On each line, the best (cheapest) plan costs are printed in italics. 

Fig. 6.7 reports the results of the same experiment but with the tile size varied. 

The results contained in Fig. 6.6 and Fig. 6.7 demonstrate the importance of 

proper assignment of evaluation order to plan iterators. Several important points 

c m  be made fiom the results. First, the choice of evaluation order is important: 





bad orders are much mrorse than good orders, Second. best choice of eduation 

order depends on data layout (tile shape). Unless layout is fked for a l l  data (which 

is not a good idea because different workloads might ben&t fkom dXerent layouts). 

evaluation order should be chosen dynamïcally to reflect layout of data used by a 

particular query The dynamic programming algorithm is flesible enough to adapt 

to different array layouts: notice how the optimal plans generate the result arrays 

in different orders as the tile shape changes. ' Third, the combination of evaluation- 

order optimization and logical rewrite optimization produces substantial memory 

cost reductions: plan costs without rewrite optimization are much higher than the 

ones with rewrite optimization. It should be noted, however, that evaluation order 

optimization by itself is also valuable: optimal plan costs continue to be lower thân 

non-optimal ones when rewrite optimization is turned off. 

Fig. 6.7 shows that plans with larger tiles (112 KB and 1 MB) cost more than 

plans with smaller tiles do because luger tiles result in larger (partial) intermediate 

arrays . 

In Fig. 6.6, notice that when the optimization is on, the cheapest plans (33 KB) 

cost only 1.5% of the costliest plan (2236 KB). Thus, tile shape has a tremendous 

impact on a plan's memory cost. Therefore, if one knows the types of queries that 

will be posed often on a given set of anays, the dynamic progritmraing algorithm 

can be used to suggest good array layout (tiling) schemes. This can be achieved by 

Nnning the dynamic programming algorithm on the anticipated queries assuming 

'In Fig. 6.6, the winning orders for non-square tileshapes correspond to dimensions in which tile 
lengths are shorter. This follows from the operator cost assumptions given in Section 4.4.1 for the 
two costly operators REPLICATES and REGROUPP and from obsewing that TVI's intermediate 
arrays have square shapes in the spatial dimensions. 
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Figure 6.8: Costs of the $TV1 plans using two algorithms. 
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different tile shapes for the base arrays and then by choosing one (or a few) tiling 

methods that yield low que- costs. The dynamic programming algonthm can also 

be used to choose an access path if more than one is available; that is, if an array 

is stored using more than one tiling method. ArrayDB does not currently do this, 

but there would be a substantial payoff in practice if this optimization \vas added. 

The dynamic progra.mming algorithm can generate plans in which different o p  

erators use different evaluation orders. UOrder On in Fig. 6.6 means that the final 

operator uses O-order; other operators may use other orders. To determine whether 

this flexibility is important, an experiment mraç designed that compared the dynamic 

- programming algori thm to another algorithm that performed simpler evaluation or- 

der selection. The simpler algorithm dways assigns the same iteration order to al1 

the iterators in an AML plan. For concreteness, suppose that this 'AU Zero' algo- 

rithm assigns O-orders to all the iterators and therefore can only generate the result 

arrays row-by-row. For a fair cornparison, the dynamic progr;Imming algorithm 

was also required to generate the result =ays in O-order. 

Fig. 6.8 shows the "order-On plan costs produced by the tmo algorithms (dy- 

* ~ n  application that draws a digital image on a CRT screen may dernand that a result array 
be generated in row-major order. 
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namic programming and Zero') for the $Tt? q u e -  The tile shape is ~a r i ed  

and the optimizations are selectively turned on and off. As can be seen. the d -  

namic programming algorithm adapts to different tile shapes and for the tile shape 

(1024,1, l), produces cheaper plans than the 'Ali Zero' algorithm does. In particu- 

l a ,  for the tile shape (1024,1, l), the dpamic programming algorithm produces a 

plan that generates the noise-reduced versions of bands 3 and 4 in 1-order and then 

uses an order-changing REORDER3 operator so that the result TV1 array can be 

generated in O-order. The 'AU Zero' algorithm lacks this flexibility and therefore, 

the cost of its plan is higher. 

6.4 Cost of ArrayDB Query Optimization 

The e-xperiments in this section show that the query optimization times are s m d  

compared to the query evaluation times . 

Fig. 6.9 shows CPU time required for query optimization for the 7 MB suite. 

For larger clipping fractions, the op timization times are insignificant compared to 

the running times of the same queries shown in Fig. 6.3. The optimization time 

increases as clipping is introduced because the clipping ~ U B S  are pushed down in 

AML parse trees and this pushdown takes time. 

AML query optimization t h e  is a complex function of parameters such as 

pattern lengths and the number of lys  in patterns. As logical rewrites occm 

during query optimization, the patterns associated with AML logical operators 

change. Pattern manipulations performed during query rewriting are quicker for 

shorter patterns than for longer patterns. For instance, the aNDVI query with 
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Figure 6.9: Query optimization t h e  of ArrayDB. 

the clipping pattern 0 ~ ~ ~ 1 ~ ~ ~ 0 ~ ~ ~  for both the dimensions O and 1 is optimized 

in about 0.09 seconds as per Fig. 6.9. If the clipping is achieved with a much 

shorter pattern " O l n 7  the optimization time drops to 0.02 seconds. As a second 

example, the optimization times of the &NDW query with the clipping patterns 

~ O ~ ~ O ~ ~ ~ ~ ~ ~ O ~ Ï O ~ W ~ Z O Z S O ~ ~ ~ O ~ W ~ ~ ~ O  and 0151 are 0.61 seconds and 0.03 seconds, 

respectively. 

The query optimization time also depends on the number of l y s  in patterns 

because the execution time of a rule such as Rule 11 (which pulls a SUB out of an 

APPLY) depends on the number of 1's in a pattern and because, in the bitmap rep- 

resentation of patterns that ArrayDB uses, the bitmap set up time is proportional 

to the number of 1's in the bitmap. Prirnarily due to this dependency, the query 

optimization times in Fig. 6.9 drop a little as queries generate s m d e r  arrays: as 

the size of the clipping window decreases, so do the number of 1's in the clipping 
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Figure 6.10: Query optimization and evaluation times of TVI. 

patterns. (The lengths of the cfipping patterns are constant.) 

Fig. 6.10 shows query optimization and evaluation tirnes for TVI. The topmost 

line in Fig. 6.10 shows TVI's evaluation times without optimization. As can be 

seen, benefit of optimization far outweighs the cost. The time required to generate 

the full TV1 array is more when the optimization is off than when it is on because 

of two reasons. First, by default, two physical operators (of types R E G R O U ~ P  and 

COMBINEP) doing regrouping and filtering get put on top of each AML plan in 

anticipation of clipping. When no clipping is needed, these operators do data copy- 

a degenerate form of regrouping and filtering. Second, without query optimization, 

the plan for TV1 contains 4 other no-op operators-two of them of type REGRO U P S  

and two of them of type COMBINES-that perform unnecessary data copy. During 

the plan rehement phase, such no-op physical operators are identified and removed. 



6.5 Quality of ArrayDB's Query Evaluation Plans 

This section describes two experirnents used to ewduate the query evduation mech- 

anism of ArrayDB. The first experiment tests the scalability of Ana-DB by running 

queries on larger base arrays. The second experiment compares ArrayDB's running 

times with those of the special-purpose C++ programs for queries in the suite. 

Severd lessons can be leamt fiom the latter experiment. 

6-5.1 Scale-up of Array Sizes 

Fig. 6.11 shows the nuining times of the queries when the base m a y  size is varied. 

Five base array sizes are chosen: 7 MB, 13.75 MB, 2s MB, 63 MB, and 112 MB. 

Queries compute full result arrays. The graphs in Fig. 6.11 are plotted on a log-log 

scale. Nearly straight lines in Fig. 6.11 indicate good scale-ups of &ng times 

for varying array sizes. The ninning time for WDVI shows a jump between 28 MB 

and 63 MB because of paging activity: the total memory requirement of the plan is 

larger than available memory. ArrayDB currently does not include plan operators 

to materialize intermediate results on disk in the event that the plan is too large. 

However, such operators would be relatively straightforward to add. 

6.5.2 Cornparison wit h C++ Programs 

Previous sections showed the effectiveness of ArrayDB7s query optimisations by 

comparing optimized and unoptimized query plans. Here, we attempt a more ab- 

solute evaluation of the quality of ArrayDB plans by comparing them to custom, 

query-specific C ++ programs. 
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Figure 6.11: Scale-up of ArrayDB with optimization on. 

-4 custom Cf + program was written for each of the five queries in the suite. 

ArrayDB cannot match the running times of the custom progrnms, and the objec- 

tive of this experiment is to determine the performance penalty incurred by using 

ArrayDB. In exchange for this performmce penalty, ArrayDB offers benefits such as 

a declarative query language, query optimization, and physical data independence. 

The base array tile shape is set to (1024,1024) so that the arrays are laid out in 

band-major order. All of the queries generate full result arrays. Fig. 6.12 shows the 

comparison between ArrayDB and C++. For all of the queries except DESTRIPE, 

both ArrayDB and C++ programs do the same n u b e r  of 1/0 operations for e d -  

uating the same query and therefore, a comparison between their CPU times shows 

3~ similar observation was made by Musick and Critchlow (451 when they compared perfor- 
mance of relational DBMSs and OR-DBMSs executing point, multi-point, and range queries wit h 
that of native Unix fwrite and fread system calls. 



Figure 6.12: Comparison of ArrayDB versus Cf+ programs. 
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the performance penalty of using ArrayDB. The performance penalty is shonm in 

the last column of Fig. 6.12 as the factor by which -4rrayDB was slower than the 

C++ program in each experirnent. 

For TVT, NDVI, and MASK, ArrayDB cornes relatively close to the custom 

programs. For DESTRIPE and WAVELET, ArrayDB is much slower. This is 

mainly because ArrayDB7s plan involves much more copying and reorganization of 

data in memory than what the custom programs do. When arrays are large, such 

copying and reorganization is costly. A second- reason is that ArrayDB fails to 

detect cornmon subexpressions. 

The data copying overhead occurs in WAVELET and DESTRIPE for the fol- 

lowing reasons. The AML query for WAVELET contains three MERGE operators 

because APPLY is a unary operator and the inverse Haar basis functions are binary 

operations. To apply the inverse Haar transformations, AML must first combine 

the two input axrays (using MERGE) into a single array. In the resulting plan, the 

MERGE is implemented by a COMBINES operator. At present, the implementation 

of the  COMBINE^ operator requires explicit data movement. The C++ program 

for WAVELET avoids data movement by stepping through the elements of the two 
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arrays in lodc step, performing calculations on-the-fly (and thus avoiding function 

c d  overhead also). For DESTRIPEI the Cf+ program reads the desired band 

and simply corrects every sixth row in it, making updates in place. ArrayDB first 

computes the corrected rows, then computes the uncorrected ron-s, and then merges 

the arrays formed in the previous two steps. 

ArrayDB 's failure to detect common subexpressions furthei affects DES TRIPE. 

Li the plan for DESTRIPE, -4rrayDB reads the base array twice from disk, once 

to compute the corrected rows and once to extract the uncorrected rows. "Vith 

common subexpression detect ion, one reading would have been avoided. 

Probably the most important lesson that c m  be leamt from this "-4rrayDB 

versus C++" experiment is t his: efficient query evaluation requires bot h language 

and optimization support. For example, an APPLY operator which applies a user- 

defined function place" would have sped up DESTRIPE; a binary APPLY would 

have sped up WAVELET. Alternately, one can argue that in both of these cases, a 

more sophisticated query optimizer might have been able to generate better execu- 

tion plans (at least , in theory). Of course, there is an interplay between laquage 

design and query optimization. For example, index-based AML operators make 

SUB-pushdown possible but do not help in reordering or combing two APPLY oper- 

ators. 

-- 

4This is the reason why ArrayDB and the C++ program for DESTFüPE do not perform the 
same number of 1 / 0  operations. 



Chapter 7 

Related Work 

This chapter is a survey of array-related research. The survey is not restricted to the 

database field, since m a y s  occur naturally as a data type in several domains and 

array research exists in fields outside the database area. It covers three major array- 

related issues: anay operation implementation, languages for array manipulation, 

and array support in database management systems. 

