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Abstract

Arrays are a common and important class of data. This thesis addresses the fol-
lowing questions: In a database management system for arrays, how should logical
array manipulations be specified? How can such specifications be optimized? The
two main contributions of this thesis are a language, called the Array Manipulation
Language (AML), for expressing array manipulations, and a collection of optimiza-
tion techniques for AML expressions.

AML defines a framework for array manipulation. The framework defines how
arbitrary externally-defined functions can be applied to arrays in a structured man-
ner. AML can be adapted to different application domains by choosing appropriate
external function definitions. In this thesis, the digital image processing domain is
used to demonstrate the utility of the AML framework.

AML queries can be treated declaratively and subjected to rewrite optimiza-
tions. Rewriting minimizes the number of applications of potentially costly external
functions required to compute a query result. AML queries can also be optimized
for space. Query results are generated a piece at a time by pipelined execution
plans, and the amount of memory required by a plan depends on the order in
which pieces are generated. An optimizer can consider generating the pieces of the
query result in a variety of orders, and can efficiently choose orders that require less
space. An AML-based prototype array database system called ArrayDB has been

built, and it is used to show the effectiveness of these optimization techniques.

v
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Chapter 1

Introduction

Arrays are a common and important class of data, with inherent structure and
order. A digital image can be modeled as a two-dimensional array. A digital
video is just an ordered collection of such images and is a three-dimensional array.
Arrays can also model sequences (such as time series), matrices, finite element
grids, scientific data sets, and many other types of data. With the unprecedented
growth of the Internet and the World Wide Web, use of many of these data types
is becoming widespread.

Although support for arrays is needed in fields such as remote sensing, medi-
cal imaging, CAD drawing management, geographic information systems, scientific
visualization, and scientific applications [4, 40, 38], present-day database manage-
ment systems (DBMSs) do not provide adequate array support: arrays can neither
be easily defined nor conveniently manipulated.

Relational DBMSs do not permit users to define relational attributes of type “ar-

ray”. At most, one can declare an attribute of type “binary large object” (BLOB)
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V]

to store arrays. However, a database system treats a BLOB as a chunk of uninter-
preted data with no semantics attached. The interpretation of a BLOB's contents
is left entirely to the user.

Database systems also lack language support for array manipulations. Tvpically.
a database system only permits read and write operations on BLOBs. If array
indices and values are stored in relations, SQL can be used for array manipulations.
However, SQL queries for simple array manipulations are typically cuambersome to
write and inefficient to evaluate.

Some modern object-relational DBMSs permit users to add new abstract data
types (ADTs) to a database system and thus an “array” ADT (with associated
methods) can be defined. Array expressions, however, are not optimized by the
DBMS. Array expression optimization is important because arrays might be large.
Evaluation of expressions involving large arrays may be time-consuming and resource-
intensive.

Supporting arrays in a DBMS is a multi-faceted research problem involving ar-
ray storage and indexing, array manipulation using an array query language, array
query optimization, and integration of array data with other types of data com-
monly found in a DBMS. The research reported in this thesis focuses on two of these
aspects: array query specification and array query optimization. An array query
language should be able to express a useful class of array queries in the language’s
intended application domain and the query optimization techniques should ensure

that the queries are efficiently evaluated.
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1.1 Problem Statement

This thesis addresses the following general questions: In what language should log-
ical array manipulations be specified in a DBMS? Can such array-manipulating
queries be optimized? Are array queryv optimizations valuable? This thesis con-
centrates on arrays occurring in a database of digital images such as satellite or
medical images.

Notice that this thesis does not address the problem of how to select the arrays
to be manipulated. A specific instance of this problem occurs—for example, in
image retrieval—when an image database system is queried for images containing
specific sub-images such as red roses. In this thesis, the focus is on the array ma-
nipulations and—with a view to query optimization—on some of their properties,
such as whether a manipulation results from repeated applications of a primitive
operation, or whether a manipulation involves some redundant computation.

An array query language should have at least some of the foilowing properties
if it is to be used in a database environment: declarativeness, independence from
the physical data model, expressiveness, and extensibility. Further, for efficiect
query evaluation, it is desirable that an array query language be optimizable. The
following description elaborates on why these properties are desirable and points
out their interrelationships.

With a declarative array query language, a user specifies what logical array
manipulations have to be done and not how they are to be done. The latter decision
is left to the query optimizer and evaluator. The query optimizer may consider such

things as physical organization of stored arrays (to exploit clustering) and limited
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resources (such as buffer space available to evaluate operations) while mapping a
logical operation to one or more physical implementations. It can then choose a
good evaluation strategy (plan) by comparing the costs of the alternatives available
to it.

An array query language that allows definitions of views promotes separation of
logical data and its physical storage. A view presents manipulated arrays—defined
on base arrays—as if they were base arrays. A view may be the basis of future
manipulations that may generate other views. For example, one scientist’s view
of a satellite image database system may consist of images showing features such
as vegetation, water sources, and arid areas. Another scientist’s view of the same
database system may consists of images showing cloud cover or levels of ultraviolet
radiation. Both sets of images may be defined on (the same or different) base
images and on other view images.

An array query language should be expressive and possibly extensible. Expres-
siveness is desirable because even in restricted domains, array manipulations are
diverse. Many of them are application-specific. Extensibility is desirable because
1t may be difficult to make a language expressive enough for all applications. If an
array manipulation cannot be expressed in a language directly, it may be possible
to extend the language so that the manipulation can then be expressed.

Array query optimization is an important problem. Arrays are usually large
and therefore must be maintained on secondary storage, such as disks, or on ter-
tiary storage, such as tapes. Accessing such arrays requires costly I/O operations.

Array manipulations themselves may be CPU-intensive. Therefore, array queries
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are costly in terms of CPU time, buffer space. and I/O bandwidth. Potential gains
from array query optimization can be substantial.

Some of the above-mentioned features of an array language are mutually in-
compatible. For example, a language with fewer operators is usually easier to op-
timize [40]. Such a language, however, may not be verv expressive because it does
not contain many operators. Extensibility obtained through user-defined functions
may be at odds with optimizability because it may be hard to optimize an ar-
ray query that involves user-defined functions. Declarativeness not only facilitates
query optimization but also makes it difficult by leaving many expression evaluation

decisions to the optimizer and evaluator.

1.2 Thesis Contributions

The two main contributions of this thesis are the following.

1. An array data model and a query language for array manipulation.

The array data model gives precise meaning to array data. Arrays have
rectangular (hypercubical, in general) shapes and all the elements in an array
have the same type. Based on the array data model, a language called the
Array Manipulation Language (AML) is proposed. AML is an algebra: it is a
collection of three operators that operate on arrays. AML has the following
properties. AML expressions can be treated declaratively by rewriting them
to equivalent forms. It is extensible in that it permits user-defined functions

for array manipulations. AML allows view definitions and is optimizable.
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AML is novel in that it is designed to exploit structural locality often found in
array manipulations. Two of the three AML operators are index-based: the
third operator—called APPLY—permits applications of user-defined functions
to an array in a structured manner. APPLY maps subarrays of arbitrary
shapes to subarrays of arbitrary shapes—a flexibility not available in previous

array languages.

2. A collection of optimization techniques for efficiently evaluating

AML queries.

AML queries are optimized for query evaluation time and memory space.
Query evaluation time is reduced by treating AML queries declaratively and
by subjecting them to rewrite optimizations. Rewrite rules exploit structural
information from AML operators. Rewritten AML expressions reduce the
reading and processing of unnecessary data and therefore, they usually eval-
uate faster than the original expressions. AML expressions can be evaluated
using pipelined evaluation strategies based on iterators, which generate ar-
rays a plece at a time. An optimizer can reduce the memory required to
evaluate a query by intelligently selecting the order in which pieces of arrays
are generated. For example, row-by-row generation of an array may require
substantially less memory than column-by-column generation, depending on
the specifics of the array operation and on the physical organization of the

input arrays [17].

AML query processing has been implemented in a prototype database system

called ArrayDB. ArrayDB has been used for empirical evaluation of the array
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query optimizations mentioned in the previous paragraph. The experiments
were performed on a suite of AML queries from the digital image processing

domain. The experimental results show that the optimizations are effective.

AML operators are structural and index-based. Not surprisingly. AML query
optimization techniques are also structural in that they do not depend on values
of individual array elements, but rather on the spatial relationships among array
elements. The results in this thesis suggest that even by restricting attention to
such a special class of array operations, useful array manipulations can be defined
and optimized.

AML is not the first language to support array ma.nipula.tions, although few
other languages are as well-suited as AML to array query optimization. Compar-
isons of AML to array programming languages (such as APL [30, 35]) and array
query languages (such as AQL [36]) can be found in Chapter 7.

1.3 An Illustrative Example

In digital image processing, digital images are subjected.to a series of processing
steps, at the end of which new digital images are created. Commercial satellites and
digital scanners are two of the sources for digital image data. Online digital image
repositories and digital video also contain digital images. The example described
here comes from the satellite image processing domain. It is based on the digital
image processing operations described by Lillesand and Kiefer [37, Chapter 7].
Fig. 1.1 shows a multi-spectral image (array A) captured by the Landsat The-

matic Mapper sensor. Two of the array dimensions are spatial and the third is
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spectral. The seven slices through the cube along the spectral dimension are im-
ages of the same scene, each taken using a semsor sensitive to electro-magnetic
radiation in a different spectral band.

Fig. 1.1 also shows several other arrays that might be derived from the Thematic
Mapper image. Array J in Fig. 1.1 holds the transformed vegetation indez (TVI)
for the scene. The TVI value at a spatial position in the scene represents the
amount of green biomass present there [37]. The TVI value at any position can be
computed from the intensity values of the third and fourth spectral bands at the

corresponding position in the Thematic Mapper image using the function:

_|ba—bs
,ftm(b3, b‘i) - [b" + b3

+0.5] . (1.1)

where b; denotes the intensity value from band :.

Another useful image that might be derived from array A is a band ratio image,
computed as the ratio of two of the spectral bands of the Thematic Mapper image.
Ratio computation can be a useful data analysis tool because it can compensate
for variations in absolute brightness (cell values) in the original image that might
be caused by topographic features. Ratio images also convey the spectral or color
characteristics of image features, regardless of scene illumination conditions [37].
Array A in Fig. 1.1 is a ratio of Thematic Mapper bands 3 and 7, defined at each
position by

fratio(b37 bT) = 23_-- (1-2)

The Thematic Mapper image may include noise from a variety of sources such
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dim. 2
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Figure 1.1: A Thematic Mapper image and various derived images.
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far(vo, V1, v2, U3, V4, Vs, Vs, T, Us) {
T — (v +uv3+us+vr)/4;
y « (v2 +vg +vs +vs)/4;
=+ |z —yl;
if ( (Jvo — z| > 22) V(Jvo — y| > 2=) ) return y: else return vo; }

Figure 1.2: A noise reduction filter.

as periodic drift or malfunction of a detector and electronic interference betweer
sensor components. Noise can either degrade or totally mask the true radiometric
information content of a digital image. Hence noise removal usually precedes any
subsequent enhancement or classification of the image data [37]. The objective of
noise removal is to restore an image to as close an approximation of the original
scene as possible. In Fig. 1.1, both the TVI array and the band ratio array are de-
fined using the noise-reduced versions (arrays E, F', and G) of the original Thematic
Mapper bands (arrays B, C, and D). Many types of noise reduction are possible;
different types are suitable for different applications. For this example, noise re-
duction is achieved using a kind of convolution filter in which the noise-reduced
value of a particular cell is computed using the original value in that cell and the
values of its 8 immediate neighbors. (Noise reduction is applied independently to
the images in the various spectral bands.) The exact calculation, which is adapted
from [37], is shown in Fig. 1.2. v is the original cell value; v, through vg are the
values of its eight neighbors, numbered clockwise from the upper left.