Section 7.1 covers two methods for implementing array operations. The meth- 

ods map an n-dimensional array to lower-level abstractions (relations and byte se- 

quences) before implementing array operations on the lower level abstractions. The 

languages for speciSing array manipulations are surveyed in Section 7.2. The Izn- 

guages are divided into two categories based on whether or not they have operators 

that operate on entire arrays. Array query optimizations-and their relationships 

with the optimizations considered in this thesis-are also studied in Section 7.2. 

Section 7.3 summarizes how commercial and research DBMSs support array data. 

Two DBMS categories are considered: general purpose relational DBMSs and spe- 



cial purpose array DBMSs. 

7.1 Array Operation Implementation 

This section surveys differeot met hods for irnplement ing array operat ions. (The lan- 

guages and interfaces through tt-hich the array operations are specified are described 

in Section 7.2.) Array operations are implemented by mapping n-dimensional ar- 

rays to sorne lower-level- abstraction. Then, operations on n-dimensional arrays are 

mapped to operations on the lower-level abstraction. Two lower-level abstractions 

considered in this section are: relation and byte sequence. 

7.1.1 Relat ional Mapping 

Since a relation is a set, no order exists among relational tuples. Therefore, when 

arrays are modeled as relations, array element values are stored together with their 

indices in relational tuples. For example, a ttvo-dimensional array can be repre- 

sented as a relation with tuples of the fonn (i: j, val), where i and j are indices and 

val is the array value at that index. 

The biggest advantage of relational mapping is that it  can be easily supported 

through a relational DBMS. The SQL query language can be used for array ma- 

nipulations and al1 of the benefits of database systems, such as physical data in- 

dependence, transactions, concurrency control, recovery, and query optimization 

are readily amilable. Complex array manipulations can be specified by embedding 

SQL within a programming language such as C. 

The relational mapping has several shortcomings dso. Storing array elements 



as t uples introduces storage overhead for indices. More important Il-, the space 

required to store an array element is dependent on the array's dimensionalit- For 

efficient array element access, auxi1ia.q- index structures may be required. For 

example, for a relation with tuples of the form (i, j, val) mentioned above. indices 

on i and j may be necessary. Such index structures also add to the storage overhead. 

Array manipulations themselves may be nonintuitive to specie and inefficient to 

evaluate. For eiuample, it is possible to mite as SQL query that performs discrete 

convolution-an APPLY-like operation-on a twcdimensional image (where image 

shape and kernel shape ore fixed). If the kernel contains k elements, the query 

invalves a k-way self-join of the relation that stores the image. Such a query is 

probably inefficient to evaluate. When manipulating arrays using SQL, the result 

relation (if it is an array) may have to be translated to a multidirnensional form 

before it c m  be used. 

Modeling arrays as relations may be a good strategy for domains where sparse 

arrays are often used, such as in on-line analytical processing (OL.4P) applications 

and in some scientific computations [74, 201. Relational OLAP (ROLAP) systems, 

for example, use s tar  schernas or snowrflake schernas to represent multidimensional 

views of data [12]. In a star schema, tuples of the form (i, j, val) are stored in a 

relation called the fact table and are interpreted as follows. i and j are foreign 

keys that index separate d imens ion  tables and val stores the array element value 

(called measure in OLAP terminology). The fact table is at the center of the star 

and one or more dimension tables form its branches. The fact table stores most of 

the multidimensional data; dimension tables are much smaller. Dimension tables 



are needed because in OLAP applications, dimensions can also have attributes. 

For example, a "productn dimension can have attributes such as product number. 

product description, and unit price. 

7.1.2 Byte Sequence Mapping 

In this approach, an n-dimensional array is represented as a one-dimensional ar- 

ray of bytes. Files and binary large objects (BLOBs) support such byte sequence 

mapping of n-dimensional arrays. Byte sequence mapping is also relevant for array 

storage because many storage devices such as disk and tape present memory as a 

linear anay of "slots" of fixed capacity. 

The Linearization Problem 

A key issue when mapping an n-dimensional array to a one-dimensional array is 

how the n-dimensional m a y  is linearized; that is, the order in which the elements 

of the n-dimensional array are traversed. This is the linearization problem. 

Rosenberg [55, 56, 541 identified several useful properties of a good linearization 

technique: proximity-presenation, efficient indexing capability, storage utilization, 

and extendibility. 

-4 proximity-preserving linearization scheme supports clustering; t hat is, posi- 

tions close to one another in the 11-dimensianal array are stored close to one another 

in the one-dimensional array. Worliload description is necessary to determine which 

elements are used together in the one-dimensional array. If an explicit workload 

description is unavailable, t hen a common assumption is t hat workload will ex- 



hibit spatial loca l i .  That is, elements close to each other in the n-dimensional 

array wiU tend to be used together. (For example, consider an n-dimensional range 

query in a spatial database.) Under the assumption that the workload wili es- 

hibit spatial locality, a proximity-preserving linearization scheme leads to bet t er 

performance of array operat ions especially since many one-dimensional arrays have 

blodc-structured implementations. For example, a group of array elements that are 

stored close to one another in a one-dimensional array CM be read from disk using 

one (or a few) disk read operations. 

4 lineasization scheme supports efficient indexing if, given the index of an n- 

dimensional array element, it can efficiently determine the element's index in the 

one-dimensional array. Efficient indexing is important because element access is a 

common array operation. 

A linearization scheme utilizes storage efficiently if it does not leave large gaps 

in the one-dimensional array. 

Extendibility refers to the ability to change the linearization incrementally if 

the n-dimensional array grows, shrinks, or changes its shape. 

Not al l  the four properties of linearization schemes are mutually compatible. 

The intuition that extendible allocation schemes must inevit ably leave gaps when 

storing arrays turns out to be accurate [55]. Rosenberg [56] studied whether ex- 

tendible schemes can preserve proximity. He showed that finite arrays and arrays 

infinite in only one dimension can preserve proximity globally. However, arrays 

infinite in all the dimensions cannot preserve proximity globdy. 



Linearization Schemes 

A description of various linearization schemes follows. For each scheme. n-e note 

which of the four desirable properties mentioned in the previous section it has. 

Linear Order 

Lineâr ordering (such as row-major ordering and columa-major ordering) stores 

successive slabs of an n-dimensional array consecutively in the one-dimensional 

array and is the most cornmon ty-pe of array linearization scheme. Row-major order 

for an n-dimensional array refers to a scheme in d i c h  elements of the n-dimensional 

array are traversed such that the rightmost index (the index for dimension n - 1) 

varies the fastest and the leftmost index (the one for dimension O) varies the slowest. 

Row-major order is shomn in Fig. ?.l(a). Programming languages C and C++ 

define a row-major layout for their a,rrays, whereas Fortran defines a column-major 

layout for its arrays. BLISS permits both row-major and column-major layouts 

and lets users choose between them [Xi]. 

Linear orders offer clustering that is dependent on the dimension. The best 

clustering occurs in a dimension whose index varies the fastest when traversing 

an n-dimensional array. The worst clustering occurs in a dimension whose index 

varies the slowest when traversing an n-dimensional array. Linear orders permit 

fast indexing and efficient storage utilization, but are easily extendible in only one 

dimension. For example, in row-major order, adding a new row to an n-dimensional 

array is easy but adding a new column involves a lot of data movement. 

Linear orders are easy to implement but the performance of an array query 



Figure 7.1: Arrôy lineacization in a linear order and in a tiled order. 

requiring access to an arbitrary subarray may be poor. 

Tiling 

Tiling generalizes the linear order. A tile is a multidimensional subarray of an n- 

dimensional array. Tiles partition an may. The array elements within a tiIe are 

lineârized in some order. The tiles themselves are also linearized in some order. 

In the simplest form of tiling, cded  regular tiling, all the tiles of an array have 

the same shape and size. A three-dimensional array tiled using regular tiling is 

shown in Fig. I.l(b). DeWitt et al. [15] used regular tiling to store raster images 

in the Paradise DBMS for geographic information systems. ArrayDB uses regular 

tiles and stores them in a UNI?( flat file. Both tiles and elements within tiles are 

stored in row-major order. 

A naturd extension of regular tiling uses tiles of various shapes and sizes. For 

example, the T2 m a y  database system stores images using tiles of possibly differ- 

ent sizes [9]. Furtado and Baumann [lS] proposed three tile categories more gen- 

erd than regular t iling : irregular, par tially aligned, and t o t d y  nonaligned. Two- 

dimensional irregular, partially aligned, and totally nonaligned tilings are shown in 
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Figure 7.2: Irregular, partially aligned, and totally nonaligned tilings. 

Fig. 7.2, parts (a), (b), and (c), respectively. In irregular tiling, the hyperplanes 

that cut the array dong a dimension are not equidistant for at least one dimension. 

In nonaligned tiling, some tiles exist whose vertices do not correspond to those of 

the neighboring tiles. Parti* aligned tiling is a End of nonaligned tiling where at 

least along one dimension, tiles are aligned (the column dimension in Fig. 7.2(b)). 

In totally nonaligned tiling, no such dimension exists. 

Tiling offers good clustering for elements within a tile if the tile size is small. For 

large tiles, good clustering depends on the method used to linearize the tile elements. 

Good clustering among tiles also depends on the method used to linearize the tiles. 

Regular tiling provides efficie~t indexing; for more general types of tilings however, 

an a~uiliary index structure is necessary. Spatial access methods such as Quad 

tree [16], K-D-B-Tree [53], PK-tree [72], R-tree [24], and R*-tree [5]-designed to 

handle multidimensiond points, lines, rectangles, and other geometrical bodies- 

can serve as access methods for irregularly-tiled arrays. For example, an R-tree can 

be built on top of such an array, permitting efficient access to the necessary tiles. 



(a) (b) (cl 

Figure 7.3: Z curve, Hilbert m e ,  and Gray code rnapping. 

Space FUing Curves 

Space filling curves such as the Z curve, the Hilbert N v e ,  and the Gray code 

mapping can be used to linearize arrays. The Z curve, the Hilbert curve, and the 

Gray code mapping for a two-dimensional m a y  are shown in Fig. 7.3: parts (a), 

(b), and (c), respectively. These c w e s  are dehed  recursively and they also allow 

encodings of non-rect angular arrays [31]. 

These curves have good clustering properties. Aiya e t  al. [2] found that the 

Hilbert cuve  has better clustering properties than the Z c w e  when they used them 

to encode mdtidimensiond arrays and their spatial extents in the implementation 

of a prototype DBMS c d e d  QBISM. Jagadish [31] also advocates the Hilbert curve 

when mapping a multidimensional-space to a one-dimensional space. Space W n g  

curves permit eEcient indexing. They utilize space well if array lengths are powers 

of two and c m  be extended easily if the extended arrays also have lengths that are 

poa-ers of two. 

Some Other Linearization Schemes 

This section describes some linearization techniques that Rosenberg [55, 56, 541 

studied to illustrate the interplay among various criteria such as efficient indexing 



Figure 7.4: Linearization scheme for a tnrdimensional a n a -  

Figure 7.5: 

(a) 

Two linearization schernes studied by Rosen 

and storage utilization. 

Suppose that in a linearization scheme of a tw~dirnensional array, an element 

with index [i, j] is stored at the location with address 2' - 3' - 1. (This example 

is adapted from [55, page 2911.) Suppose that the memory addresses start at O. 

The layout of an array with shape (3,4) under this linearization scheme is shown in 

Fig. 7.4. In that figure, a number in an array ceU denotes the cell's position in the 

linearization order. This scheme needs 108 memory locations to store 12 elements 

and so it utilizes storage poorly. In addition, the luiearization order computation 

requires exponentiation-an expensive operation. Despite these shortcomi~igs, it 

is easy to see that an array stored using this scheme can be extended in both the 

dimensions easily. 

Although the notions of extendibility and storage utilization a e  mutudy  in- 

compatible, better storage utilization is possible for arrays of fked shape-for ex- 



ample, square arrays. Fig. 7.5 shows two storage schemes for t~v~dimensiond 

extendible a a y s  (figures adapted from [54, page 6641). The scheme in Fig. 7.5(a) 

stores array elements using a diagonal front and is usefd for storing triangular ar- 

rays, whereas that in Fig. 7 4 b )  stores elements using a square front and achieves 

extendibility in both the dimensions with no storage overhead for square arrays. 