This example illustrates several points. First, there is a wide variety of com-
plex, domain-specific traxisformations that might be applied to arrays. An array

query language that hopes to be able to express them must either be very ex-



CHAPTER 1. INTRODUCTION 11

pressive or extensible. Second, there is considerable room for query optimization.
One opportunity for optimization is the regularity and structure thar may exist in
complex-looking manipulations. In Fig. 1.1, for example, given a particular cell in
a derived array such as array J, it is possible to determine exactly which cells of
the original Thematic Mapper image contribute to its value. It is also possible to
calculate J’s cell values in any order. Techniques such as caching and view mate-
rialization can be used to eliminate redundant calculations. For example. both the
TVI array and the band ratio array are derived from array E. Hence it might be a
good idea to materialize (compute and store) array E. Third, arrays B through A
are different views on the same base array A. A scientist studying green biomass
may be interested in only the TVI arrays such as the array J. She can be pre-
sented a view of the database system that consists of only the TVI arrays. She
need not be aware that TVI arrays are views on the 7-band Thematic Mapper
arrays. Fourth, the data transformation functions themselves may have properties
that can be exploited by an optimizer that understands them. For example, the
noise reduction technique used to produce arrays E, F, and G in Fig. 1.1 is a
discrete two-dimensional convolution. An optimizer with some knowledge of linear
systems might be able to infer that adding two noise-reduced images is equivalent
to applying noise reduction to their sum.

Each of the arrays B through A  in Fig. 1.1 can be described using an AML ex-
pression or query. This example will be used throughout the thesis to illustrate how
an AML-based database system can exploit some of the optimization opportunities

described in the previous paragraph.
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1.4 Thesis OQutline

The rest of the thesis is organized as follows. The array data model and the
AML query language are described in Chapter 2. Chapter 3 compares AML to
Image Algebra—an expressive language used to specify digital image processing
operations. The comparison shows that AML can express a useful subset of the
operators in Image Algebra, thus providing some evidence of AML’s expressiveness
in the image processing domain. Chapter 4 presents algorithms for processing AML
queries. These algorithms describe how to generate an optimized evaluation plan for
an AML query and how such a plan can be evaluated efficiently to obtain the query
result. Chapter 5 contains the descriptions of 5 digital image processing queries
that form a query suite. Chapter 6 contains experimental results-—obtained using
the queries in the query suite—that show that the query optimization techniques
of Chapter 4 are effective. Chapter 7 surveys the related work. The survey’s scope
is not limited to the database field because arrays have been studied by researchers
in other areas also. The conclusions and some directions for future reseach appear

in Chapter 8.



Chapter 2

The Array Manipulation

Language

This chapter first describes the array data model (Section 2.1) and then the Array
Manipulation Language (AML) based on this data model (Section 2.2). Many
of the definitions have been presented in [41], in which AML was introduced. A

discussion of AML’s design goals appears in Section 2.3.

2.1 Data Model and Terminology

Throughout this thesis, a vector arrow, as in T, denotes an infinite vector of integers.
The usual notation Z[z] refers to the element with index :. Indexing starts at zero.
All of the elements in the special vector (0 are zeros. (The vector I is defined

|Z/7], refer

similarly.) Expressions involving operations on vectors, such as z =

to element-wise application of the operation; that is, z[:] = | Z[¢]/7[i]]. Similarly,

13
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predicates such as ¥ < § are true iff Z[¢] < g[¢] for a1l i > 0.
Before defining AML arrays, it is necessary to define the concepts shape. vector

containment, and domain.

Definition 2.1.1 (Shape) A shape A is an infinite vector of non-negative inte-

gers.

When written, a shape’s elements are enclosed within angled brackets. For example.
(3,4) is a 3 x 4 shape. All elements not listed explicitly are assumed to be ones.
Thus, the shapes (1,1,2) and (4,4) denote the infinite vectors (1,1,2,1,1,1,---)

and (4,4,1,1,1,---), respectively.

Definition 2.1.2 (Vector containment) A vector 7 isin shape 4 iff 0 < T < A.

We write “C € A” or “F in A”.
Definition 2.1.3 (Domain) A domain s a set of values.

Domains are written using the calligraphic letter D.

Definition 2.1.4 (Array) An array A consists of a shape A, a domain D4, and a
mapping M . Thei-th element of A represents the length of the array in dimension
t. The mapping M 4 maps each vector T in A to an element of the array’s domain,

Dy.

AML arrays have an infinite number of dimensions, numbered from zero. Each
array dimension is indexed by the non-negative integers. Vectors in an array shape
are also called points or cells. The array element values are of the form M 4(Z)

for all £ € A. To refer to array element values, index values (vector indices for a
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vector £ € A) are enclosed within square brackets. For example. A[0. 1] indicates
an element in array A in the 0-th row and 1-st column. All elements not listed
explicitly within square brackets are assumed to be zeros. Thus. both A[0.1] and
A[0,1,0,0,- --] denote the same array element. Notice that -A[;] denotes the element

of a one-dimensional array with the index 7z, whereas A[z] denotes the length of the

array A in dimension z.
Definition 2.1.5 (Size) The size of an array A, written |A|, s [I12, Afi].

Definition 2.1.6 (Dimensionality) The dimeunsionality of array A is writien
dim(A). If |A| % 0 then dim(A) ¢s undefined; if |A| is co then dim(A) is ooy
otherwise, dim(A) is the smallest i such that A[j] = 1 for all § > i. If dim(A) is

d, then A is called a d-dimensional array.

In this thesis, arrays are restricted to have finite size. Nevertheless, it will sometimes
be convenient to think of arrays as having infinite lengths in all dimensions. For
this purpose, A[Z] is defined to be NULL for all points Z that are not in A, where
NULL 1s a special value not found in any domain.

An array having a length of zero in one or more dimensions is called a null
array. Such arrays have zero size and their dimensionality is undefined. Since there

are no points in a null array, it has the value NULL at every point.

Definition 2.1.7 (Subarray) Let A and B be arrays, and let T be a vector in
A. Array B is a subarray of A at T iff Dg = Da, and for every point § in B,

B[g] = A[f-l-ﬂ].
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a subarray of -5-- a slab along
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dim. 1 | o T dimension 0

Figure 2.1: Subarrays and slabs.

Notice that Definition 2.1.7 implies that £+ 7 is a point in 4. As Fig. 2.1 shows, a
subarray is simply an array that is wholly contained within another. The position
of the subarray within the containing array is identified by the position of the

subarray’s smallest point (indicated by a dot in Fig. 2.1).

Definition 2.1.8 (Array slab) A slab of an erray A in dimension i (i-slab for
short) is a subarray of A with the shape (---, A[i —1],1, Ali + 1],---).

As illustrated in Fig. 2.1, a slab is simply a slice of unit width through an array

along the specified dimension. There are Z[z] i-slabs in an array A.

2.2 AML Operators

AML consists of three operators that manipulate arrays. Each operator takes one
or more arrays as arguments and produces an array as result. SUBSAMPLE (SUB for
short) is a unary operator that can delete data. The size of the result of subsampling
an array A is never larger than |A|. MERGE is a binary operator that combines

two arrays defined over the same domain. APPLY applies a user-defined function
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to an array—in a manner described in Section 2.2.3—to produce a new array. All

of the AML operators take bit patterns as parameters.

Definition 2.2.1 (Bit Pattern) A bit pattern P (or P when there is no possi-

bility of confusion) is an infinite binary vector.

The i-th element of a bit pattern is denoted by P[:] or P[i]. As for other vectors.
indexing of bit patterns starts at zero. Sometimes, patterns are of the periodic
form rrr---, written as r~, where r is a binary vector of finite length. In such cases,
the finite vector r can be used to represent the infinite pattern r~. For example,
P = 1010 means P = 1010101010---. Notice that there is more than one finite
representation of any pattern of the form r*. For example, @ = 10 represents
the same pattern as P does. A regular-expression-like notation is used to describe
patterns succinctly. For example, 0°170%, for positive integers 7, j and k, represents
a pattern in which j 1’s are sandwiched between i 0’s on the left and k& 0’s on the
right. The bit-wise complement of a pattern P, obtained by replacing P’s ones
with zeros and vice versa, is written P.

Two pattern functions, index and count, will be needed often.

Definition 2.2.2 (Index) If P is a bit pattern (P # 0) and k a positive integer,
index(P,k) is the indez of the k-th 1 in P (k > 1). By definition, ifk =0 or P = 0,
index(P,k) = 0. index(P, k) is undefined if P contains fewer thank 1’s (k> 1).

Definition 2.2.3 (Count) If P is a bit pattern and k a non-negative integer,
count(P,k) ¢s the number of ones in the first k + 1 positions of P, i.e., from P[0]

to P[k], inclusive.
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Both functions are monotonically non-decreasing in k. Suppose that index(P. k)
is defined. It should be obvious then that for any k£ > 1. count(P.index(P.k}) = k.
unless P = 0.

The following three sections describe and define the SUB. MERGE. and APPLY
operations. Some of the important properties of the individual operations and of
the expressions made up of them are also given. The proofs of the non-trivial

properties are given in Appendix A.

2.2.1 SUBSAMPLE

The SUB operator takes an array, a dimension number and a pattern as parameters

and produces an array. The dimension number will be written as a subscript, as in

B = sus;(P, A),

where A is an array, P is a pattern, and ¢ is the dimension number.

The SUB operator divides A into slabs along dimension 7, and then keeps or
discards slabs based on the pattern P. If P[k] = 1, then slab k is kept and included
in B, otherwise it is not. The slabs that are kept are concatenated to produce the
result B.

Several applications of the SUBSAMPLE operator are illustrated in Fig. 2.2. With
the SUB pattern “10”, the array B in the top expression in Fig. 2.2 is formed by
choosing every other 1-slab of the array A. In the middle expression, the SUB
pattern “10” is the same as “1010” and the latter pattern selects O-slabs (rows)

0 and 2 from the array A. In the bottom expression, the SUB pattern “0000111”
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B =SUBl(IO. A)

2012224

1012} 14!
j0ojo2]o0s |

[ S—

amay A B =SUB(10.4)

20|2|x2|n|24|s oia|nixsian|s

ojnnfiz]izfiefis 00 ooz o3 |os|0s

B:SUBl(mlll.A)

24125
dim. 0 14115

dim. 1 0405

Figure 2.2: Examples of the SUBSAMPLE operation.

extends beyond the boundary of the array A and therefore only two 1l-slabs get
selected.