Rosenberg [55] gave a general result that efficient storage schemes can be designed 

for w a y s  of any f ied  shape. 

Linearization and ArrayDB 

-4rray linearization schemes can be used for array storage on disk because disk 

cas b e  thought of as a long linear array of fied-capacity %lotsn. ArrayDB treats 

AML7s leaf arrays like APPLYS whose function applications read array data fiom 

disk. Each c d  to such an APPLY function reads an array chunh- (a regular tile) 

fiom disk. Thus, ArrayDB supports regular tiling. ' A regularly-tiled array's tile 

shape can be specified in ,4rrayDB's array catalog. If array lengths are powers of 

two, space filling curves such as Z curve, Hilbert curve, and Gray code mapping can 

be viewed as regular tiling methods (where tile lengths are powers of two) and can 

be supported in ArrayDB. Using the AML query optimization techniques proposed 

in this thesis, ArrayDB avoids retrieving tiles that are unnecessary to compute a 

query result . Further, ArrayDB chooses tile retrieval order intelligently so that 

memory use of an AML plan is minimized. 

'The current version of ArrayDB supports file-based regular tiling. 



7.1.3 Redundancy and Partitionhg 

.4rrays are potentiay large and an array collection may not fit entirely on a single 

device and therefore may need to be stored across many devices. In some cases. 

an array might be replicated and copies might be organized differentiy so that 

more than one access path to the m a y  is available. The issues of partitioning and 

redundancy aise  no matter which mapping (relationai or byte sequence) is used to 

implement array operations. 

Redwidancy involves storing multiple copies of arrays, typically on different d e  

vices. K byte sequence mapping is being used, different copies can be linearized the 

same way or differently. In both cases, higher 1/0 throughput can be achieved be- 

cause more than one device can be kept busy simultaneously while evaluating array 

queries. In the latter case, many access paths to stored arrays are available and 

thus workloads that vary in their data access patterns c m  be supported efficiently. 

Redundancy also provides data protection in the event of device failure. 

In partitioning, a logical array is stored not on one device but across several 

devices. The goal of partitioning is to improve 1/0 bandwidth: an array stored 

across n devices (each with its own driver and channeel) can be read and written 

in parallel, cutting the access time by a factor of i/n (idedy). The partitioning 

method just described c m  be called inter-device partitioning because several devices 

are involved in partitioning. Intra-device partationing occws when an array is stored 

across multiple platters of the same disk (for example). In this case, parallelism 

in data reading and writing c m  be achieved because multiple read/write heads are 

available for I/ O. 



Sarawagi and S tonebraker [SI studied redundant and parti tioned array s torage. 

Their motivation for array partitioning was different. They used a robot arm con- 

troUed tertiary device containhg disks and tapes for inter-device array partitioning. 

For disks, the time for the robot arm to switch media was luge compared to the 

average se& tirne for disks. Therefore, to reduce media switches, they partitioned 

their arrays such that parts of arrays accessed together were stored on the same 

media. In Titan [IO], intra-device partitioning of %band satellite images is done 

by storing data blocks of bands 1 and 2 contiguously and by storing data blocks of 

bands 3, 4, and 5 contiguously. Such parrtitioning was motivated by the observa- 

tion that most satellite data processing progrâms processed one of the two groups 

mentioned, 

Replication and partitioning problems for arrays do not appear much harder 

than the corresponding problems for other data types such as relations and there- 

fore, general data partitioning and redundancy schemes such as disk striping [57] 

and Redundant Arrays of Inexpensive Disks (lL4ID) [49] can be used with axrays. 

7.2 Manipulation of Array Data 

This section is a survey of various programming languages, query languages, and 

algebras in which arrays can be defined and manipulated. It is convenient to clas- 

si% these languages in two broad categories: collection-on'enfed languages and 

scalar-o~ented languages. According to Sipelstein and Blelloch [62], a language 

is collection-oriented if collection types and operations for manipulating them "as 

a whole" are primitive in the language. (Sets, sequences, arrays, vectors, and lists 



are some examples of collection types.) In contrast, in a scalar-oriented language. 

collections have to be masipulated element-wise by the programmer. For esample, 

to add tivo arrays of the same shape, a scalar-oriented language may require explicit 

loops iterating over the elements of the two arrays, adding the matching elements 

in each loop iteration. For the same task, a collection-oriented language permits a 

statement Iike C = A + B- 

Section 7.2.1 describes collection-orient ed array languages; Section 7.2.2 de- 

scribes scalar-oriented array languages. In both cases, a major emphasis is on the 

types of optimizations that the languages support and on the relationships of those 

optimizations with the array query optimizations studied in this thesis. 

7.2.1 Collection-oriented Array Languages 

APL, Image Algebra, FORTRAN 90, and -4ML are examples of collection-oriented 

array languages. In such languages, at least some (if not all) operators operate 

on arrays as a whole. Due to high-level data abstractions and operations provided 

by -collection-oriented array languages, the resulting programs are clearer, easier to 

m i  te, and more concise t han programs mit ten in scalar-orient ed array languages. 

Collection-oriented array languages differ from one another in whether they 

permit nested arrays or not. APL and AiML do not permit nested arrays, whereas 

More's array theory [43] and Vandenberg and DeWitt's algebra [Tl] do. Collection- 

oriented array languages differ in whether they permit only one-dimensional arrays 

or multidimensional arrays. APL, .4ML, RasQL, Image Algebra, and many other 

languages permit multidimensional mays. The SEQUIN language of the SEQ 



sequence database system permits only one-dimensional arrays [60]. Collection- 

oriented array Ianguages and algebras are either heterogeneous or homogeneous. 

Homogeneous languages such as  AML and SEQULN [60] map arrays to arrays. 

Heterogeneous algebras-for example Image Algebra and Vandenberg and DeWitt 's 

algebra [Ti]-may map arrays to non-array types. 

Operators in collection-oriented array languages are diverse. Nevertheless, as  

Sipelstein and Blelloch [62] observed, some generic operators are common among 

them. (Sipelstein and BleUoch7s survey inciuded languages that manipulate col- 

lections such as sets and Lists, not just arrays.) -4 given collection-oriented array 

language typicdy implements specific forms of sorne of the generic operators. Sipel- 

stein and Blelloch's append combines two arrays. AML7s MERGE is its more general 

implementation. Pack is like SUB: it filters data from an array according to a 

booleân rnask. Apply-to-each forms apply a function to every element of an array- 

a functionality similar to APPLY'S. Some operators in each of Vandenberg and 

DeWitt's algebra ['il], RasQL [4, 731, More's array theory [43], Image Algebra [52], 

the image processing toolbox of Matlab * [29], and algebras for multi-dimensional 

database systems [l, 251 are similar to the above generic operators. 

As aLeady mentioned in Section 2.3, AML is a framework for array manipu- 

lation in that it only specifies how user-defined functions are applied to arrays in 

a structured fashion. Many collection-oriented array languages do not completely 

specify some of their array manipulating operators and are thus also frameworks 

for array manipulations to varying degrees. For example, in Image Algebra [52], 

'Matlab is a registered trademark of The MathWorks, Inc. 

3Such algebras can serve as query Ianguages in on-line analytical processing (OLAP) systems. 



value sets (which are parts of images) and operations on them are not restricted to 

a fixed set. Image Algebra's global reduce operator only specifks that it produces 

a value from an image. In RasQL [4, 731, induced operators generate nen- values 

but RasQL does not dehne a set of such operators. The framework approach malies 

an array language extensible in that by fine-tuning some operators or by provid- 

ing some user-defmed code, the language can be customized for an application. 

AML is unique in that it  takes the framework approach to the extreme: it provides 

no operators that can produce "newn values (domain elements not found in their 

operands) . 

Query Optimization in Collection-oriented Array Languages 

Collec tion-oriented array languages and systems that implement t hem support va.r- 

ious types of query optimizations. The main aims of array query optimizations 

are to reduce the CPU t h e ,  the 1/0 cost, and the memory requirements of array 

query plans. Two major classes of array query optimizations can be identified: 

logical qzlery optimizations and physical query optimizations. Logical query opti- 

mizations manipulate logical query expressions; physical query optimizations are 

designed to improve the plans for array queries. 

Logical query optimizations. Logical query optimizations are rewrite opti- 

mizations. They systematically transform an  array manipulating expression using 

rewrite rules (or th& equivalents) and generate a collection of one or more expres- 

sions equivalent to the original one, out of which one is chosen for eduat ion or 

for further manipulation. M a q  array-related rewrite optimizations promote early 

data filtering: the idea is to eliminate reading and processing unnecessary data. 



For example, AML7s logical rewrite op timization-which causes SUS-pushdon-n- 

promotes early data filtering. 

The ease with which SUB-pushdown c m  be performed is greatly Sected by 

the bnds of domain and raage box shapes that an array language's equivalent 

of the APPLY operator permits. In particular, SUB-pushdown can be perfomied 

easily in a language in which domain and range boxes are forced to be of unit 

size. Vandenberg and DeWitt 's algebra ['il], RasQL [4, 731, the trasformation and 

mapping functions of T2 191, and Guibas and Wyatt's scalar operators 1231 permit 

only unit-sized domain and range boxes. Wë s h d  describe two of the SUB-pushdown 

approaches in detail: RasQL's approach and Guibas and Wyatt's approach. 

In RasQL? trimming operations and projections (operators similar to SU B ) can 

always be pushed into and out of function application operators- Therefore, all 

RasQL queries can be converted to a cmonical form in which ail the trimmings 

and projections are done before al1 of the function applications are. Further, all of 

the adjacent function applications can be combined using functional composition 

because of the matdiing domain and range box shapes of adjacent functions. There- 

fore, a RasQL expression in the canonical form has only one composite function. 

,4n advantage of such a composite function is that its resdtant array elements can 

be generated on the fly without materialking intermediate results. 

In Guibas and Wyatt's approach, SUB-pushdown is performed only in effect, not 

literally. They describe a technique to compile a subset of APL containing scalar 

operators (operators that work on scalnr operands, as opposed to anay operands) 

and grid selectors (index-based operators). Addition and multiplication are exam- 



pks of scalar operat ors; transpose and reversal are example grid selectors, SU B and 

MERGE resemble grid selectors, whereas APPLY is a more generd form of a scalar 

operator, 

Guibas and Wyatt designed a universal selector operator n-hich can absorb any 

number of grid selectors into it. After absorption, the universal selector has the 

same effect on data that a combination of grid selectors would have on the same 

data. The data structure representing a universal selector is called the stepper.  

During a step called the "pushn pass, steppers are pushed down in an APL expres- 

sion tree. A stepper is modified when i t encounters a grid selector node dong the 

way, and the rnodified stepper is passed on to the grid selector node's children. -4 

scalar operator passes on the incoming stepper to its children unchanged. m e n  

the steppers reach the leaf nodes, all the grid selectors c m  be elirninated from the 

APL expression tree. Compiled code is generated for the modified tree. 

RasQL operators and the subset of APL operators that Guibas and Wyatt chose 

have limited power: they c m  only express m a y  operations in which an output m a y  

element is computed using a single input array element. They cônnot express block- 

based or region-based array processing operations such as a discrete convolution on 

a two-dimensional image. In one respect the "pushn p a s  is more g e n d  than 

AML's SU%-pushdom: it can handle the transpose operator. Extending AML 

with a dimension-reordering operator and generalizing S~B-pushdown so that it 

can handle the new operator should not be very diEcult. 

The T2 array database system (91-designed for remote-sensing applications- 

4The "push" p a s  is similar to the map spreading process described in Section 4.4.3- 



permits hypercubical domain boxes and unit-sized range boxes in its equident 

of the APPLY operator. The query language of T2 is very specialized. A T2 

query chooses a dataset(s) of interest and a clipping region of interest within the 

dataset (s) . Each pixel in the clipping region is pre-processed using a tramfonnction 

function. 4 transformation function corrects things such as instrument drift. atmo- 

spheric distortions, and topography. Shen a mapping finction maps a transformed 

pixel to an output pixel. Multiple input pixels may map to an output pixel. An 

aggregation finction sekcts the "bestn corrected pixel that maps to an output pixel. 