Referring to Fig. 1.1, the SUB expression B = SUB2(0010000, A) extracts spectral
band 3 from the Thematic Mapper array A. The ‘1’ in the third position of the
pattern indicates band 3. Similar expressions can be given for band 4 and band 7
arrays, C and D, respectively. SUB can also produce a low resolution version of an
image. For example, the expression SUBp(10,SUB;(10, J)) produces a low resolution

version of the TVI array J by dropping every other row and every other column.
Definition 2.2.4 (SUBSAMPLE) If B = SUB;(P, A), then B is defined as follows:
e Dg =D,
o if Afd] > 0, then B[i] = count(P, Ali] — 1), else B[i] = 0

e for all j > 0 ezcept j =i, B[j] = A[j]
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o for all points T in B, B[....Z[i — 1], ). £l + 1],...] = A[.... [ — 1].
index(P,Z[z] + 1).Z[ + 1],.. ]
Important Properties of SUBSAMPLE
The following theorems follow easily from the definition of SUBSAMPLE.
Theorem 2.1 (sUB with NULL array) suB;(P, NULL) = NULL.
Theorem 2.2 (suB with ‘0’ pattern) suB;(0,4) = NULL.
Theorem 2.3 (sUB with ‘1’ pattern) suB;(1, 4) = A.

The following two theorems describe how two adjacent SUB operations can be

combined or reordered. A proof of Theorem 2.4 can be found in Appendix A.

Theorem 2.4 (combining two SUBs) SUB;(Q,SUB:(P, A)) = SUB;(R, A), where
P #£0,Q #0, and R is defined by: index(R,j+1) = index(P, index(Q,j+1)+1).

for 3 >0.

Theorem 2.5 (reordering two SUBs) When 1 # 7,

SUB;(Q,SUB;(P, A)) = SUB;(P,suUB:(Q, 4)).

2.2.2 MERGE

The MERGE operator takes two arrays, a dimension number, a pattern, and a default
value as parameters. It merges the two arrays to produce its result. As it was for

SUB, the dimension number is written as a subscript, as in

C = MERGE;(P, A, B, §),
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Figure 2.3: Examples of the MERGE operation.

where A and B are arrays, P is the pattern, and § is the default value. The explicit
reference to ¢ will often be dropped if the default is not important. MERGE is
defined only if D4 = Dy and é € D,4.

Conceptually, MERGE divides both A4 and B into slabs along dimension i. C is
obtained by merging these slabs according to the pattern P; 1's in P correspond
to slabs from A (the first array) and 0’s to slabs from B (the second array). For
example, if P = 101 (which stands for the infinite pattern 101101101 ---), then a
slab from B is sandwiched between two slabs from A. The merging process repeats
until all the slabs from both A4 and B are exhausted.

Fig. 2.3 illustrates the MERGE operation. The top example in Fig. 2.3 shows
that the default value may not be needed to form the merged array. The bottom
example in Fig. 2.3 shows that the default value § may be used for two purposes.
First, in a dimension other than the MERGE dimension, the lengths of the two
arrays may not match. If so, the shorter array (B in Fig. 2.3) is expanded—using
¢ values—to reach the length of the longer array. Second, as the two arrays are

interleaved in the MERGE dimension, one array may run out of slabs before the
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other does. In this case also, slabs filled with 4 values are used in place of the array
slabs from the shorter array.

In our running example in Fig. 1.1, arrays H and I can be formed using the
MERGE operator. Array H can be expressed as MERGE;(10, E, F). The MERGE
pattern “10” and the MERGE dimension 2 has the effect of putting array F on top
of array E.

A common use of MERGE is to juxtapose two arrays. This can be achieved in
dimension : using the AML expression MERGB.-(IE[‘TUE{‘], A, B).

It is convenient to define MERGE formally in two steps. The first step generates
an array C’ by interleaving slabs from A and B, as described above. Because of
shape mismatches between A and B, however, or because of the particular pattern
P, some values in C’ may be NULL. The second step eliminates this problem by
transforming any such NULL values to the default value §. The result of this final

step is indeed an array, and is the result of the MERGE operation.

Definition 2.2.5 (MERGE) If C = MERGE;(P, 4, B,§), the intermediate array C’
s defined as follows:

e DC’ = D_4 U {lV(/rLL}

e if A[i] =0 and B[{] =0, then C'[i] = 0; otherwise
C'[i] = maz(indez(P, A[i]), index(P, B[i])) +1

o for all § > 0 ezcept j =1, C'[j] = ma:c(.i[j],é[j])

e for all points ¥ in C':
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— if P[Z[i]] = 1. then C'[....T[i — 1]. Z[i].Z[ + 1]....] =
Al ... Z[i — 1], count(P.T}) — 1,Z[t + 1]... ]
— otherunse C'[...,Z[1 — 1].Z(t), i + 1},.. ] =

Bl...,xz[i — 1], count(P,Z[i]) — 1,£[i + 1]... ]

The array C is then obtained by removing any NULL values inside of C': De = D4 -
foralli > 0, C[é] = C'[i]; and for all points ¥ in C, if C'[Z] = NULL then C[7] = 6.
otherwise C[Z] = C'[Z].

For some MERGE operators with particular patterns, the arrays C and C’'—
mentioned in Definition 2.2.5—are identical. An unbalanced MERGE operator is

one for which the arrays C and C’ are not identical.

Definition 2.2.6 (Unbalanced MERGE) Let array C be the result of the AML

expression MERGE;(P, A, B,d). This MERGE operator is unbalanced if at least one

of the following two conditions hold:
1. There ezists a dimension j # ¢ such that Alj] # Blj].
2. C[7] > (Afs) + B[i))-

In Fig. 2.3, the top MERGE is balanced, whereas the bottom MERGE is unbal-
anced. An AML expression that contains no unbalanced MERGE operators is said
to be in merge-balanced form. Theorem 2.10 and Theorem 2.11 that follow hold

only for AML expressions in merge-balanced form.
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Important Properties of MERGE

Theorems 2.6-2.8 follow easily from the definition of MERGE. A proof of Theo-

rem 2.9 can be found in Appendix A.

Theorem 2.6 (MERGE with ‘0’ pattern) MERGE;(0, 4, B,§) = B.
Theorem 2.7 (MERGE with ‘1’ pattern) MERGE;(1,A.B,§) = 4.

Although MERGE is not a commutative operation, the following holds.

Theorem 2.8 (MERGE with reversed operands) MERGE;(P, 4, B,§) =

MERGE;(P, B, 4, §).

Theorem 2.9 (associativity of MERGE) Suppose thaet the AML ezpression
MERGE;(Q,MERGE;(P, A, B, §),C, ) ts merge-balanced, P #0, P # 1, Q # 0, and
Q@ #1. Then .

MERGE;(Q, MERGE;(P, A, B,6),C,8) = MERGE;(R, A,MERGE;(S, B, C,4d),9)

where, for j > 0, R and S are defined by: indez(R,j + 1) = indez(Q,index(P, 5+
1)+1), and S[count(R, j)—1] = Q[j] if R[j] = 0. Furthermore, the AML ezpression

on the right hand side s merge-balanced.

Suppose that (AB) denotes a MERGE operation between the two arrays A and
B. The obvious distributive laws for the MERGE operation—that is, laws of the form
(A(BC)) = ((AB)(AC)), where the individual MERGE operation are in arbitrary

dimensions—do not hold for the following reason. The MERGE operation does not
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delete data and (A(BC)) contains one copy of A. whereas ((AB)(AC)) contains
two.
The following two theorems describe how a SUB operator can be pushed below

a MERGE operator. A proof of Theorem 2.10 appears in Appendix A.

Theorem 2.10 (pushing sUB through MERGE, version 1) Suppose that

MERGE;(P, A, B, §) is merge-balanced, and P # 0, P # 1, and Q # 0.
SUB;(@,MERGE;(P, A, B.§)) = MERGE;(T,SUB;(R.A),sUB;(S.B),4d)

where the resulting MERGE ts balanced, and for 7 > 0, R, S. and T are defined
as follows. R[j] = Q[index(P,j + 1)); S[j] = Qlindez(P,j + 1)]; and T[j] =
Plindez(Q,j + 1)].

Theorem 2.11 (pushing SUB through MERGE, version 2) Suppose that

MERGE;(P, A, B, ) ts merge-balanced and 1 # j.
SUB;(Q,MERGE;(P, A, B,§)) = MERGE;(F,SUB;(Q, A),sUB;(Q, B),d)
where the resulting MERGE s balanced.

2.2.3 APPLY

The APPLY operator applies a user-defined function to an array to produce a new

array. In its most generai form, it is written as

B=APPLY(vavﬁfséf1P07P17"-1Pd-1)a
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where f is the function to be applied. 4 is the array to apply it to. 15} and R f
are shapes, the P;’s are patterns. and d = dim(4). The parameters D; and R; are
called the domain shape and the range shape, respectively. Sometimes. a domain
shape is called a domain box (and similarly for range shape). A special case of
APPLY is written

B = aPPLY(f, A, Dy, Rj),

with the assumption that P; = 1 for all 0 < ¢ < d. In addition, either the range
shape or both shapes may be left unspecified when APPLY is written. These shapes
default to {1,1,1,---) if they are not specified.

A simple way to define an operation, like APPLY, that applies a user-defined
function f would be to insist that f map from arrays of A’s shape and domain to
arrays of B’s shape and domain. The operator would then simply compute B =
f(A). However, many common array functions have some structural locality: the
value found at a particular point in B depends only on the values at certain points
in A, not on the values at all points in A. For example, if f is a smoothing function
that maps each point in A to the average of that point and its neighbors, then to
determine the value at some point in B, we need only look at the corresponding
point and its neighbors in A. Such information can be very valuable for optimizing
the execution of an expression involving the array operators.

The APPLY operation is defined so that this kind of structural relationship can
be made explicit when it exists. The APPLY operator requires that f be defined to
map subarrays of A of shape ﬁf to subarrays of B of shape R}. In Fig. 2.4, f(A,7)

refers to the result of applying f to the subarray of A of shape D ¢ at £. Thus,
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Figure 2.4: An illustration of the APPLY operation.

f(A,T) is an array of shape B s- The APPLY operator applies f to certain subarrays
of A, and concatenates the results to generate B. This process is illustrated in
Fig. 2.4.

The pattern P; can be thought of as selecting slabs in dimension ¢, with the
selected slabs corresponding to the 1’s in the pattern. The function f is applied at
a point Z only if that point falls in selected slabs in all the d dimensions of the array;

‘that is, only if P[Z[7]] = 1 for all 0 < 7 < dim(A4). In Fig. 2.4, the patterns select
two slabs in each dimension, leading to a total of 4 appliéations of the function f.

Several features of the application of f should be noted. First, although the
selected subarrays may overlap in A, the results of applying the function do not
overlap in the resulting array B. Second, the arrangement of resulting subarrays
in B preserves the spatial arrangement of the selected subarrays in A. Finally, the
subarrays to which f is applied must be entirely contained within A. In the example

in Fig. 2.4, this means that even if the point [3,3] were selected by the patterns,
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f(A.[3.3]) would not be evaluated, since that subarray lies partially outside of .

In the running example in Fig. 1.1, array E results from applving the noise
reduction function to array B. The expression for E is APPLY(nr. B.{(3.3).(1.1)).
This implies that the domain and range shape for the function nr are (3.3) and
(1,1), respectively. As another example, the ratio arrayv A" can be expressed as
K = APPLY(ratio, I,(1,1,2)). Here, 5,,,:,-0 = (1,1,2) and since range shape is
not given, é,atio defaults to (1,1). Sometimes, domain and range box shapes are

omitted for brevity. In such cases, those shapes are written or mentioned in the

nearby text.