T2 treats the transformation, mapping, and aggregation functions as black boxes! 

lilce the way AML treats APPLY functions. Transformation and rnapping functions 

have unit-sized domain and range boxes. Aggregation functions have hypercubical 

domain boxes and unit-sized range boxes. T2 achieves the effect of SUB-pushdown 

by reading only pixels that f d  within the clipping region. Exactly how T2 achieves 

early data filtering is not explained in [9]. 

AML seems to be unique in providing built-in language support for domain 

and.range boxes of hypercubical shapes. This allows AML to implement a Nider 

claçs of array operations directly. Further, such queries can also be optimized 

using the AML query optimization techniques proposed in this thesis. Because of 

hypercubical domain and range boxes, SUBS cannot always be pushed in and out 

of APPLYS. Further, in the presence of mismatches of the domain and range box 

5Some operators in Matlab's image processing toolbox support arbitrary-shaped (but fixed) 
domain boxes. Matlab can be interfaced with programming languages such as C, Cf+, and 
Fortran using its MEX-file feature. Using MEX-files, Matlab arrays can be manipulated using 
user-defined functions that can have general domain box and range box shapes. To achieve this 
generality, however, external interfacing to a programming language is necessary. 



shapes, adjacent APP LY operators cannot be composed in generd. Therefore, the 

result arrays cannot be generated on the fly (the way they can be in RasQL uid 

in the subset of APL that Guibas and M-yatt chose): intermediate arrays between 

some function applications may need to be materialized, at least partially. 

Permit ting arbi trary-shaped (not necessarily hypercubical) domain and range 

boxes wodd appear to be a logical generalization of AML's choice of hypercubical 

domain and range box shapes. (Image .Ugebra7s image-tempiate product [52] per- 

mits such arbitrary-shaped domain boxes but unit-sized range boxes. ) However, 

performing early data filtering might become quite dï6cult in such a generd sce- 

nario for the following reason. The amount of information that needs to be stored 

for tracking heage of data items in the clipping window increases. This, in turn, 

makes the lineage tracking problem harder. (Information about a k-dimensional do- 

main or range box whose side lengths are O(n)  can be succinctly represented using 

O(k - n) data itemssomething which seems impossible to do for an arbitrary- 

shaped domain or range box.) 

Common sub-expression elinination can be considered a type of rewrite opti- 

mization. It avoids generating arrays more than once when one copy suaices. In the 

SEQ database system, common sub-expressions are eliminated [60]; in the current 

implementation of ArrayDB , they aze not . Adding common sub-expression elimi- 

nation optimization to ArrayDB is a non-trivial task. The dpamic  programming- 

based chu& order optimization requires the "optimality of subproblemsn property. 

That is, an AML plan with a minimal memory cost contains within it sub-plans 

whose memory costs are also minimal. With common sub-expressions present, it 



may be necess- to generate a non-optimal sub-plan so that the memory cost of the 

entire AML plan can be minimized. Logical rewrites should continue to work when 

common sub-expressions are present , The plan i terators. hoxever . become more 

complicated: some iterators might need to keep track of more "state" information 

because they have to feed array c h d i s  into more than one output stream. 

A major class of rewrite optimizations involves APPLY-like user-defined function 

application operators. These optimizations c m  be divided into many sub-classes: 

(1) those that reorder two function applications; (2) those that split a function 

application into two or more parts; (3) those that combine two or more function 

applications; and (4) those that exploit the dependency of a function application 

on some of the "previous" function applications on the same array. 

This claçs of optimizations are difficult to perform because the query optimizer 

needs to be aware of the semantics of the user-defined functions. (In contrast, a 

SUB-pushdown type of optimization can often be performed using relatively simple 

data lineage calculations that involve only array index manipulations.) The topic 

. of how to perform such optimizations in ArrayDB is addressed in Section 8.2.1 as 

Euture work. 

Simple forms of some of these optimizations have been proposed. For example, 

in h a g e  Algebra, templates can be split and combined [51], and thus the function 

applications defined by image-template product can be split and combined. The 

moving window optimization perfomed by the sequence database system SEQ [60] 

falls into the fourth category. Consider the sequence 1,2,3,4,5,6,7,8,9,10. S u p  

pose that a moving window of width 5 slides everywhere in this sequence s d n g  
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up the 5 elements that f d  under it at any time. The resultant output sequence is 

15.20,25,30,35,40. Once the sum 1 + 2 + 3 + 4 + 5 has been computed to yield 15. 

the next element of the output sequence can be computed using 15 + 6 - 1. instead 

of using the naive method 2 + 3 + 4 + 5 + 6. A benefit of the optimized computation 

is that it uses fewer arithmetic operations. More important, the time required for 

aggregation is independent of the window size. Image dlgebra's recursive templates 

also offer potential for optimizations that belong to the fourth category. 

P hysical query O ptimizations . Physical query op timizations are designed to 

improve the plans for array queries. ArrayDB generates execution plans composed 

of chu&-based iterators. This allovvs pipelined execution, and gives the optimizer 

the chance to choose iteration orders. Plans that manipulate array chunlis and plans 

that evaluate anay quexies in a pipelined fashion have been proposed in the past, 

but ArrayDB1s method of intelligently choosing iteration orders for plan iterators 

so that the rnemory costs of plans are minimized has been studied for the fust time 

in this thesis. 

Let us Iook at how some array manipulating systems generate their plans. In 

the RasDaMan system, leaf arrays are stored on disk in a tiled fashion and the 

system generates tile-based plans. In such plans, alternative evaluation orders for 

plan operators are not considered: all intermediate arrays are generated in row- 

major order [73]. Execution plans in T2 are also chunk-based. Since T2 is a 

parallel database, the plans take into account things such as dependencies among 

chunks and memory available at each processor. The plans themselves consist of 

lists of chunk-processing operations separated by synchronization markers. Chunk- 



processing operations in a list can be performed in ary  order: however. all such 

operations must be completed before any chudi-processing operation in a subse- 

quent list c m  be staded. Parde l  evaluation of AML queries is considered as 

future worlc in Section 5.2.3. Execution plans in the sequence database system 

SEQ [60] are iterator-based, and thus they permit operator pipelining. SEQ phys- 

ical operators b d e s  sequence elements just like ArrayDB7s physical operators do. 

However, SEQ processes one-dimensional arrays and therefore, has no concept of 

operator evaluation order. SEQ plans can handle common sub-expressions in such 

a way that a cornmon-subexpression is neither evaluated multiple times, nor ma- 

terialized. Handling common sub-expressions in ArrayDB is a non-trivial ta&, as 

already mentioned earlier in this section. 

The optimization potential of many array languages has not been fully utilized. 

APL [30, 351, Nia1 (Nested Interactive Array Language) [34], Matlab, and Image 

Algebra are examples of such languages. In case of Nial, More's array theory [43] 

c m  offer many expression optimization ideas because Nid is based on the array 

theory. The array theory-based on APL and set theory-contains many axioms 

and theorems that can be used as rewrite rules for array expressions. For example, 

Axiom 32 of the array theory provides the following "rewrite rule": Suppose that A 

and B are non-empty arrays and that a replacement operator is one that replaces 

each array element x by its image f (2) under a un= function f .  Then, it  does not 

matter whether the replacement operator is applied before or after the reshaping of 

B to the shape of A. At present, Nid's portable C interpreter Q'Nial [32] does not 

do expression optimization [33]. Matlab also does not perform rewrite optimizations 



on expressions formed using functional compositions of its array operators [39]. The 

Image Algebra proposal contains some expression optimization ideas [52]. but there 

is scope for more. APL prograsls are typically interpreted. not compiled. Although 

some expression optimization ideas have been proposed in c o ~ e c t i o n  with APL 

compilation 123, 69, 61, there is potentid for more. 

7.2.2 Scalar-oriented Array Languages 

Scalar-oriented array laquages require evplicit element-wise array manipulations. 

Many general purpose progamming languages dowing array defkition-for exam- 

ple, C and Pascal-are scalar-oriented. In such languages, as indexing operation 

applied to an amay yields an array eiement of some type to which ail the availabie 

operations for that data type can be applied. 

In scalar-oriented programming languages, complex m a y  operations can be 

defined using indexing, operations on base data types, and control structures such 

as loops and conditional statements. In some of these languages, arrays can be 

defbed as an abstract data type (ADT). Complex array operations cm then be 

provided as methods of the array ADT. The ability to name and d e h e  array ADT 

met hods results in concise array manipulation code. Nevert heless, the definitions 

of ADT methods still use primitive m a y  operations. 

Query Optimizations in Scalar-oriented Array Languages 

In scalar-oriented programming languages, loops are commonly used to traverse and 

process array element S. Programs (anay-manipulating and general) spend much 



of their running t h e  in loops and compilers for scalar-oriented languages perfonn 

several looprelated opt imizations. The following looprelated op timizations are 

especidy r e l e ~ s t  for acray manipulations. 

1. Strength reduction [44, page 4261 replaces an e-pensive operation such as 

multiplication by a cheaper operation such as addition, 

2. Loop unrolling [44, page 5591 replaces the body of a loop with many copies 

of the body and adjusts the loopcontrol code accordingIyY The unrolled loop 

may execute faster because it evoluates the loop-closing test and branch fewer 

times than the original loop does. On the other hand, the unrolled loop takes 

more memory and therefore may impact the effectiveness of the instruction 

cache. 

3. Loop iAnversion [M, page 5871 transfonns a loop such that the loop-closing 

test before the loop body is moved after the loop body. Loop inversion helps 

because only one branch instruction need be executed to close the loop, rather 

than one to get from the end badc to the beginning and another at the be- 

ginning to perforrn the test. 

4. Scalar replacement [M, page 6831 replaces an array variable such as C[i,  j ]  by 

scalar temporaries, thereby making them available for register allocation. 

5. Loop-invariant code motion [M, page 3971 recognizes computations in loops 

that produce the same value on every iteration of the loop and rnoves them 

out of the loop. 



Figure 7.6: Iteration-space traversal of a tiled loop nest. 

The looprelated optimizations mentioned above can improve the efficiency of 

array-manipulating loops. It is doubtfid, however, whet her such op timizations (in 

conjunction with some other optimizations) can achieve effects similar to those of 

SUB-pushdown-Iike optimizations. In particular, it seems UILLike1y that sophisticated 

data-flow analysis cari be performed on the code that follows a loop so that it can 

be determined that only a portion of the array manipulated by the loop is actually 

needed. 

Other loop transformations aim to mabe bettes use of the memory hierarchy, 

to make a loop7s iterations executable in pardel by several processon, to make 

a loop's iterations vectorizable, or to achieve a combination of these benefits [44, 

page 6901. They adiieve such gains by interchanging two nested loops, by reversing 

the order in which a loop's iterations are performed, by fusing two loop bodies 

together into one, by doing the opposite of fusion (cded b o p  distribution) and 

so on. Such transfonns also improve the data cache utilization of numerical and 

scientific progroms manipulating large amays. 
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Tang [u, page 6941 modifies a loop nest so that the original loop's iteration- 

space traversal is modified and is replaced by a series of s m d  polyhedra esecuted 

one after the other. (The word '%hgn here is used differently than in Section 7-12.) 

Fig. 7.6-adapted from [44, page 6951-suggests a tiled loop's traversal pattern. 

The onginal loop was a doubly-nested loop traversing row-wise or column-wise. 

The tiled loop in Fig. 7.6 increases the depth of bop  nest from two to four. If the 

tile shape is chosen properly, tiling c m  reduce data cache conflicts by requiring 

fewer elements of each array to be present in the data cache at once to perform the 

given comput at ion. 

The tiles shown in Fig. 7.6 are U e  c h d s  used by ArrayDB plans in that 

array elements in a tile are processed in temporal proximity. However, the tiling 

optimization chooses tile shapes, whereas ArrayDB chooses chunk order (and not 

ch& shape). Despite this difference, ArrayDB7s memory optimization also results 

in better utiGzation of the memory hierarchy. ArrayDB minimizes the amount of 

memory used by AML plans by generating intexmediate and result arrays in pieces 

rather than in full, by reusing the buffer space used to store the pieces, and by 

considering different evalrration orders (such as row-major order and coliimn-major 

order). These techniques result in better memory utilization because pieces of 

several arrays can be fit into smaller and faster mernories such as cache, improving 

their hit rates. 

Compilers and optimizers for scalar-oriented M a y  languages and collection- 

oriented array languages face different problems when producing efficient array 

manipulation code. In a collection-oriented array language, the optimizer can per- 



form s UB-pushdown-like optimizations relatively easil. Once such optimizations 

are performed, however, the optimizer has to produce (and optimize if possible) low- 

level code that implements the rewritten high-level expression. In a scalar-oriented 

language, the low-level code-frequently containing loops-is written by the user 

and looprelated transformations cas be applied to such code. Howevero the com- 

piler may not be able to infer high-level transformations such as the ~ ~ ~ - p u s h d o w n  

transformation from such complev code. 

It may be possible to achieve middle ground in case of a language such as AQL- 

a scdar-oriented query language with low-level array manipulation primitives [36]. 

In APL,  high-level array operations can be defined using four array-related primi- 

tives plus such things as conditionals and arithmetic operations. Two of the array 

primitives create arrays; one performs subscripting (extracting a value from an ar- 

ray); and one determines the shape of an array. Optimization of AQL expressions 

is performed at the level of the primitive operations after replacing higher-level 

operations with their definitions. It is possible to perform SUB-pushdonm-like op- 

timizations on AQL expressions composed of low-level operators. In fact, it is 

possible to determine exactly which input array elements generate a given out- 

put anay element. That is, data lineage car be computed at the may-element 

level rather than just at the array-chd level. Nevertheless, because of arbitrary 

functional dependencies between the output array elements and the input array 

elements that produce them, it is not obvious how to generate chunk-iterator plans 

in which iterators read their input arrays only once. A potential advantage of AQL 

is that if new high-level operators are added to AQt, it is unnecessary to generate 
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remi te niles involving those high-level operators. Instead. the A QL optimizer tries 

to achieve the same effect with low-Ievel rewrites. Whether such an AQL optimizer 

is feasible, how exactly it would work, and how efficient it would be rernain open 

questions. 

7.2.3 Summary of Array Languages 

It should be evident from the survey of m a y  languages in this section that AML is 

not the first language to support array manipulations. Why was -4ML defined then? 

Why not use one of the previousl-defined languages for array manipulations? Why 

not provide query optimization support for one of the previously-dehed languages 

rather than defining AML and optimizing 4ML expressions? Collection-oriented 

array languages such as Nia1 and Matlab provide no optimization support; others 

such as RasQL provide limited query optimization and cannot express region-based 

or block-based array processing. Image Algebra is very expressive but its power 

makes query optimization difficult. Scalar-oriented programming languages are also 

very expressive but it is cioubtfd whether compilers for such languages cas perform 

complex data-flow nnalysis so that early data filtering can be performed. In princi- 

ple, AQL can offer a programming language's e4qressiveness and a query language's 

optimizability but the feasibility of its query optimizer remains unproven. AML 

attempts to strike a bdance between expressiveness and optimizability. It pennits 

arbi trary user-defined funct ions that map subarsays t O subarrays-some thing which 

no previous language permits. At the same time, it applies user-defined b c t i o n s  

to arrays in a structured manner so that array query optimization remains feasible. 



IlrrayDB minimizes memory use of AML plans by considering alternate evaluation 

orders for chu& iterators-something which is a &st among array que- eduators. 

One reason not to optimize programs in one of the exïsting collection-oriented 

array languages such as PIPL, Matlab, or Nd is that it may be difficult to recognize 

in such Imguages opportunities for the kinds of optimizations that AML permits. 

Further, not ail of the operators in these languages are index-based and are thus 

amenable to index-based optimizations. Therefore, only parts of these languages 

will be optimizable. (As an example, Guibas and Wyatt showed how lineage de- 

termination cas be performed on a small subset of APL operators. [23].) AML, by 

design, includes o d y  optimizable operators and therefore, optimization opport uni- 

ties are easily recognizable in AML. By identifying index-based manipulations in 

an APL program (for instance) and by translating them to equivalent AML expres- 

sions, it might be possible to extend the benefits of AML query optimizations to 

selected portions of APL prograrns. Moreover, it might be possible to abstract the 

rest of the APL program as a sequence of user-defined functions. After converting 

an APL program to an AML expression thus, AML query optimizations would be 

able to push data filtering operations through user-defined functions, if such an 

opportunity exists. It would be an interesting research question to determine the 

feasibility and effectiveness of such an approach to array query optimization. 



7.3 Supporting Arrays in Database Management 

Systems 

This section sunreys methods by which commercial and research DBMSs support 

array data. Section 7.3.1 covers how relational database systems provide support 

for array storage and manipulation. Section 7.3.2 describes some special purpose 

database systems built specihcally for arrays. 

7.3.1 Relational Database Systems 

Relational database systems provide array support using four rnethods: binary large 

objects (BLOBs), relations, abstract data types (ADTs), and optimized 4DTs. The 

first three of these methods are commonly amilable in commercial DBMSs; the last 

one is anilable in o d y  one research prototype a t  present. 

BLOBs 

An array stored in a BLOB is treated by a DBMS like o large ch& of uninterpreted 

data, with no semantics attached to it. Severe restrictions are placed on relational 

attributes of BLOB type. For instance, indexes cannot be created on them and 

they cannot be used in SQL clauses such as SELECT DISTINCT, COUNT (DISTINCT), 

CROUP BY, ORDER BY, PRIMARY KEY, and FOREIGN KEY [S, page 2901. m e n  using 

BLOBs, anay manipulations are performed by application programs outside of a 

DBMS. Although portions of a BLOBs c m  be selected and retrieved by an applica- 

tion program, the DBMS provides neither the query language to manipulate B LOBS 



nor the optimizations ( m e  SUB-pushdown) that can automatically perform early 

data filtering. Thesefore, worliing with BLOBs leads to idexible and inefficient 

array processing. 

Relations 

Arrays can also be stored as relational tuples made up of array indices and ar- 

ray values. Array manipulations can then be performed using SQL. As aLready 

mentioned ia Section 7.1.1 however, SQL queries for typical array manipulations 

such as convolution are unnatural and probably inefficient. In domains such as 

online analytical processing and some scientific computations where sparse arrays 

are ffequently used, modehg arrays as relations might offer adequate performance. 

ADTs 

Database systems that support user-defined data types and user-ciefined functions 

are called object-reiational DBMSs (OR-DBMSs) if the framework of a relational 

DB-MS is retained or ob ject-oriented DBMSs ( 00-DBMSs) if an object-oriented 

framework is adopted. To support arrays in an OR-DBMS or in an 00-DBMS, 

an array ADT dong with a set of functions (methods) to operate on arrays should 

be provided [66, 671. In some cases, such an array abstraction is provided by 

the DBMS . For example, the Informix Universal Server provides various modules 

(cdled DataBlades) to support complex data [48]. An Image DataBlade module 

is available that supports an image datatype, a wide voriety of image formats, and 

"Oracle supports a similar capability through cartridges. 



image-specific functions. Illustra [28], Postgres [6S], and Paradise [15] also support 

ADT extensions. S tandardkation initiatives are undenvay for an image datatype: 

part five of the upcoming SQL standard for multi media (SQL/MM) is devoted to 

still images [64]. 

In a .  OR-DBMS supporting ADTs, SQL queries have relational and non- 

relational parts. Non-relational parts are made up of user-defmed functions and ex- 
* 

pressions involving user-defined types-for example, AML expressions. OR-DBMSs 

may perform a vrtriety of optimizations on such queries. For example, they may o p  

timize the placement of expensive user-defined predicates (the non-relational parts) 
" 

within a relational plan [27]. ' Nevertheless, optimization of the embedded non- 

relational portion of the query itself is very limited. User-defmed functions are 

black boxes. Without some knowledge of the behavior of such functions, many 

optimizations, such as reordering of operations, are not possible. In particular, 

SUB-pushdown-like optimizations are not performed. Even pipelined evaluation- 

which enables producer-consumer relationships using memory buffers-for such 

non-relational expressions might not be available. In Illustra, for example, results 

of every ADT method are wntten to disk, and no inter-method optimizations are 

considered [û9]. 

' ~ u c h  work has b e n  done in optimizing queries with user-defined predicates; two examples 
are 1131 and [26]. In [26], the results of user-defined methods are cached to avoid unnecessary 
rnethod invocations. Interestingly, expensive conditions can also occur in a purely relational SQL 
query when the query involves a subquery and the subquery cannot be converted into a join. 



Optimized ADTs 

User-defined functions can be expensive to etduate. In fact. the non-relational 

parts might dominate the total evaluation time of an SQL que- in an OR-DBMS. 

Hence treat ing user-dehed functions as black-boxes with fked cos t s is inadequa te. 

Optimizing non-relational expressions poses several challenges to an SQL optimizer. 

1. Most SQL optimizers perform cost based optimization and so cost measures 

need to be assigned to non-relational operators and to eqxessions made up 

of such operators. 

2. Type-specific optimizers are needed because different data types have different 

operators with distinct semantics. 

3. These optimizers need to be integrated with the SQL optimizer. SQL's phys- 

i d  operators and a user-dehed data type's physical operators might be 

difIerent. Some way of bridging this gap is required. 

PREDATOR is a framework in which several type-specific optimizers can be 

plugged into the system's edua to r  [61]. PREDATOR supports enhunced abstract 

data types  (EADTs). An E A D T  is an ADT with a type-specific optimizer that can 

optimize expressions made up of that ADT's operators. Together, the array data 

model, AML query language, AML optimizer, and AML evaluator can be treated as 

an array E A D T  which can be plugged into PREDATOR. In PREDATOR, object- 

relational queries are decomposed into relational and non-relational parts, and the 

latter are handed to type-specific optimizers for optimization. Vaxious EADTs 

may have distinct query languages, and E-ADT optimizers rnay have different query 



evahation techniques. Various ty-pe-specific optimizers may share the same file sys- 

tem interface, storage manager, and record and schema utilities. The PRED.4TOR 

proposal suggests m i o u  types of optimizations for EADTs-for esample, rewrite 

optimization, algorithmic optimization, and constraint op timization-and suggests 

pipelined evaluation for E A D T  expressions. (Some of these optimizations for array 

expressions are studied in this thesis.) 

7.3.2 Array Database Systems 

In contrast to the general-purpose relational DBMSs, array database systems are 

specifically designed for arrays and other multidimensional data. Building a ded- 

icated array DBMS allows its designers maximum flexibility to explore design al- 

ternatives in diRerent system components. Such a DBMS is likely to offer best 

performance for array queries. 

Array database systems are typically designed for specific application domoins. 

For example, in scientific computing, three file-based array storage abstractions are 

widely used: netCDF [50], CDF [46], and HDF [70]. These packages-which con be 

thought of as 110 librories, and thus are array database systems in o d y  a limited 

sense-filled a data-management vacuum that existed because of the inability of 

DBMSs to handle bulbry array data. 

NetCDF provides an API that is callable fiom high-level languages such as For- 

tran, C, and C++. It stores data in self-describing, machine-independent files. 

Array- is the primary data type in a netCDF file. In netCDF version 2.4, it is possi- 

ble to read parts of an array rather thôn the full array (a functionality provided by 



AML's SUB). In addition, mapped array accesses are possible. For instance, a two- 

dimensional array in memory could be the transpose of that on disk. Net CDF per- 

m i t ~  only one iinlimited dimension per dataset. KetCDF provides no optirnizer for 

optimizing array manipulations and thus early data filtering cannot be performed 

aut~matically~ No plans are generated for array manipulations and therefore, no 

physical query optimizations are performed. 

Array database systems such as T2 [9] and Titan (101 have specialized query 

languages t argeted for remote-sensing applications. (The query language of T2 was 

described in Section 7.2.1.) The RasDaMan array DBMS [3]-designed to handle 

raster data, not just satellite images-is more sophisticated than either T2 or Titan. 

It has an array data model, the RasQL query language (mentioned in Section ï.2.1), 

a storage system that stores arrays in tiled form (described in Section 1.1.2), and 

a query optimizer (described in Section 7.2.1). 