Definition 2.2.7 (APPLY) If B = APPLY(f, A, 5,, R},Po,._.,Pd,-,,,(A)_l), and f
s a function that maps from arrays of shape D s over domain D, to arrays of shape

R ¢ over domain D, then B is formally defined as follows:
e Dg =D
e for all i >0,
— if .i‘[é] < Dy¢li] or P =0, then B[i] =0
— otherwise Bi] = count(P;, A[i] — Dyli]) - Ry[i]
e for all  in B, B[Z] = f(A,7)[ MOD Ry, where jfi] =

indez(P;, |Z[i]/Ry[i]] + 1) for all 0 < i < dim(A)

If Ds[s] > A[i] for some i > 0, then the definition above implies that B will be

a null array.
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Often, it is necessary to apply a function to all non-overlapping subarrays of
a particular shape. For example, given an image A with shape (1024.1024). an
inexpensive way to compute a low resolution version of A is to conceptually “tile”
A using non-overlapping subarrays of shape (4,4) and to replace each tile with
the average of the 16 pixels under it. Since this type of function application is
quite common, the TILED_APPLY operator is defined to support it. Assuming that

dim(A) = d, the definition is as follows:

TILED_APPLY(f, A, Ds, Bf) = APPLY(f, A, Dy, By, 100/00-1 105/0-1 ...

100/6-11-1) (2.1)

Important Properties of APPLY

Logical rewrite rules that commute, combine, or decompose APPLY operations do
not exist in the AML framework. Such operations would require some semantic
information about the user-defined functions associated with the APPLY operators.
The only information about user-defined functions that the AML framework cap-
tures is the shapes of their domain and range boxes. Even if some semantic infor-
mation about the user-defined functions and how to use it were known, it may not
be straightforward to combine two successive APPLY operations if there are shape
mismatches between their domain and range boxes. Nevertheless, there are some
useful ways to manipulate expressions involving APPLY, as the following theorems

show. Proofs of Theorem 2.13 and Theorem 2.14 appear in Appendix A.

Theorem 2.12 (APPLY with a ‘0’ pattern) When P; =0,
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APPLY(f,A.Py. Py,---,P;.---) = NULL.

Theorem 2.13 (pushing SUB into APPLY) Suppose that P and R are APPLY pat-

terns in dimension i, P # 0, @ # 0, and R;[i] > 0.
SUBi{(Q.APPLY(f, A, Py, P,---,P,---)) = SUB;(S,aPPLY(f, 4. FPo.P,---.R,--+))

For all 7 > 0, R is defined as follows. (V denotes a logical OR operation on

bits.)
Rl = VEPTQ[((count(P,j) — 1) - Byld]) + 1]

if Plj1=1; R[] =0 if P{j]=0.
S is defined as follows. For all t such that 0 < t < R[4,

S{((count(R,j) — 1) - Rs[i]) + t] = Q[((count(P,j) — 1) - Ry[i]) + 1]

if P[j] =1 and R[j] = 1.

Theorem 2.14 (pulling SUB out of APPLY) Suppose that P and R are APPLY

patterns in dimension i, P # 0, and Dy[i] > 0.
APPLY(f, A, Po, P1,---,P,---) = APPLY(f,SUBi(Q, A), Po, P1,---,R,--")

@ s defined as follows. (For notational convenience, the definition of P[j] is

extended such that P[j] = 0 for all § < 0. Vv denotes a logical OR operation on
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bits.) For all § > 0. Q[7] =0 if V? P[t] = 0.

t=5-D;fi]+1

R is defined as follows. For all 7 > 0. Rlcount(Q.j) — 1] = P[j] if Qj] = 1.

In general, it is not possible to push an APPLY operation through a MERGE
operation because some function applications may require data from both of the
argument arrays of the MERGE. In some special cases, an APPLY may be pushed
through a MERGE. Two examples of such special cases are: (1) when the APPLY’s
user-defined function has unit-sized domain and range boxes: and (2) when the
MERGE combines two arrays and the APPLY’s function applications are tiled such

that no tile needs data from both of the argument arrays of the MERGE.

2.2.4 DMore on Patterns and Shapes

Patterns and shapes appearing in AML expressions can be defined in terms of the
array arguments of their AML operators. As an example, if A is a two-dimensional

array in the expression

APPLY(f, A, (1, A[1]))

then f is applied to each row of A. Aliases (as in SQL) can be used in AML
expressions when necessary to define names for unnamed intermediate arrays. In
the AML expression APPLY(f,SUB;(P, B) A, (1,.4‘[1])), the alias A is used to refer
to the result of the inner SUB operation so that the APPLY’s shape argument can
be defined. The scope of such an alias is the AML operator in which it is defined.
In the case of the APPLY operator, it is also possible to refer to the domain shape

and the range shape in the operator’s patterns. An example of this can be seen in
g P p P
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the definition of the TILED_APPLY operation in Section 2.2.3. In general, a non-
constant pattern or shape element can be an arithmetic expression made up of
operators such as +, —, *, /, and % (the modulus operator) on integer constants.
on array shape elements (e.g., A[1]), and on domain and range box shape elements.
The result of such an expression must be a positive integer.

Pattern and shape definitions are not allowed to refer to the array contents.
Therefore, the shape of the result of an AML operation can always be determined
(without actually evaluating the operator) if the shapes of the operator’s array ar-
guments are known. By induction, we can show that the shape of the result of
an arbitrary AML expression can be determined once the shapes of the expres-
sion’s terminal, or leaf, arrays are known. This property is useful when evaluating
AML expressions because it implies that the space required to implement an AML

operation can be determined in advance.

2.2.5 Summary

As a summary of this section, AML definitions of each of the arrays in Fig. 1.1 are

given below.

= sUB2(0010000, A)
= SUB2(0001000, A)
SUB2(0000001, A)

= APPLY(nr, B,{3,3),(1,1))

1 T > T B O I v
I

= APPLY(nr,C,(3,3),(1,1))
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G = APPLY(nr.D.(3.3),(1,1))

H = MERGE;(10.E.F)

I = MERGE:(10, E,G)

J = APPLY(tvi, H,(1,1,2),(1,1))
K = aPpPLY(ratio, [,(1.1,2),(1,1))

A single AML expression for an array such as the TVI array J can be formed by
substituting the expressions for the intermediate arrays that are used to compute

J.

2.3 AML Design Goals

A discussion of AML’s design goals appears in this section. The section also de-
scribes how a few peculiar design decisions affect and achieve the stated design
goals.

AML was designed with two goals in mind: query optimization capability and
extensibility. Recall from the discussion in Chapter 1 that array query optimization
is important because array queries may be time-consuming and I/O-intensive. Ex-
tensibility is desirable because array operations are diverse and domain-specific. It
seems difficult to determine a “useful” set of array manipulations—even in a given
application domain—to be supported in an array query language.

It may be difficult to design an extensible language that is also optimizable: a

query optimizer is likely to know less about the language extensions than about the
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built-in features in the language. Thus, a query optimizer is likely to do a better
job optimizing expressions in a language that has no extensions.

To tackle this seeming dilemma, AML is defined to be a framework (rather
than a self-contained language) for array manipulations. ! The framework permits
user-defined functions to be applied to arrays: the intention is that by choosing
appropriate user-defined functions, AML can be customized to different application
domains. To facilitate query optimization, the framework also puts a restriction on
the way user-defined functions are applied to sub-arrays of an input array. This
restriction is still expressive enough to model region-based and block-based array
operations commonly found in image processing, for instance. The framework also
puts a restriction on the types of user-defined functions themselves. In particular,
it only supports those functions that map subarrays to subarrays.

Adoption of such a framework permits certain types of query optimizations.
In particular, since AML operators are index-based, the structural relationships
between the slabs of the output array and the slabs of the input array(s) of AML
operators can be exploited. That is, given a portion of an output array, it is
possible to determine those portions of the input arrays that generated the output
array portion. This lineage determination optimization is valuable because it can
be carried out on even complex AML expressions that are formed by functional

compositions of AML operators and AML expressions. The lineage optimization

In a language for array manipulation (or for data manipulation in general}, one would expect
operators that generate domain elements not found in their operands. None of AML’s operators
generate new data items (strictly speaking). The output array of a SUB or a MERGE contains
some or all of the array elements in its input array(s). (For MERGE, the default value § is either
implicitly or explicitly specified.) APPLY can generate new array elements by applying a user-
defined function to its input array but the user-defined function is not part of AML.
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also integrates well with the types of user-defined function applications that the
framework supports through APPLY.

Since AML does not impose an order on the way user-defined functions are
applied to arrays, an AML query optimizer may be able to exploit different orders
(such as row-major order or column-major order) to minimize memory used for
query evaluation.

It is not easy to perform some types of array query optimizations in a simplified
framework such as AML. For example, reordering two user-defined functions may
be a useful optimization for some queries; decomposing a user-defined function into
two or more functions might help others. Some queries might benefit from replacing
two adjacent user-defined functions by their composite function. To perform such
optimizations, an optimizer needs to understand what user-defined functions do
and what some of their properties are (for example, algebraic properties such as
commutativity and decomposability) in addition to how they are applied to arrays.
AML does not provide facilities for capturing such semantic information. Even if
such information could be captured, how to use it during query optimization is
another challenge. Nevertheless, the difficulty of optimizing the placement of user-
defined functions in an array query plan does not inhibit the AML framework from
performing lineage determination optimization and memory usage optimization.

It is argued in this thesis that even within a restrictive framework such as
AML, useful index-based array operations can be defined and—more importantly—
optimizéd. The framework supports array manipulations of arbitrary complexity.

On one hand, a complex array manipulation can be defined by abstracting it as a
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single application of a user-defined function that performs the complex array ma-
nipulation. At the other extreme. a complex-looking array manipulation may be
built from structured applications of a few simple user-defined functions. AML
gracefully supports both types of array manipulations. However. AML query opti-
mization techniques are likely to do a much better job of optimizing queries of the

latter type.



Chapter 3

On the Expressiveness of AML

A query language is expressive if it can perform many useful operations in its
application domain. AML’s expressiveness in image processing can be judged by
an answer to the question: What image processing operations can AML express?
As mentioned in Section 2.3, AML can express any operation that produces an array
from an array. It can do this by using an APPLY operator that directly maps from
the input array to the output array. Such an operation will be called a singleton
APPLY.

AML is designed to exploit structural locality often f-’ound In array manipula-
tions: an output array element can often be computed from a small set of adjacent
elements of the input arrays. An AML evaluator is expected to optimize and ef-
ficiently evaluate array queries that contain structural locality. Since user-defined
functions are not interpreted by AML, expressions that contain singleton APPLY
operators will probably not be optimized effectively. Therefore, when considering

AML’s expressiveness, the more interesting question is: Can a given image process-

37
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ing operation be expressed in AML without using singleton APPLYs?

Which image processing operations should be considered in addressing this ques-
tion? In image processing, there is no single widely-accepted language: there is no
universal set of image processing operations against which some notion of expres-
sive “completeness” might be defined. To provide some gauge of AML’s ability
to express image processing operations, this chapter presents a detailed compar-
ison of AML to Image Algebra—an expressive language and a highly structured
mathematical foundation for image processing and image analysis [51, 52]. Image
Algebra was designed for the U.S. Air Force Systems Command. Image Algebra is
programming language and computer architecture independent. Implementations
of Image Algebra in programming languages such as Fortran, Ada. Lisp, and C++
exist.