ArrayDB is sirnilar to the database systems such as RasDaMan and T2 in that 

user-dehed functions are applied to arrays. ArrayDB is more flexible than these 

. database systems because AML, on which it is based, dows  user-defined functions 

to be applied to subarrays, not just to individual array elementç. This allows 

ArrayDB to directly implernent and optimize a \vider class of array operations. 

Multidimensional OLAP (MOLAP) systems such as Essbase are special-purpose 

array DBMSs for decision-support systems that store data cubes as multidimen- 

sional arrays [19]. Array operations in MOLAP systems (dso called data cube 

s yst e m s )  are libre spreadsheet operat ions: for example, reducing the dimensionalit y 

of the cube by aggregating one or more dimensions, reducing the cube's length in a 



dimension by aggregation possibly followed by slab selection. ranking (sorting) and 

so on. In OLAP parlance, such operators are given catchy names such as pzvotzng, 

rollup, dri l l -dom and dice-and-dice. Since OLAP queries are highly specialized. 

the most important type of query optimization in OLAP systems attempts to an- 

swer a query by matching it against a set of pre-computed queries (materialized 

views), and by perforrning some aggregations on a chosen materialized view. Such 

queries can benefit from SUB-pushdown-like optimizations. Dimensions of data 

cubes have complex hierarchies and to perforrn aggregations on such dimensions, 

APPLY-~&~ aggregation fimctions with variable-shaped domain boxes are needed. 

SUB-pushdown-like optimizations in the presence of such aggregation fimctions are 

more difficult to perform than when the domain and range boxes have fixed shapes. 

Image information systems [Il] are large image repositories with image in- 

put /output and processing capabilities. Image database systems fonn a component 

of image information systems. An image database system can be considered an ar- 

ray database system in a limited sense because although an image database system 

permits image storage and retrieval, its image manipulation capabilities are very 

limited. Image database systems focus on the problem of choosing images fiom a 

set, not on the problem of rnaeipulating the images themselves. Thus, they are 

cornplementary to a system such as ArrayDB. A typical retrieval query in an image 

database system selects certain images from a large set of images. Such queries give 

some textual information to identifjr the images to be retrieved, plus information 

about color, size, and type of features or provide a sample image and request the 

image database systems to retrieve ail the images that look like the sample image. 



To help answer such queries, image database systems store metadata about images. 

The metadata is mainly of tnro forms: text-based (a short description of the images 

and/or a set of keywords related to images) and content-based (feature data). After 

an image information system has selected a set of images based on their content. a 

language such as AML can be used to manipulate those images. 



Chapter 8 

Conclusions and Future Work 

This chapter summarizes the research reported in this thesis and points out some 

directions for future research. 

8- 1 Conclusions 

The research reported in this thesis addresses the general problem of how to ma- 

nipulate a given collection of arrâys. The array manipulation problem is viewed in 

a database context and accordingly, issues such as a query language for array ma- 

nipulations, optimizations of array manipulations, and promotion of physical data 

independence are addressed. 

AML is proposed as an array query and manipulation language. Array manip 

dations are diverse and domain-specific and therefore, extensibility is a desirable 

property of an m a y  manipulation laquage. AML is extensible because it is defined 

to be a framework for array manipulations: the operators (user-defined functions) 



producing new array values are extemal to AML. XML queries merely specifj- how 

user-defineci functions are applied to arrays to be manipulated- AML's fimction ap- 

plication operator is unique among simi1a.r existing operators in that it maps subar- 

rays of arbitrary shape to other arbitrarily-shaped subarrays, rather than mapping 

just an array element (or a subarray) to a single array element. The arrays on which 

user-defined functions are applied can be formed by combining two or more arrays 

or Ey  taking selected parts from some other a.rrays. For doing such array filterings 

and combinations, two other AML operators are provided. AML's framework ap- 

proach to defming m a y  manipulations is very powedbl. Any array manipulation 

can be defined in AML by assuming the existence of powerfiil user-dehed func- 

tions. However, AML is designed to detect and exploit structural regulaxities in 

cornplex-looking array manipulations automaticdy if such regularities exist . 

AML expressions can be treated declaratively and subjected to rewrite opti- 

mizations. The logical rewrites are done using the AML logical rewrite d e s .  The 

rules are used to systematically transform an AML expression tree so that the data 

filtering SUB operators are pushed as far do-wn as possible. This SUB-pushdown 

heuris tic-which achieves early data filtering-has three effects. First , it reduces 

the number of applications of the (potentially costly) user-defined functions. Sec- 

ond, it reduces disk 1/0 because AML permits disk data read functions to be treated 

like user-defined functions. Third, it reduces memory costs of AML plans because 

smaller intermediate m a y s  are generated. The idea of WB-pushdown is not new, 

but its application in the presence of a general function application operator such 

as APPLY is shown for the first time in this thesis. 



AML plans are optirnized for memory use by considering alternate evaluation 

orders (such as row-major order and column-major order) for the plan operators. 

A dpamic programming algorithm minimizes the memory requirement of -AML 

plans. This approach is unique to AML. 

The thesis shows AML1s usefdness as an array query and manipulation lan- 

guage by compazing it to Image Algeba. To show the feasibility of -\ML query 

optimization techniques, an AMGbased m a y  database system called ArrayDB was 

b d t .  ArrayDB7s performance was tested on a suite of satellite image processing 

queries. The empirical results show that AML query optimization techniques are 

effective and are not too costly. AML operators capture enough information about 

array manipulations so that usefid array queries can be op timizeù. 

8.2 Future Work 

The research reported in this thesis can be extended in m q  ways. The three direc- 

tions identiiied in this section are: (1) language extensions and more general query 

optimization techniques; (2) integration of arrays with relations; and (3) parallel 

eduat ion of AML queries. The following sections elaborate on these extensions. 

8 -2.1 Language and Query Optimization Extensions 

AML operators can be divided into two classes. SUB and MERGE form one class. 

Their effect is to filter and rename the anay elements appearing in their operands. 

In contrat, APPLY can generate new values using user-defined functions. AML can 

be extended by adding new operators to either of these two classes. For example, a 



transpose operator (or its more general form: a dimension reordering operator) can 

be added to the first class. APPLY can be made more versatile in several n-ays: by 

associating weights with the elements in its domain box; by parameterizing these 

weights; by making the domain box shape variable; by making function applications 

dependent on some of the previous function applicatioas; and so on. 

Adding new operators to the fkst class has relatively less impact on query 

optimization techniques. New operators in the f is t  class should still permit the 

determination of lineage information: given an array element in the result array 

of an AML expression, it should be possible to determine the elements in the 

base arrays that participated in its computation. With such lineage information, it 

should not be too difficult to produce AML plans that avoid reading and processing 

those elements of base arrays that have no bearing on any of the result array 

element S. 

Extending AMI; by permitting more general forms of APPLY operator may make 

the query optimization considerably more difficult. For example, it is not obvious 

how to optimize an AML expression in which APP LY operators have variable-shaped 

domain boxes-especially if the shapes of the domain boxes are data dependent and 

are not known at query compile time. Variable-shaped domain boxes are needed 

in application domains such as sequence query processing and OLAP. Expression 

optimization containhg operators that f d l  into neither of the two classes {SUB, 

MERGE) and {APPLY) is also likely to be chdenging. 

One reason for effectiveness of AML query optimizations is that SUB, MERGE, 

and APPLY work well together and yield usefid logical rewrite d e s .  In fact, how 



CE4 PTER 8- CONCL USIOXS AND FUTURE WORK IS5 

well a new operator interacts with existing ..ML operators and whether it fields 

useful rewrite d e s  could be criteria when judging the new operator's candidacy 

for inclusion in AML- 

It is possible to consider some new query optimization techniques without adding 

new operators to AML or without extending the power of APPLY. In this thesis. the 

ody  information about an APPLY function that is used during query op timization is 

the shapes of its domain and range boxes. The functions themselves are considered 

bladi-boxes for query optimization purpose: all the APPLY functions with a fxxed 

domain box shape and a fixed range box shape are optimized the same way. 

-4 new class of optimizations can be considered by using semantic information 

of user-defined functions. For example, suppose that two A ~ P L Y  functions f and 

g appear in an AML expression in succession and in that order. Further, suppose 

that f's range box shape matches g's domain box shape and that g's function 

applications are tiled. In such a case it may be possible to combine the two functions 

into a composite function h = f O g. If h is used in place of f and g, the resulting 

query may require less buffer space and may be quicker to evaluate than the original 

query. 

As mentioned in Section 7.2.1, at least 4 categories of optimizations that involve 

user-defined functions can be identified: those that change the ordei of two user- 

defined functions, those that combine two or more user-defined functions, those 

that split a user-defhed function into two or more parts, and those that exploit 

the dependency of a function application on some of the "previous" function ap- 

plications on the same ôrray. Performing these types of optimizations for arbitrary 



user-dehed functions is dîfficult. One problem is how to convey the semantics of 

the user-dehed functions to the query optimizer. One way to do that is to restrict 

the domain of the user-defined functions and to equip the query optimizer n-ith the 

rewrite rules from those domains. For example, a query optimizer with bon-ledge 

of 1inea.r algebra and matrix algebra may be able to optimize many queries using 

identities from those domains. In addition, restricting user-deked functions to a 

finite set may be necessary to manage complexity. How to systematically appfv 

rewrite d e s  is another challenge. 

8.2.2 Integration of Arrays wit h Relations 

Relational database systems are in widespread use. The idea of an RDBMS provid- 

ing bullt-in support for relations and arrays (and possibly msiny other data types) 

raises several interesting research questions, some of whkh are identified in this 

section. Some of the ideas in this section have been adopted from [60]. 

Eere is an outline of how an RDBMS that permits relational attributes of type 

"a.rrayn might work. Consider a relation c d e d  Employee stored in such an RDBMS. 

Employee contains the following information about employees that work in a com- 

pany: name, date of birth, and a digital picture. The schema for Employee is 

(namerstring, do b:Date, picturerArray) . The following query ret rieves the names 

and clipped, low-resolution pictures of all the employees born after January 1, 1970. 

SELECT E . name, AML ( " c l i p  (lowres CE. picture) ) Il) 

FROM Employee E 

WHERE E.dob > ~01/01/1970~ 
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The non-relational (array) expression is flagged by the word -XML-. This enables 

the SQL paner to hand over the string within parentheses to the AML passer. 

Suppose that clip and lowres are hi&-level operaton that are defhed using SUB 

and APPLY, respectively. The AML parser performs rnacro expansions of clip and 

lowres during pusing and generates an AML expression. The AMI, optimizer then 

optimizes this AMI; expression and generates a plan for it. The top level SQL 

optrmizer treats the AML plan as a user-defined fuxiction with some cost which it 

learns fiom the AML optimizer. The SQL optimizer then places the array plan at 

an appropriate place within the relational plan. 

The PREDATOR proposal [61] suggests an architecture for a DBMS that sup 

ports enhanced abstract data types-data types that axe enhanced by type-specific 

query optimizers. AU types share some common utilities such as storage manager, 

records and schema utilities, a d  file system interface. If queries are globally opti- 

mized, types dso share a utiiity that performs cost function mappings. Types such 

as relations and arrays have sepaxate query languages, optimizers, and evaluators. 

Primitive types such as integers have no such enhancements. If and when S Q L  

based relational DBMSs start to offer built-in support for types such as arrays, the 

system architecture would becorne more monoli thic. 