There are several reasons for choosing Image Algebra as the basis of this dis-
cussion. First, it is believed to be very expressive. Ritter and Wilson [52] have
gathered over 80 computer vision algorithms and their formulations in Image Alge-
bra. ! Second. it has served as the basis of at least one other array database system,
RasDaMan. RasDaMan’s query language RasQL [4, 73] is based on a subset of the
Image Algebra operators. Third, Image Algebra, like AML, is an algebra. The fact
that the two have similar structures simplifies the comparison task.

AML can express the following image-manipulating operators of Image Alge-
bra without resorting to singleton APPLYs: (1) induced operators; (2) global re-

duce operators; (3) some spatial transformations; (4) image catenation; (5) range

It should be noted that some of these algorithms use assignment statements and loops in
addition to Image Algebra statements.
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restrictions and some domain restrictions: (6) image extension: and (7) image-
template product (non-recursive). APPLY can express the non-recursive image-
template product—Image Algebra’s most useful operator. AML cannot express
the following image-manipulating operators of Image Algebra without resorting
to singleton APPLYs: (1) arbitrary spatial transformations; (2) arbitrary domain
restrictions; and (3) recursive image-template product.

The rest of this chapter presents Image Algebra, and its relationship to AML,
in more detail. Section 3.1 describes Image Algebra’s data model. It also describes
some restrictions that are put on the Image Algebra’s point sets for a meaningful
comparison between Image Algebra and AML. Section 3.2 presents the various
types of operations found in Image Algebra, and discusses which can be expressed
usefully in AML. Section 3.3 describes the unsharp masking computation—a simple
vet useful image processing application. It then expresses the unsharp masking
computation in Image Algebra to show how Image Algebra’s component operators
can be combined in an application. Finally, it also expresses the unsharp masking
computation in AML. Section 3.4 contains a summary of the comparison between

image processing operators in Image Algebra and AML.

3.1 Image Algebra’s Data Model

Image Algebra is a three-sorted algebra; the three sorts are point sets, value sets,
and images.
A point set is a topological space and thereby provides notions such as a distance

function, nearness of two points, and neighborhood of a point. Image Algebra
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permits arbitrary point sets: finite or infinite: hypercubical (when plotted) or non-
hypercubical; dense or sparse. For image processing, rectangular discrete point
sets whose plots are limited to positive quadrants of the coordinate axes are most
pertinent.

A value set is a homogeneous algebra: it is a set together with a finite collection
of operations. Some commonly used value sets in image processing are the sets of
integers, real numbers, and complex numbers.

An image is a function from a point set (also called a spatial domain) to a value
set. The notation I : X — F will be used to denote an image I whose point set
is X and whose value set is F'. It is often convenient to think of an image as a
set of pixels, where each pixel is of the form (z, I(z)) in which z € X is the pixel
location and I(z) € F'is the pixel value. Image Algebra’s data model permits both

flat images and nested images (called templates).

Restrictions on Image Algebra Point Sets

AML arrays have hypercubical shapes and array elements are indexed using non-
negative integers. On the other hand, Image Algebra permits arbitrary point sets in
its images. Therefore, for a meaningful comparison between the image processing
operators in these two languages, it will be necessary to put the following restrictions
on the Image Algebra point sets. Let the notation Z; (where ¢ > 1) denote the set
of non-negative integers from 0 to ¢ — 1, inclusive. Then the point sets are restricted
to the form:

X = Zyyx 2y x---x 2

Nk—1
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= {(.’IZQ,Il,"',(Ek_l) c Zk:O <z < ng,0 < < ny.---.0 < Tp1 < nk_l}

where k > 1and n; > 1 (0 < i < k—1). In other words, the point set is discrete: the
point coordinates are indexed by non-negative integers; and when plotted. the point
sets have rectangular (hypercubical, in general) shapes whose lower-left corners are
located at the origin.

A non-rectangular point set can be converted to a rectangular one by enclosing
it with a minimum-bounding rectangle and then by extending the lower-left corner
of the rectangle to the origin. All the additional points thus enclosed have a special
value «, which is a designated value in a value set F'. Further, for unique identifi-
cation of « values, no F-valued non-rectangular image has any pixel values equal
to a. For brevity, future references to « in this chapter will just call it the “spe-
cial value”. Usually, image manipulating functions operating on a-values produce

a-values. (Any exceptions to this rule will be pointed out.)

3.2 Image Algebra Operators

Image Algebra is a heterogeneous algebra in that some of its operators convert
operands of one sort to results of a different sort. Image Algebra operators can be
broadly divided into two classes: (1) operators that map images to images, and (2)
all other operators. Examples of operators in the latter class include operators that
map points to points, point sets to point sets, values to values, value sets to value
sets, images to point sets, and images to value sets. Point sets and value sets exist

in AML only as parts of arrays (as shapes and domains, respectively). Therefore,
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this section relates AML to only those operators of Image Algebra that map images
to images.

Image Algebra exists in several versions. For example, an earlier version in [31]
does not contain some of the operators that a later version [52] does. The following
description is based on the image-manipulating operators that have been described

for Image Algebra in [52].

3.2.1 Induced Operators

Induced operators are image operators that are derived from the operators on value
sets. Binary value set operators such as addition and multiplication extend to
binary image operators; unary value set operators—for example, applying the sine
function or the thresholding function to a value—extend to unary image operators.
These extensions are performed by applying the operators pixel-wise.

Binary induced operators can be expressed in AML as follows. Let A: X —+ F
and B : X — F be two :-dimensional images with dimension numbers 0,1,2,---,71—

1. A generic binary operation between them can be expressed in AML as follows.

APPLY(f,MERGE;(10, 4, B),(1,1,---,1,2),(1,1)) (3-1)

APPLY is a unary operator and therefore, it is necessary to combine A and B using
a MERGE. f implements the binary operation between two values; its application
on the combined image produces the result array. D([i] is 2. Equation 3.1 can
also express induced operations between set-valued images and between images

and constants. (Constants can be implemented as AML arrays with the same value
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everywhere.)
A generic unary induced image operation can be expressed in AML as follows.

(f performs the appropriate unary operation.)

APPLY(, 4,(1,1), (1, 1)) (3.2)

3.2.2 Global Reduce Operators

A global reduce operator is a unary operator that performs an aggregation—for
example, summation or maximum-finding—on the values in its input image. It can
be described in AML as follows. (f performs the appropriate aggregation ignoring
the a values.) 2

APPLY(f, A, A4, (1,1)) (3.3)

A global reduce operator produces a value, whereas the above AML expression

produces a one-element array.

3.2.3 Spatial Transformations

Image Algebra’s spatial based image transformations—for example, image transpo-
sition and image shift—change point sets of images. In its most general form, a
spatial transformation applies a function f to each point in an image’s point set.

To capture such transformations in their full generality, a singleton APPLY operator

2Equation 3.3 uses a singleton APPLY operator. A global reduce operation is inherently of
the type of operations whose single applications require access to all of the array elements in
their operands. Therefore, we have made an exception to include it in the list of Image Algebra
operators that AML can efficiently express.
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is needed. If g is the user-defined function associated with such an APPLY opera-
tor, g’s domain shape spans the entire input image 4 and g's range shape matches
the shape of the spatially transformed output image B (whose lower-left corner is
located at the origin, of course). The function g performs the necessary spatial
transformation. For some spatial transformations such as image shift. however,
AML does not need to resort to such singleton APPLY functions. The following
AMTL expression shifts an image by an amount % on the X-axis (dimension 1). The

filler element « is the special value and NULL is a null array.
MERGE, (1*040, NULL, 4, ) (3.4)

To shift a d-dimensional image, one needs at most d MERGE operators—each one
shifting the image in one of the dimensions using the technique indicated in Equa-

tion 3.4.

3.2.4 Image Catenation

Let A: X —+ F and B : Y — F be two d-dimensional images such that X C Z
and Y C Z. The image catenation operation juxtaposes A and B in dimension z
(0 < ¢ < d). (In all other dimensions 7, j # 7, Aj] = B[j].) MERGE is well-suited

to express image catenation, as the following expression shows.

MERGE; (141108t 4 B) (3.5)
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3.2.5 Image Restriction

Image Algebra allows two types of restrictions of images whereby a new image is
formed by selecting a subset of elements from the point set or the value set of an
original image. The point set is restricted in domain restriction, whereas the value
set is restricted in range restriction. A restriction on one of the two sets leads to
an implicit restriction on the other.

Suppose that I : X — F is an image. Domain restriction is specified by a subset
Z of X; the range restriction is specified by a subset S of F'. Image Algebra defines
no general syntax for specifyving the sets Z and S. However, syntax exists for special
types of range restrictions. For example, thresholding is specified by the threshold
value k € F. Thresholding can also be defined for two images A and B with the
same point set. A range restricted version of 4 can be formed by comparing the
corresponding pixel values in A and B and by keeping the A-values that satisfy the
comparison. (A(z) < B(z) and A(z) # B(zx) are two example comparisons.)

AML can express those domain restrictions where entire slabs in a dimension
are either kept or discarded. Suppose that the AML pattern P describes the -
slabs that are kept or discarded. It is tempting to use SUB to express such domain
restrictions but SUB combines the selected array slabs. Nevertheless, if such selected
slabs are appropriately spread apart—as per the following AML expression—then

an effect same as that of a domain restriction is achieved.
MERGE;(P,sUB;(P,A),NULL, «) (3.6)

Notice that the empty spaces created by the domain restriction are filled with the
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special value . Simultaneous domain restrictions in more than one dimensions can
be achieved likewise using a pair of SUB and MERGE operators for every dimension
restricted.

Range restriction can be achieved using an APPLY as follows.
APPLY(f, 4, (1, 1),(1, 1)) (3.7)

f implements the restriction condition. Pixel values satisfying the restriction con-
dition are copied to the output unchanged by f; those failing the condition are
converted to the special value « by f.

To express those range restrictions involving two d-dimensional images A : X —

F and B : X — F, the following AML expression can be used.
APPLY(f, MERGE4(10, 4, B),{(1,1,---2),(1,1)) (3.8)

A and B are first combined in dimension d. D[d] is 2 and f compares a pair of
pixel values {a, b) with ¢ coming from A and b from B. If the pair (a, b) satisfies
the range-restriction condition, then f(a, b) = a; otherwise, f(a, b) = a. For the

pairs of the form (a, «), f(a, a) = a.

3.2.6 Image Extension

The notion of image extension is symmetric to that of image restriction. Image
extension is used to embed images into larger images. Suppose that A : X — F

and B :Y — F are two d-dimensional images such that X C Zand Y C Z. An
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Image A Image B Extension of A to B

Figure 3.1: Image extension in Image Algebra.

image that is the extension of A to B has pixel values coming from 4 for points in
X and has pixel values coming from B for points in ¥ — X. A simple version of
the image extension operation is depicted in Fig. 3.1.

The AML query for an image extension operation is
APPLY(f,MERGE4(10, 4, B, ),{(1,1,---,2),(1,1)) (3.9)

in which « is the special value and D;[d] is 2. f outputs the A-value if the A-value

is not equal to «; otherwise, it outputs the B-value.

3.2.7 Image-template Product

Ima.ge—templaﬁe product is the most important operation in Image Algebra. It
models a common image processing operation called convolution. In convolution, a
small subarray (typically 3 x 3, 4 x 4, or 5 x 5) called the kernel slides to all possible
positions within a larger array. For each possible position of the kernel within
the larger array, kernel elements and array elements that fall within the kernel
participate in some computation. The results of such computations are gathered
to form the output array.

A template is an image whose pixel values are images. Templates will be denoted
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Figure 3.2: (a) A template; (b) an image; and (c) the result of the image-template
product.

by lower-case boldface letters such as t. Formally, a template is defined as t : ¥ —
(X — F). Thus, the value of t at a point y € Y—denoted by t,—is an F-valued
image. These F-values are called the template weights. For a point z € X, the
template pixel t,’s weight at z is denoted by t,(z). Thus, to reach a template
weight, two indices are necessary: y indexes a template pixel and z indexes a pixel
in the image t,. The support of a template pixel t,—denoted by S(t,)—is defined
to be the set of points z € X such that t,(z) is non-zero. (It is assumed that the
value set F' is an algebraic structure with a “zero” element.)

Fig. 3.2(a) illustrates the idea of templates. The template t in Fig. 3.2(a) is
defined on 3 points: (0,0), (0,1), and (1,0). Each point in the template contains
an image whose point set contains 4 points: (0,0), (0,1), (1,0), and (1,1). As an
example of template indexing, notice that the template weight at t(;0)((0,1)) is 9.

Suppose that t : Y — (X — F) is a template and I : X — F is an image.
An image-template product between I and t produces an image G of the form
G : Y — F. The value of G at a point y € Y—denoted by G(y)—is determined as

follows.

G(y) = Tzex(I(z) O ty(z)), (3.10)
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where I(z) are the image values. t,(z) are the template weights. () is a binary op-
eration between [{z) and t (z) and I is a global reduction (aggregation) operation.
There is a one-to-one matching between the image values I(z) and the template
weights t,(z) because they both are defined on the same point set X. The O op-
eration combines these | X| pairs of matching values to form |X| values. The global
reduction operation then aggregates these [X| values and produces a single value.
This process is repeated for each point y € Y to generate the result image G with
|Y'| points.

A specific instance of Equation 3.10 is

Gly) = >_(I(z) - ty(z)), (3.11)

reX

in which the image values and the template weights are first multiplied and then
the results are added. Thus, Equation 3.11 expresses a weighted sum operation.

In Fig. 3.2(b), an image with 4 points is shcwn. The point set of this image
is identical to the point sets of the images that are present as template values in
Fig. 3.2(a). The image-template product—defined as per Equation 3.11—produces
an image with 3 elements as shown in Fig. 3.2(c).

The following metaphor can be used to describe an image-template product.
(The metaphor also suggests how an image-template product can be expressed in
AML.) An image occupies all possible positions within a template. For each posi-
tion of the image within.the template, the image values and the template weights
participate in a type of operation defined by Equation 3.10 and a result value is

generated. The result image is formed by gathering such values.
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An image-template product between an image I and a template t can be ex-
pressed in AML as follows. Suppose that the point sets of I and t obey the re-
strictions mentioned in Section 3.1 and that t is available as an un-nested image.
Suppose that an APPLY function f is defined with D; = I and R; = (1.1). The
pixel values in I are hard-coded into f. The image-template product can be ex-

pressed as:

TILED_APPLY(f, t, I, (1,1)). (3.12)

f is applied to t in a tiled fashion. During each application of f, I's pixel values and
the template weights participate in the computation of Equation 3.10 and produce
a single result value. (The result of combining two a values using () is an «a value;

I ignores « values when aggregating.)

Translation Invariant Templates

In digital image processing, a special type of template called a translation invariant
template is quite useful. A translation invariant template t is defined by t : X —
(X — F). Such a template’s point set is identical to the points sets of the images
that it contains as values. Further, for each triple z,y,z € X with y + z € X and
z+z € X, ty(z) = tys:(z +z). In other words, in a translation invariant template,
the images that are present as template values are merely spatial translations of
each other. A template that is not translation invariant is called a variant template.
An example of a variant template was shown in Fig. 3.2(a).

A translation invariant template with finite support has the nice property that

it can be drawn concisely with a picture. For example, consider the picture of such
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Figure 3.3: (a) The picture of a translation invariant template with finite sup-
port; (b) the template weights; (c) an image; and (d) the result of image-template
product.

a template—defined on the point set Z?—shown in Fig. 3.3(a). In that picture,
only 4 template weights are non-zero. Their spatial relationships to the reference
point (z,y)—called the target point—are as depicted in Fig. 3.3(a). Suppose that
this template participates in an image-template product with the image shown
in Fig. 3.3(c). The image is also defined on the point set Z2 but only 4 image
values are non-zero. When the image-template product, defined by Equation 3.11,
is calculated between this image and the template in Fig. 3.3(a), only some of
the template weights—shown in Fig. 3.3(b)—yield non-zero results. The result of
the image-template product is the image shown in Fig. 3.3(d). (Once again, only
non-zero pixel values are shown.)

The following metaphor can be used to explain an imaée—templa.te product when
the template is translation invariant with finite support and the image and the
template are defined on the same point set. The target point in the “picture” of
such a template occupies all possible positions in the image. For each position of
the target point, image values and template weights participate in the operation
defined by Equation 3.10 and a result value is generated. The result image is formed
by gathering such values.
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The above metaphor suggests how an image-template product can be expressed
in AML using APPLY when templates are translation invariant with finite support.
The restrictions on the point sets mentioned in Section 3.1 apply. Suppose that
the template is enclosed by a minimum-bounding rectangle (hypercube, in general)
with shape D and that an APPLY function f is defined whose domain shape is D
and whose range shape is (1,1). The weights in the template’s picture are built
into f. (Any undefined values are assumed to be a.) An application of f performs
the computation defined by Equation 3.10 between the image values passed to f
as arguments and the template weights built into f. f knows how to handle the a
values: the () operation between two a values produces an « value; the I operation

ignores any « values when aggregating. Thus, the AML expression
APPLY(f,I,D,(1,1)) (3.13)

is equivalent to Image Algebra’s image-template product.

Due to APPLY’s semantics, Equation 3.13 produces most of the result array,
but not all of- it. In particular, the boundary conditions are not handled if |D| >
1 because APPLY’s domain shape does not slide outside the boundary of I. To
bandle boundary conditions properly, the image [ should be expanded using a-
values before using Equation 3.13. Dimension ¢ of I is handled as follows. Suppose
that in dimension ¢, there are r; pixels to the “right” of the target pixel in D and
there are [; pixels to the “left” of the target pixel in D. The image I is expanded—
using MERGE operators—by adding r; i-slabs to the right of [ and [; i-slabs to

the left of I. After all the dimensions of I are processed similarly, I is ready to
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participate in the computation of Equation 3.13.

As a concrete example of the above-mentioned expansion procedure. consider
the image-template product depicted in Fig. 3.3. The non-zero values of the image
shown in Fig. 3.3(c) form the shape of (2,2). That image—call it I—gets expanded

as per the following AML expression.

I' = MERGE; (110, MERGE(110,I, NULL,a), NULL, c) (3.14)

More General Forms of Templates

In Image Algebra, the basic notion of a template—as described thus far in this
chapter—is extended in two directions to yield parameterized templates and recur-
sive templates.

In a parameterized template, the weights are functions of a parameter rather
than constants. Thus, a parameterized template defines a family of templates,
rather than just one template. Individual templates are instantiated by choosing
a parameter value. Parameterized templates permit template weights to be varied
in unison. This functionality is useful in the following scenario. Suppose that in a
discrete two-dimensional convolution, the kernel shape is 3 x 3. The weight of the
kernel’s center pixel is p. The weights of the center pixel’s north, east, south, and
west neighbors are also equal to p. The weights of the center pixel’s north-east,
south-east, south-west, and north-west neighbors are the same and are equal to
2 - p. In this scenario, it is sensible to make the template weights a parameter of
p if the discrete 2-dimensional convolution is to be performed using different such

kernels.
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AML can express image-template products defined on parameterized templates
when such templates are instantiated. A shortcoming of such AML expressions is
that for each template instance, a separate APPLY function is needed.

Recursive templates are defined because sometimes pixels of an image need to
be processed in certain order—for example, forward raster scan order (row-major
order) or serpentine scan order. In recursive templates, the points in the template
point set Y are partially ordered according to a binary relation <. With each
template pixel value, two images are associated: a usual (non-recursive) image I of
the form I : X — F, and a recursive image I’ of the form I’ : ¥ — F. (The details
can be found in [52].)

When an image-template product is defined using a recursive template, the
computation of Equation 3.10 can be performed for a pixel y only after all its
predecessors (ordered by <) have been computed. Thus, recursive templates enforce
an order in which the result pixels are generated and therefore—unlike a non-
recursive image-template product—a recursive image-template product cannot be
computed in a globally parallel fashion. To express a recursive image-template

product in AML, a singleton APPLY operator is needed.

Image-template Product Versus APPLY

A comparison between image-template product and APPLY is interesting. Image-
template product offers a more general way to handle boundary conditions but
restricts individual function applications to the form given in Equation 3.10 so
that a function application can only generate a scalar value, not an array. APPLY

functions not only map subarrays to subarrays, but also have no other restrictions
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placed on them.

In APPLY, a domain box is completely specified by just its shape which means
that kernel weights need to be hard-coded into the body of a user-defined function:
if weights change, a new user-defined function is needed. In contrast. in image-
template product, the function body remains unchanged—just the template weights
change.

Image-template product becomes a more useful and powerful operator due to
parameterized templates and recursive templates. APPLY can handle the templates
in the former class (albeit, not as elegantly as Image Algebra does) without using
singleton APPLY operators but can handle templates in the latter class only by

using singleton APPLY operators.

3.3 The Unsharp Masking Computation

Section 3.2 described those Image Algebra operators that AML can express without
using singleton APPLYs. It also translated such Image Algebra operators to AML
expréssions. To illustrate how various Image Algebra operations are combined and
used in practice, this section describes a sample image processing application—the
unsharp masking operation [52, page 63}]—and shows how it can be expressed in
Image Algebra and AML.

The unsharp masking operation blends an image’s high-frequency components
and low-frequency components to produce an enhanced image. The blending may
sharpen or blur the source image depending on the proportion of each component

in the enhanced image.
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Suppose that A is an n X n source image. The low-frequency component of the
source image is formed by replacing each pixel value with an average of that value
and the values of the 8§ neighboring pixels. (Boundary pixels have fewer than §
neighbors.) Suppose that the image B contains such a low-frequency component of
the image A. The value of the high-frequency component image C at a point (z, )
is defined by

Cli, ] = Ali, ] — Bli,j]- (3.15)

The unsharp masking operation produces an image D defined by

D[i,j] =1 - C[i. 5] + B[, 5l- (3.16)

~ is a real number. A v value between 0 and 1 results in a smoothing of the source
image. A v value greater than 1 emphasizes the high-frequency components of
the source image, which sharpens detail. An illustration of the unsharp masking
operation on a mammogram image for several values of v appears in [52, page 64].