8.2.3 ParalIel Evaluation of AML Queries 

As mentioned in Section 7.2.1, AML is a collection-oriented language. Sipelstein 

and Blelloch have observed that collection-oriented languages are data-parallel lm- 

guages [62]; the parallelism cornes fiom applying an operation over a potentidy 
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lasge set of data (arrays in case of -4ML). (In contrast, in control-parallel languages. 

different operations can be executed in parallel. ) Data-parallel languages permit 

efficient pardel  implementations because the operators in such languages provide 

implicit parallelism. The compiler does not have to do complex loop analysis to 

find parailelism, 

Some of the issues involved in building a parallel evaluator for -4ML are: data 

layout schemes, methods for coordinating data retrieval, methods for coordinating 

computation, and methods for interprocessor communication- 

Due to its iterator-based implementation, ArrayDB's query evaluator is well- 

suited for p d e l  implementation. For example, a parent iterator that fills its 

interna1 data b d e r  by m a h g  n GetNext() c d s  (in the serial case) to its child 

may be able to use n threads instead to do the job. The threads can be as- 

sigaed to one or more processors. It  also seems possible to do thread synchroniza- 

tion withïn the iterator paradigm. Data partitioning-the way data is partitioned 

among processors-would be an important issue in a pardel AML eduator .  The 

data partitioning problem for user-dehed functions that consume and produce 

one-dimensional streams has been studied [47]. In [47], the stream-processing user- 

defbed functions (functions similar to APPLY functions) are classified based on 

the shapes of their input boxes (called "windowsn in [47]). Windows can have unit, 

fixed, or variable lengths and successive windows rnay or may not overlap. The ideas 

in [47], coupled with linearization techniques mentioned in Section 7.1.2, might pro- 

vide a suitable starting point for studying data partitioning schemes for a pardel  

AML evduator. SUB might prove usefil for defining different data partitions as 
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views on a set of base arrays. Because of the "sliding domain box' semantics of 

APPLY, some data duplication may be necessary. 

During the design and implementation of Titan. ' the problem of parailel eval- 

uation of very speciâlized foms of queries on remote-sensing data was studied [IO]. 

Prior work such as this should be useful when building a parde l  AML evaluator. 

'Titan is a pardlel shared-nothing database system for remot~sensing data. 



Appendix A 

Proofs of Logical Rewrite Rules 

A.1 Introduction 

This appendix contains the proofs of the non-trivial logical rewrite rules in Chap 

ter 2. A few general remarks about the theorems follow. 

Sue and MERGE operators map slabs in their input arrays to slabs in their 

output arrays. Therefore, proofs of the theorems show that the original expres- 

sions and the rewrïttea expressions generate the same array slabs. Since s WB and 

MERGE do not change or permute anay c d  values in slabs, it then follows that the 

resdt arrays from the original expression and the rewritten expression are identical. 

AR APPLY operator decides whether a subarray of the input array participates in 

producing (part of the) result array based pureiy on whether the APPLY patterns 

select the lower-left corner element of the subarray or not. Accordingly, proofs of 

the theorems involving APPLY operators show that the original expressions and the 

rewritten expressions select identical lower-left corner elements. 



The fouonring observations, which follow from the definitions of SWB and MERGE. 

help in the proofs of some of the theorem. Each observation establishes correspon- 

dences between the i-slabs of the output array and the i-slabs of the input arrays 

of a par t icdu AML operator. The i-slabs themselves are numbered from O: that 

is, the slab number is the index of the i-slab in an array. 

Observation A.l  For the AML expression Y = S U B ~ ( P , . ~ ) ,  where P # 0 .  the 

i-slab number  j (j 2 O )  of Y equals the i-slab number (index(P, j  + 1)) of A. 

Observation A.2 For the AML expression Y = SUB;(P,  A), where P # 0 .  the 

i-slab number  j  ( j  2 O )  of  4 equals the i-slab number  (count(P, j )  - 1) of Y. if 

P[ j ]  = 1; if P[j]  = O ,  the i-slab number j ( j  2 0) of A does not appear in the 

output array Y .  

Observation A.3 In the merge-balanced AML expression Y = MERGE;(P, A, B, b) ,  

wheîe P # O and P # 1, the i-slab nvmber  j ( j  2 O )  of A equals the i-slab number  

(index(P, j + 1)) of Y; the i-slab number j  (j 2 O )  of B equals the i-slab number  

( index(F,  j  + 1)) of Y .  

Observation A.4 In the merge-balanced AML expression Y = M ERGE;(P, A, B, 6), 

where P # O and P # 1, the i-slab number j  ( j  2 0) of Y equals the i-slab number  

(count(P, j )  - 1) of A if Pb] = 1. The  i-slab number j ( j  2 O )  of Y equals the 

i-slab number (carnt(F, j )  - 1) of -4 ijf P b ]  = 0. 

A.2 Proofs 

Theorem 2.4 (combining two SUBS) S U B ~ ( Q ,  SU&(P, A ) )  = S U B ~ ( R ,  A),  where 
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P #O, Q # 0, and Ris  defined by: index(R. j + 1 )  = zndex(P.index(Q.j+l)+1). 

for j 2 0. 

Proof. Let Y = SUB~(Q)  SUB~(P. -4)) and let Z = SUB,(R, -4). Further. let -Y = 

SUB;(P, A) so that Y = SLIB~(Q, -Y). Y = Z wiU be proved by shon-ing chat the 

i-slab number j (j 2 O) of Y is identical to the i-slab number j ( j  3 O )  of 2. 
* 

According to Observation -4.1 appLied to the AML expression Y- = SUB;(Q, -Y). 

the i-slab number j ( j  2 O) of Y' is the Gslab number ( index(Ql  j + 1)) of S. 

According to Observation A.1, applied to the -4ML espression -Y = suei(P, -A), the 

i-slab number ( indez(Q, j + 1))  of X is the i-slab number ( index(P,  index(Q, j + 
1) + 1)) of A. 

Applying Observation '4.1 to the AML expression Z = SUB;(R, -A), ive get that 

the i-slab number j (j 2 O )  of Z is the i-slab number ( index(R,  j + 1))  of A. 

From the definition of R, the i-slab number j (j 3 O )  of Z is the i-slab number 

(index(P: index(Q, j + 1)  + 1)) of A for alJ j 2 O. 0 

Theorem 2.9 (associativity of MERGE) Suppose that the AML expression 

MERGE~(Q, MERGE;(P, A? B, 6), C, 6) is merge-balanced, P # O, P # 1, Q # 0, and 

where, for j 2 O, R and S are defined by: indez(R, j + 1) = i ndez (Q ,  index(P, j + 
1) + 1)) and ~[count (R ,  j) - l] = Q[j] if Rb] = O. Furthermore, the AML expression 
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on the right hand side is merge-balanced. 

Proof. Let yP = MERGE;(P? B,6); let yQ = MERGE~(Q,  lFP. C.6): let Z" = 

MERGE((S? B, C, 6); and let zR = MERGE~(R, -4, ZS). The goal is to prove that YQ 

and ZR have the same i-slabs. Moreover, it needs to be shown that if the original 

-4ML expression is merge-balanced, then so is the rewritten one. 

Since the MERGE operator does not reorder or duplkate the slabs coming fiom 

the same array, to prove that YQ and .ZR have the same i-slabs? it s d c e s  to prove 

the following: i-slab j (j 2 0) of YQ comes from a particular m a y  (A, B, or C) in 

the origind expression ifE the i-slab j (j 2 O)  of ZR comes fiom the same array in 

the rewritten expression. 

Let us choose C to be the a r b i t r q  array. ' That is, it will be shown that : i-slab 

j ( j  2 O )  of YQ comes from C in the original expression iff the i-slab j (j 2 O )  of ZR 

comes from C in the rewritten expression. Suppose that the preceding statement 

is denoted by E. A proof of E follows. 

As per Observation -4.4 applied to YQ = MERGE;(Q, yP, C, 6) , the i-slab j 

(j 2 0) of YQ comes fiom C iff Q [j] = O. For easy reference, the 'iff' condition of 

the previous statement is reproduced below as the condition CL: 

As per Observation A.4 applied to ZR = MERGE;(R,A, ZS, b), the i-slab j 

( j  2 O) of ZR is equal to the i-slab (count(z, j) - 1) of ZS iff R[j] = O. As per 

'The proofs when the arrays A or B are chosen are simiiar and are therefore, omitted. The 
definitions of R and S aIso change when either of A or B is chosen to bc the arbitrary array. 
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Observation A.4 applied to = MERGE~(S, B. CI b),  the i-slab (count(z,j) - 1) 

of 2' cornes from C iff Rb] = O and S[c<nrnt(R, j )  - l ]  = O. For easy reference. the 

'iff' condition of the previous statement is reproduced below as the condition C?: 

C2 : Rb] = O and S[count(R, j )  - i] = O 

E is proved if it can be s h o w  that for all j 3 O, Cl * C2. 
Proof of Cl =+ C2. First: it will be shown that Q [ j ]  = O + Rb] = O. From 

R's definition, it follows that, for any j' 2 O, if R F ]  = 1, Qljl must be equal to 1. 

(There could certainly exist indices j" 2 O such that & kt'] = 1, but Rb"] = O.) The 

conclusion Rb'] = 1 + Qm = 1 is just the contrapositive of Q [ j ]  = O * Rlj]  = O. 

Having established that Q[j] = O =+ Rlj] = O ,  ~ [ c o u n t ( R ,  j )  - l] = O follows 

imxnediately from the defini tion of S. 

Proof of C2 + Cl- Given that R[j] = O and S[count(R, j) - 11 = O, Qb] = O 

follows immediately from the definition of S. 

Next , let us prove that R and S are uniquely defhed for a.ll j > O. R's definition 

gives all the indices j' 2 O where Rb'] = 1 and thus bits of R are uniquely defined. 

For S, observe that the condition R[j] = O is equivalent to the condition Rlj] = 1, 

and thus (count(x, j )  - 1)  generates the successive integers 0,1,2, . 

Finally, let us prove that if the original expression is merge-balanced, then so is 

the rewritten one. In the original expression, Ab] = B[j] = Elj] = Fp b] = f~ [ j ]  , 

for aU dimensions j # i, because the original expression is merge-balanced. In the 
4 

rewritten expression, Ab] = &] = e[j] = S b ]  = 5~b] ,  for a l l  dimensions j # i, 

because only the MERGE patterns in dimension i changed. Thus, the rewritten 
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expression is merge-bdanced in ail the dimensions j # i. 

In the original expression ~%[i]  = $1 + +[il, and I'Q [il = -Z[i] + B[i] + (?[il 

because the original expression is merge-balanced. Ln the rewritten expression, 

fs[i] = g[i] + c[i], or othenvise the rewritten expression c-ot be identicd to 

the original one. Simiiarly, ~ f [ i l  = x[i] + *[il = X[i] + @[il [il f [il, or othem-ise 

the rewritten expression c a ~ o t  be identical to the original one. Therefore, the 

rewritten expression is merge-balanced in dimension i. O 

Theorem 2.10 (pushing SUB through MERGE, version 1) Suppose that 

MERGE;(~,  A, B, 6 )  is merge-balanced, and P # O, P # 1, and Q # O. 

sue;(&, MERGE;(P, -4, B, 6)) = MERGE~(T, s u ~ i ( R ,  -A),  SUB;(S, B), 6) 

where the resulting MERGE is balanced, and for j 2 O, R, S, and T are defined 

as  follows. R[j] = Q[indez(P, j + l)]; Sb] = Q[indez(P,j + 111; and T [ j ]  = 

P[index(Q, j + l)]. 

Proof: Let Y' = MERGE~(P, A, B, 6); let YQ = SUB~(Q,Y'); let zR = SU%@, A); 

let ZS = SUB;(S, B);  and let ZT = MERGE~(T, zR, ZS, 6). The goal is to prove 

that YQ and zT have the same i-slabs. bloreover, it needs to be shown that if the 

MERGE operator k the original expression is balanced, then the MERGE operator 

i n  the rewritten expression is also balanced. 

Since SUB and MERGE operators do not reorder or duplicate the slabs coming 

from the same array, to prove that YQ and ZT have the same i-slabs, it s f i c e s  to 

show the following three statements: (1) i-slab j (j 2 O) of A is in YQ iff it is in 
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zT; (2) i-slab j ( j  2 0) of B is in YQ iff it is in 2': and (3) i-slab j ( j  2 0) of IQ 

comes from A iff the i-slab j ( j  2 0) of zT comes h m  -4. 

The first statement above can be proved as follows. A s  per Observation -4.3 

appiied to YP = MERGE~(P, A, B, 6), the i-slab j (j  2 O)  of -1 is equal to the 

i-slab inder(P, j + 1) of yP. Now the i-slab indez(e j + 1) of YP is in YQ 3 

Q[index(P, j + l)] = 1. 