The unsharp masking operation can be expressed in Image Algebra as follows.

b = %(a ot) ‘ (3.17)
c = (a—Db) (3.18)
d = {(y-¢)+b (3.19)

t is a template whose picture (which has the 3 x 3 shape) contains 9 elements, all

of which are 1. The center pixel in t’s picture is the target point. The images
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a, b, c, and d correspond to the images with the same names in Equation 3.15 and
Equation 3.16. The Image Algebra expression in Equation 3.17 performs an image-
template product—indicated by a @ symbol—between a and t. The result image
of the image-template product then participates in a unary induced operation—
whereby the pixel values are divided by 9—that produces the low-frequency com-
ponent image b. The Image Algebra expressions in Equation 3.18 and Equation 3.19
are self-explanatory: both of them use binary induced operations. Equation 3.19
uses a unary induced operation also.

The unsharp masking operation can be expressed in AML as follows. To handle
the boundary conditions properly-—as explained in Section 3.2.7—the image A is
first expanded by adding two rows and two columns to it. Suppose that two all-zero
images Zo and Z,, with shapes of (2,n) and (n + 2,2), respectively, are available.

The expanded image A’ has the shape (n + 2,n + 2) and is defined by
A’ = MERGE(10™1, Z;, MERGE(10"1, Z,, A)) (3.20)

Suppose that the user-defined function avg9, which computes the average of 9

values, is availa.ble. The low-frequency component image B can be defined by:
B = APPLY(avg9, A', (3,3),(1,1)) (3.21)
The image C is defined by:

C = APPLY(minus, MERGE2(10, 4, B),(1,1,2),(1,1)) (3.22)
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In Equation 3.22, the APPLY function m:nus subtracts a B-pixel value from from
the matching A-pixel value. Suppose that two APPLY functions timesy (which
multiplies a pixel value by ) and add (which adds two pixel values) are available.

The result image D can then be formed in two steps as follows.

D' = appLY(timesv,C,(1,1),(1,1}) (3.23)

D = APPLY(add,MERGE2(10,D’, B),(1,1,2),(1,1)) (3.24)

The AML expressions in Equations 3.21, 3.22, and 3.24 correspond to the Image

Algebra expressions in Equations 3.17, 3.18, and 3.19, respectively.

3.4 Comparison Summary

Image Algebra has a rich data model that permits image definitions on arbitrary
point sets. A wide range of operations have been defined on point sets, value sets,
and images. Image Algebra has been found to be a useful language for describing
computer vision algorithms [52].

Their somewhat different design goals may explain some of the differences be-
tween Image Algebra and AML. In case of Image Algebra, the design goals seem to
have been expressiveness and generality. Accordingly, there are many operators in
Image Algebra. The set-theoretic treatment of points and values permits powerful
and general operator definitions. However, optimizability is not of primary concern.

Although implementations of Image Algebra exist, its primary goal is to serve as
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a common descriptive language for image processing operations. * For AML, the
design goals were optimizability and extensibility with an emphasis on the former
goal. It is accurate to say that we included only those operators in AML that we
knew we could optimize. Other operations must be implemented using singleton

APPLYs.

3This is not to suggest that Image Algebra expressions are not optimizable. Optimizations
that decompose a translation invariant template with finite support into two or more pieces and
recombine such pieces exist in Image Algebra.



Chapter 4

AML Query Processing

A user poses an AML query to ArrayDB and gets back a result array. All of the
activities that occur during this interaction are called query processing. Section 4.1
gives an overview of AML query processing, which occurs at two levels: logical
and physical. Logical query processing—described in Section 4.2 and Section 4.3—
transforms an AML query £ made up of SUB, MERGE, and APPLY operators to
an equiva.lent AML query E’ which is usually more efficient to evaluate than E is.
Phyéical query processing—described in Section 4.4 and Section 4.5—transforms
E’ to a plan, which is a recipe for the ArrayDB’s query evaluator describing how
to evaluate the query. Section 4.6 describes how the ArrayDB’s query evaluator

executes such a plan. AML query processing was originally described in [42].

60
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AML Query E
-
Logical Preprocessing
Query i E in merge-balanced form
Processing Logical
Rewriting

~ l E in canonical form

Plan'
Physical Generation
Query ! E in iterator form
Processing Plan
Refinement

l E in iterator form with annpotations
ArrayDB’s Query Evaluator

Figure 4.1: Overview of AML query processing.
4.1 AML Query Processing Overview

AML offers several opportunities for optimization. First, the structural regularity
of the AML operators makes it relatively easy to trace data lineage through an
AML expression. This allows AML expressions to be rewritten to avoid the need
to calculate or retrieve values that are not required. Second, the AML operators do
not specify the order in which the cells of their output arrays are generated. Order
can have a significant impact on the memory cost of a plan. Choosing a good order
Vcan make the difference between an evaluation plan that can execute entirely in
memory and one that cannot.

As the block diagram of Fig. 4.1 shows, AML query processing occurs in four
phases: preprocessing, logical rewriting, plan generation, and plan refinement. Each
phase manipulates some form of an AML query. The first two phases of AML
query processing are called logical query processing because they manipulate AML

expressions made up of logical operators: SUB, MERGE, and APPLY. Phases 3
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and 4 of AML query processing perform physical query processing because they
manipulate query expressions containing physical operators. Physical operators are
defined by ArrayDB to implement the logical operators.

During preprocessing, an AML query FE is first tokenized by a scanner and then
converted into a parse tree by a parser. The preprocessing step consults system
catalogs that store information about arrays, user-defined functions, and data types.
Catalog information is used to convert non-constant patterns and shapes in E
into constants; to determine the types and shapes of different arrays (leaf arrays,
intermediate arrays, and the result array) in the query; and to convert leaf arrays to
special types of APPLY operators whose user-defined functions read array data from
disk. The preprocessing step also converts E into merge-balanced form, formally
defined in Section 2.2.2. Merge-balancing is necessary because some of the logical
rewrite rules—applied to E in the second phase of query processing—hold only
when FE is in merge-balanced form.

Logical rewriting converts a merge-balanced AML query F into an equivalent
form that is more efficient to evaluate. A variety of rewrites are performed, but the
primary goal of this phase is to push the SUB operations down to reduce unnecessary
data retrieval and processing. Logical rewriting converts E to a canonical form.
Evaluation of an expression in canonical form reduces the amount of data read
from disk, saving costly disk I/O; it also reduces the number of applications of
user-defined functions, saving CPU time.

The plan generation phase converts a logical AML expression into a plan—a

directed graph of physical operators, where arcs represent data flow. Since the
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AML optimizer currently does not detect common subexpressions, the plans it
produces are always trees.

Each plan operator (except leaf operators) consumes one or more input arrays
and produces a single output array. Plan operators are iterators that produce and
consume arrays a piece at a time. Iterators save buffer space by reusing the memory
used to store the array pieces. Every operator expects its inputs to consist of array
chunks of a particular shape and produces array chunks of a particular shape at
its output. Each operator produces its output chunks in a particular order (e.g.,
row-major or column-major) and expects input chunks to appear in a particular
order. If two operators are connected by an arc in a plan, the producer’s output
chunk shape and chunk order must match the input chunk shape and chunk order
expected by the consumer.

The plan generation phase produces plans in which chunk orders of the phys-
ical operators are left unspecified. The most important task of plan refinement
is to minimize the amount of memory required for plan evaluation by determin-
ing the order—for example, row-major order and column-major order—in which
each plan operator will generate its output chunks. The order assignment to the
plan operators—the “annotations” mentioned in Fig. 4.1—is done using a dynamic
programming algorithm, which ensures that the memory requirement of a plan is
minimized.

There are numerous other possible optimizations that ArrayDB’s AML opti-
mizer currently does not perform. It does not select from among multiple access

paths for stored arrays, and it does not detect and exploit common AML subex-
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pressions. Similar optimizations are performed by relational optimizers, and it may
not be too difficult to adapt relational approaches to the AML array query opti-
mizer. The AML optimizer performs no optimizations that involve reordering or
combining APPLY operations. Doing so would require that the optimizer understand
something about the user-defined functions being applied. This issue is addressed
in Section 8.2.1 as future work. Finally, the optimizer also does not attempt to par-
allelize query evaluation. Because AML plan operators are iterators, asynchronous
pipelining could be introduced through the use of an “exchange” operator as was
done in Volcano [21]. All of the AML operators themselves are also well-suited to
data-parallel implementation. Fragmentation of arrays can be accomplished easily
using the SUB operator. Parallel evaluation of AML expressions is addressed in
Section 8.2.3 as future work.

ArrayDB’s AML query optimizer is by no means the last word in array query
optimization. Nevertheless, it does demonstrate that some understanding of array
operations can substantially improve the efficiency of useful array queries. It also
shows that AML, despite its simplicity, captures enough about array queries to

permit this.

4.2 Preprocessing

A scanner begins the preprocessing phase by converting an AML query E into a
sequence of tokens. A parser then converts the sequence-of-tokens representation
of E into a parse tree T in which there is an internal node for each AML operator

and a leaf for each instance of a leaf array. In addition to the SUB, MERGE, and
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APPLY operators, an AML query contains references to arrays and to user-defined
functions. In addition, AML arrays have types (reflecting their domains) and thus
an AML query also implicitly refers to data types. Information about these three
entities is stored in three catalogs: an array catalog, a type catalog, and a function
catalog. The array catalog stores an array’s name, its shape, the type of the array
elements, and the tile shape used to store the array on disk. ! The type cata-
log records all array element types understood by ArrayDB. The function catalog
records information about user-defined functions used by the APPLY operator.
During preprocessing, the three catalogs are consulted to convert any non-
constant patterns and shapes in the query to constants and to infer the types
and shapes of the non-leaf arrays throughout the tree T. The type and shape in-
ference bappens from the leaves of T to the root of T' and is possible because AML
1s statically typed. ArrayDB treats AML leaf arrays as special types of APPLY op-
erators and during preprocessing, this treatment is made explicit by turning leaves
into leaf APPLY operators. The user-defined function f of a leaf APPLY operator A
reads data from disk. f’s domain and range shapes are identical to the tile shape
used to store A on disk. Such a function f is always applied to A in a tiled fashion.

(TILED_APPLY is defined in Equation 2.1.)

In the current implementation of ArrayDB, arrays are stored on disk using regular tiling
(described in Section 7.1.2). The tiles are stored on disk using UNIX flat files. Within a tile, the
elements are stored in row-major order. The tiles themselves are also stored in row-major order.
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Figure 4.2: llustration of merge balancing.

Merge Balancing

After type and shape inference, merge balancing occurs. Merge balancing con-
verts an AML query into the merge-balanced form that was formally defined in
Section 2.2.2. Merge balancing is necessary because in certain cases, some of the
AML logical rewrite rules hold only for merge-balanced AML queries.

ArrayDB performs merge balancing by adding é-valued constant arrays (called
| DEFAULT arrays in ArrayDB) to the query. ? For example, the bottom unbalanced
MERGE in Fig. 2.3 is balanced as illustrated in Fig. 4.2.

Merge balancing adds MERGE operators and leaf arrays to an AML expression
E. The following lemma gives an upper bound on the number of additional nodes

that merge balancing can add to E.