Now the i-skb j (j 2 O )  of A is in zT in Rljl = 1. From the definition of 

R, the i-slab j ( j  2 O) of A is in zT iff Q[index(P, j + l )]  = 1. By  comparing 

this conclusion to the one reached in the previous paragraph, the first statement is 

proved. 

The proof of the second statement-which involves using the definition of S-is 

symmetric to that of the first statement. 

The third statement can be proved as follows. -4s per Observation A.1 applied to 

yQ = S U B ~ ( Q ,  YP), the i-slab j ( j  2 O )  of YQ is equal to the i-slab inder(Q, j + 1) 

of YP. Now the i-slab index(Q, j+l)  of YP comes from Aiff P[index(Q, j+l)]  = 1. 

The i-slab j (j 2 O) of ZT comes fiom A iff Tb]  = 1. From the definition of T, 

the i-slab j ( j  2 O) of zT comes from -4 iff P[inder(Q, j + I)] = 1. By comparing 

tiiis conclusion to the one reached in the previous paragraph, the third statement 

is proved. 

Finally, let us prove that the MERGE operator in the remitten expression is 

bdanced. The MERGE operator in the original expression is balanced and therefore, 

for all the dimensions j # i,  AI^] = Bk]- In the rewritten expression, ZRb] = Ab] 
and gs[j] = Ëb] for all j # i because the SUB operators with the patterns R and 



S do not change the array lengths of their argument arrays in dimensions other 

than dimension i. Therefore, the MERGE operator in the ren-ritten espression is 

balanced as far as all dimensions j # i are concerned. 

Next, let us prove that the MERCE operator in the rewritten expression is b d -  

asced in dimension i. fp[i] = +q[i] + B[i] because the MERCE operator in the 

original expression is balanced. Suppose that, in the original expression, the SUB 

operator deletes a i-slabs of -4 and b i-slabs of B (a 2 O, b 2 O). Therefore, 

f ~ [ i ]  = X[i]  + +[il - a - b- Now in the rewritten expression, the SUB operators 

must delete a i-slabs fiom A and b i-slabs from B because otherwise, the two ex- 

pressions WU not be equivalent. Therefore, ~ ! [ i ]  = .@] - a and *[il = d[i] - b. 
4 

New ~ ~ [ i ]  m u t  be equd to YQ[i] because otherwise, the two expressions will not 

be equivalent . Therefore, $[il = A[i] + B[i] - a - b. Now '~[i] + Zs [il is equal 

to (A[ij - a) + (g[i] - b) whidi, in turn, is equal to ~ ~ [ i ] .  Therefore, the MERCE 

operator in the rewritten expression is balanced in dimension i. O 

Theorem 2.13 (pushing SUB into APPLY) Suppose that P and R are APPLY 

patterns in dimension il P # O, Q # 0, and Sf[i]  > 0. 

For all j 2 O, R is defined as follows. (v denotes a logicd OR operation on 

bits.) 
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if P b ]  = 1; R[j] = 0 if Pb] = 0- 

S is defined as follows. For alI t such that O 5 t < Rr[ij. 

if P[j]  = 1 and Rb] = 1. 

Proof. Let YP = APPLY( f ,  A, Pi = P )  and let YQ = SU&(Q, YP) .  Further, let 

ZR = APPLY( f, A, Pi = R) and let ZS = SUB;(S, zR). The goal is to show that YQ 

and ZS have the same i-slabs. 

Let the phrase "f-application on the i-slab j of An (where j 2 O )  refer to a 

collection of function applications when the left edge of f's domain-box is situated 

on top of the i-slab j of A. 

That both yQ and 2' have the same i-slabs can be shown by proving the 

following statement : for all j 2 O and for all t where (O 5 t < RI [il), the t-th i-slab 

(O 5 t < Rf[ i ] )  resulting from the f-application on the j-th i-slab ( j  2 O)  of A is 

in YQ LE it is-in ZS. 

Neither SUB nor APPLY permute the orders of the i-slabs that they process and 

therefore, the shb n-bers aad the orderings ammg the k i-slabs (1 5 k 5 Ef[il)  
that are indexed by t in YQ and in ZS axe preserved. Moreover, it is sficient 

to consider mappings among the i-slabs because this rewrite d e  copies the AP- 

PLY patterns P, (n # i )  from the original expression to the remitten expression. 

Therefore, identical function applications happen on the correspondhg i-slabs in 

the original expression and in the rewritten expression. 

Consider the AML expression on the left-hand side of the rewrite d e .  The f- 
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application on the i-slab j ( j  2 0) of A produces the Rf [il Cslabs (((count(P! j) - 

1) Rf [il) + t )  (where O 5 t < Ef [il) of YP iff Pb] = 1. Each one of these i-slabs 

(((count(P, j )  - 1) Rf[il) + t) (where O 5 t < Rf[i]) of YP is present in I'Q iff 

the corresponding bit Q[((count(P, j) - 1) - Bf[i]) + t] = 1 and Pb] = 1. For easy 

reference, the 'iff' condition of the previous statement is reproduced below as the 

condition CI : 

Cl : Q[((count(P, j )  - 1) - &[il) + t] = 1 and Pb] = 1 

Now consider the AML expression on the right-hand side of the rewrite rule. The 

f-application on the i-slab j  (j 2 O) of A produces the gf [il i-slabs (((count(R, j )  - 

1) - Ef[il) + t )  (where O 5 t < Rj[il) of Z R  iff Rb] = 1- Each one of these i-slabs 

(((count(R, j) - 1) .Gf [il) + t )  (where O 5 t < &[il) of ,ZR is present in 2' iff 

the corresponding bit S[((count (R, j) - 1) Zf [il) + t] = 1 and R[j] = 1. For easy 

reference, the 'ifE' condition of the previous statement is reproduced below as the 

condition Cz : 

C2 : S[((count(R, j) - 1) - gf [il) + t] = i. and Rb] = 1 

The theorem is proved if it c m  be s h o w  that for ail j > O and for ail O 5 t < Ef [il, 
c, c-. c,. 

Proof of Ci C2. Choose an arbitrary j ( j  > 0) and an arbitrary t (O 5 t < 

&[il). First, i t  will be s h o w  that Ci + Rb] = 1. Since Q[((count(P, j )  - 1) 

Rf [il) + t] = 1 for the pa.rticuIar value of t, it can be concluded that 
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~ ~ ~ ' - ' ~ [ ( ( c o u n t ( ~ ,  j )  - 1) - Ef[ i] )  + t] = 1 because the logical OR operation is 

involved and one of the R [il bits is ho-  to be 1. This c&nclusiono the assumption 

P b ]  = 1' and the definition of R d o w  us to conclude that Rb] = 1. 

Given that Pb] = 1 and Q[((count(P, j )  - 1) - Ef[il) + t ]  = 1, and hav- 

ing proved that R[j] = 1, it c m  be concluded-using the definition of S-that 

S[((cmt(R,  j) - 1) - Rr[il) + t] = 1, where O 5 t < Zf[ i] .  
Proof of Cz Cl. Once again, choose an arbitrary j (j  2 0) and an arbitrary 

t (O 5 t < %[il). First, it wiU be shown that C2 + Pb] = 1. Given Rb] = 1  

and the definition of R, Plj] = 1 follows. Given that R[j] = 1, P[j]  = 1, and 

s [ ( ( c m n t ( ~ ,  j)-1) -Rf [i])+t] = 1  (where O 5 t < gf[i]) ,  it can be concluded-using 

the definition of S-that Q[((caunt(P, j) - 1)  gt[i]) +t] = 1 (where O 5 t < gf [il). 

Thus, C2 3 Cl has been proved- 

F i n a ,  it will be shown the R and S are defbed for all indices j  2 0. From 

R7s definition, it foLlows that if Rb] = 1, then P[j]  = 1. Thus, the expression 

(((count(R, j )  - 1) - Zj[ i] )  + t )  in the definition of S generates the consecutive 

integers O, 1,2,3, - - - and therefore, S is defined for all j  >: O. It follows from R's 

definition that Rb]  is dehed whenever Pb] is and thus R is defined for ail j > 0. 
O 

Theorem 2.14 (pulling SUB out of APPLY) Suppose that P and R are APPLY 

patterns in dimension i, P  # O ,  and D [il > O. 

A P P L Y ( ~  , A, Po, Pl, - , P, - - -) = APPLY( f ,  SUB;(Q, A),  Po, Pl, , R, -. -) 



Q is defined as follows. (For notational con~enience~ the definition of P[ j ]  is 

extended such that Pb] = O for all j < O. V denotes a logical OR operation on 

bits.) For a 3  j 2 O, Qb] = O iff P[t] = O. 

R is defined as follows. For all j 2 O, R[count(Q, j )  - 11 = P[j]  if Q [j] = 1. 

P ~ o o f .  Let yP = APPLY(~ ,A ,  Pi = P) and let ZQ = S U B ; ( Q ~ . ~ ) .  Further. let 

zR = A P P L Y ( ~ ,  zQ, Pi = R). The goal is to show that yP and have the same 

i-slabs. 

Let the phrase "f-application on the i-slab j of An (n-here j 2 O )  refer to a 

collection of function applications when the left edge of f's domain-box is situated 

on top of the i-slab j of -4. 

That both yP and ,ZR have the same i-slabs c m  be shown by proving the 

following statement: for all j 3 0, the f-application on the i-slab j (j  2 O) of A 

results in Sf[i] i-slabs in yP iff the f-application on the i-slab j of A results in 

&[il i-slabs in ,ZR. 

Neither SUB nor APPLY permute the orders of the i-slabs that they process and 

therefore, the slab numbers and the orderings among the Rf [il i-slabs in YP and in 

are preserved. Moreover, it is sufficient to consider mappings among the i-slabs 

because this rewrite rule-like Rule 10-copies the APPLY patterns P, (n # i) from 

the original expression to the rewritten expression. Therefore, identical h c t i o n  

applications happen on the corresponding i-slabs in the original expression and in 

the rewritten expression. 

Consider the AML expression on the left-hand side of the rewrite rule. The 

f -application on the i-slab j (j 2 O) of A produces %[il i-slabs in YP iff Pb] = 1. 



APPEIVDE -4. PROOFS OF LOGICAL REUI'RISE RULES 

For easy reference, the condition of the previous statement is reproduced belon- 

as the condition Cl : 

Cl : P l i ]  = 1 

Now consider the AML expression on the right-hand side of the rewrite d e .  

The i-slab j ( j  2 O) of A is equal to the i-slab ((count(Q. j )  - 1) of 2 4  iff Qlj]  = 1 

(as per Observation A.2). The f-application on the i-slab ((count(Q, j )  - 1) of ZQ 

produces gf[i] i-slabs in ZR iff Q b ]  = 1 and R[count(Q, j )  - 11 = 1. For easy 

reference, the 'ifF' condition of the previous statement is reproduced below as the 

condition C2: 

C2 : Q[j]  = 1 and R[count(Q, j )  -11 = 1 

The theorem is proved if it can be shown that for all j 2 O, Cl w C2. 

Proof of Cl + C2. Choose an arbitrary j 2 O. First, it will be s h o w  that 

Cl Q[j]  = 1. From P L ]  = 1, vi t=~-D~[q+i  - P[t] = 1 follows because the logical OR 

operation is involved and the bit P b ]  is h o w n  to be 1. Q7s definition then implies 

that Qb] = 1. (Q7s definition defines exactly those indices j 2 O when Q [ j ]  = O; at 

all  the other indices Qlj]  = 1.) 

Given that P[ j ]  = 1 and having proved that Qb] = 1, it con be conduded- 

using the definition of R-that R[count (Q, j )  - 11 = 1. 

Proof of C2 =+ Cl. Once again, choose an arbitrary j 2 O. Given that QQli] = 1 

and R[count(Q, j )  - 11 = 1, it can be concluded-using the definition of R-that 

P b ]  = 1. Thus, C2 + Cl has been proved. 

Findy, it will be shown that Q and R are defined for all j  2 O. Q is defmed 

for exactly those indices j where Q [ j ]  is 0; for all the other indices j', Q[jr]  = 1. 
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In the definition of R, notice that (count(Q, j )  - 1) when Q [ j ]  = 1 generates the 

successive indices O, 1,2, - - . a 
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