2ArrayDB handles a DEFAULT leaf array differently from a non-DEFAULT leaf array. A
DEFAULT array requires constant amount of memory for storage—just enough to store one copy
of the d-element—irrespective of the array’s size.
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Lemma 4.2.1 Suppose that the mazimum dimensionality of any erray in an n-
operator AML ezpression E is d. Merge balancing may add up to (d - n) additional

MERGE operators and up to (d - n) additional leaf operators to E.

Proof. Let us first establish the upper bound on the number of additional MERGE
operators. If a MERGE cperator in E combines two d-dimensional arrays in dimen-
sion t, it may be necessary to expand the two argument arrays in all d dimensions.
In the extreme case, the array lengths may mismatch in all the dimensions but
dimension 7, and expansion in dimension ¢ occurs when, in dimension i, one array
runs out of slabs before the other does. One MERGE operator is needed per di-
mension that gets expanded, so in the worst case, d additional MERGE operators
get added to the AML expression. E contains n nodes and in the worst case, E
may contain up to n unbalanced MERGE nodes. Therefore, in the worst case, merge
balancing may add (d - n) MERGE operators to E.

Each MERGE operator that gets added to E during merge balancing also causes
a leaf array to be added to E. Therefore, merge balancing may add up to (d - r)

leaf arrays to E in the worst case. O

4.3 Logical Rewriting

During logical rewriting, an AML query is systematically transformed—using AML
logical rewrite rules—into an equivalent form that is expected to be more efficient

to evaluate.
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| Rule Number | Rule Description | Theorem |
1 SUB with ‘0’ pattern Theorem 2.2
2 SUB with ‘1’ pattern Theorem 2.3
3 MERGE with ‘0’ pattern Theorem 2.6
4 MERGE with ‘1’ pattern Theorem 2.7
5 APPLY with a ‘0’ pattern Theorem 2.12
6 combines two SUB;’s Theorem 2.4
7 reorders SUB; and SUB; Theorem 2.5
8 pushes SUB; through MERGE; | Theorem 2.10
9 pushes SUB; through MERGE; | Theorem 2.11
10 pushes SUB into APPLY Theorem 2.13
11 pulls SUB out of APPLY Theorem 2.14

Figure 4.3: Summary of the AML logical rewrite rules used by ArrayDB.

4.3.1 AML Logical Rewrite Rules

Chapter 2 described various rewrite rules for AML expressions. The logical rewrit-
ing phase uses 11 of those rewrite rules to transform AML expressions into equiva-
lent forms. Fig. 4.3 summarizes the 11 rules. For convenience, the 11 rules will be
referred to as Rule 1 through Rule 11. Theorem 2.14 (Rule 11) can only be applied
to a non-leaf APPLY. As already mentioned in Chapter 2, proofs of the nontrivial
rules (Rules 6, 8, 10, and 11) appear in Appendix A.

An application of a rewrite rule replaces the AML expression on the left with
the AML expression on the right. For the nontrivial rules, the theorem statements
define the patterns on the right in terms of the patterns on the left. When imple-
menting a nontrivial rewrite rule, a result pattern should be generated up to the
length of the array on which the pattern operates. For example, if a SUB; operator’s

input array is A4, then A[4] bits of the SUB,’s pattern should be generated.
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Rules 7 through 11 are used to push SUB operators as far down as possible in
AML operator trees using an algorithm described in Section 4.3.3. Rule 6 makes the
SUB pushdown more efficient, so that it is not necessary to push down the two SUB
operators separately. Rules 1 through 5 simplify trivial AML expressions. Although
a user is unlikely to write trivial AML expressions such as MERGE;(0, 4, B), they
may be generated during rewrites. For example, consider a merge-balanced AML

expression

E = suB;(100010, MERGE;(0100, A, B)). (4.1)

Using Rule 8 (Theorem 2.10), the expression for E can be rewritten to

E = MERGE;(0,suB;(0, A),sUB;(100110010, B)). (4.2)

Rule 3 (Theorem 2.6) simplifies Equation 4.2 to SuB;(100110010, B).
This example also illustrates the power of AML rewrite rules. From the original
expression in Equation 4.1, it is not immediately apparent that the whole of array

A gets subsampled out but the equivalent expression makes this obvious.

4.3.2 Rewrite Rules and Merge Balancing

The following two examples illustrate that some of the AML logical rewrite rules

may not hold when the expressions on which they operate are not merge-balanced.
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Example 1

This example illustrates that Theorem 2.11 may not hold if the ANL expression is

not in merge-balanced form. Consider the AML expression
E = suBq(0011,MERGE,; (01110, 4, B, §)) (4-3)

with 4 = (3, 3) and B = (2,2). It is easy to verify that E= (1,5). Notice that the
expression for E is not merge-balanced. If E is rewritten using Theorem 2.11, the

following expression results:
E’' = MERGE;(01110,SUBo(0011, 4), SUBo(0011, B), §). (4.4)

The shape of E’ is (1,4), which is incorrect.
If merge-balancing is done on E before applying Theorem 2.11, the problem dis-
appears. The merge-balanced form of E, E,,;, is given in the following expression.

(Y is a DEFAULT array with Y = (1,2).)
E5 = SUBo(0011, MERGE; (01110, A, MERGE(110, B, )))) (4.5)
Theorem 2.11, when applied to E.;, vields:
E,., = MERGE;(01110,5UBq{0011, A),SUBo(0011, MERGE((110, B, )))) (4.6)

It can be verified that the arrays E.;, and E/, are identical.



CHAPTER 4. AML QUERY PROCESSING 1

Example 2

This example illustrates that Theorem 2.10 may not hold if the AML expression is

not in merge-balanced form. Consider the AML expression
F = suBe(1110, MERGEG(10, A, B, §)). (4.7)

with A = (1,2) and B = {2, 2). F has the shape (3,2). The expression for F is not

merge-balanced. Theorem 2.10, when applied to the expression for F', produces:
F' = MERGE((101, SUBo(1, A), SUBo(10, B), §). (4.8)

F' has the shape (2,2) which is incorrect.
Again, the problem disappears if F' is put in merge-balanced form before apply-
ing Theorem 2.10. If J is a DEFAULT array with JJ = (1, 2), the merge-balanced

form of F' is given by:
Frp = SUBo(1110, MERGEq (10, MERGE((10, A, )), B)) (4.9)
Theorem 2.10, when applied to F,;, yields:
mb = MERGE((101, SUBo(1, MERGE(10, 4, ))),SUBy(10, B)) (4-10)

It can be verified that the arrays Fi,; and F!, are identical.
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4.3.3 Logical Rewrite Algorithm

The logical rewrite rules are systematically applied to an AML expression as per the
logical rewrite algorithm (LRA). The pseudo-code of the LRA appears in Fig. 4.4.
Suppose that the maximum dimensionality of the arrays in a merge-balanced AML
expression E is d, with the dimension numbers ranging from 0 to (d — 1). Suppose
that E is represented as an operator tree T', with edges that indicate data flow, and
that T contains n nodes. The epply_rewrite procedure is called—with X pointing
to the current root node of T—once for each of the d dimensions. For simplicity’s
sake, the calling order is set to be 0,1,---,(d — 1), although any other dimension
permutation would also be fine. In each dimension ¢, the LRA pushes the SUB;
nodes in T as far down as possible. To achieve this goal of SUB-pushdown, the
LRA traverses T in an order given by the apply_rewrite procedure in Fig. 4.4 and
at each node tries to apply one of the rewrite rules appearing in Section 4.3.1. When
a rewrite rule is applicable at a node X in T, the rule is applied and T is modified.
Due to the nature of the AML rewrite rules, such modifications are local and hence
can be done in time constant in the number of nodes in T'. After modifications, the

rewrite continues as indicated in Fig. 4.4.

Time Complexity of the LRA

Suppose that the LRA begins with a t-node tree T'. Determining the time com-
plexity of the LRA is nontrivial because ¢ may change during logical rewrites. In
particular, £ may increase as the LRA proceeds. The following theorem establishes

an upper bound on .
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logical rewrite(AML operator tree T')
for: <+ 0 tod —1 // for each of the d dimensions

apply.rewrite(root node of T, )

applyrewrite(node pointer X, dimension )
if ( X is leaf node )
return // No rewrite rule is ever applicable at a leaf node.
if ( a rewrite rule is applicable in dimension 7 at X )
/] X refers to the root node of the AML expression on the left side of the
[/ rewrite rule. If more than one rule is applicable at X, then choose any
/[ one for application.
Apply the rewrite rule at X, making local modifications to the AML tree.
The rewrite continues at the nodes ¥; and (possibly) Y> that are
determined as follows. In the following table, e refers to the AML
expression on the right side of the rewrite rule that fired.

[ Rule Fired Y Y, |
1,2,3,4,5,6, 8,10 root node of e —
7,11 SUB; node in e —
9 first SUB; node in e | second SUB; node in e

else // no rewrite rule is applicable in dimension 7z at X
Let ¥) and (possibly) ¥> be the children of X.
apply_rewrite(Y], 1)
if ( there is a node Y5 )
apply_rewrite(Y3, 7)

Figure 4.4: Pseudo-code of the logical rewrite algorithm.
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Theorem 4.1 Suppose that the LRA begins with a t-node AML tree T in which
the mazimum dimensionality of the arrays is d. During the ezecution of the LRA,

the number of nodes in T is at most ((d +1) -¢).

Proof. The number of nodes in T increases by 1 when one of the rules 8, 9, or 11
gets applied. For all the other rule applications, the number of nodes in T either
remains the same or decreases.

Let us calculate the number of nodes rules 8, 9, and 11 together can add to T.
Suppose that before the LRA begins, the numbers of SUB, MERGE, APPLY, and leaf
nodes in T are s,m, a, and [, respectively. Since s + m + a + [ = ¢, the number of
nodes of each type in T is at most ¢.

Consider the pushdown of the SUB; nodes that the LRA performs when rewriting
T in dimension ¢z (0 < 7 < d). Each application of one of the rules 8, 9, and 11
adds one sUB; node to T' but the important observation is that after the LRA
has processed an APPLY node in dimension 7, there can be at most one SUB; node
directly above the APPLY node. 3 Thérefore, when the LRA has processed T in
dimension 7, the number of SUB; nodes in T is at most (a + [). The LRA began
processing dimension 7 with at most s SUB; nodes and therefore at all times during
the rewriting process in dimension ¢, the number of SUB; nodes in T never increases
beyond (s +a + ) which is at most ¢. Therefore, when the LRA has considered all

d dimensions, the total number of SUB operators in T is at most (d - %).

3Consider an arbitrary pair of APPLY nodes such that all of the nodes in the chain connecting
them are of type suB or MERGE. There could be several suB; and MERGE; nodes in such a
chain. Nevertheless, because of the way the LRA works, two SUB; nodes—whenever they become
adjacent—are first combined using Rule 6 and the resultant sUB; node is then pushed down. The
two SUB; nodes are never pushed down separately.
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In conclusion, s may grow up to (d-t) from its starting value of s. In the worst
case, the values of m,a, and ! will remain unchanged during the execution of the
LRA. Therefore, during the execution of the LRA, the number of nodes in T is at

most d -t +m+a+1, which is at most d-t+ ¢t or ((d+1)-%). O

Theorem 4.2 Suppose that an AML ezpression T which is not merge-balanced
contains n nodes. The combined run time of the merge balancing procedure and the

LRA is O(d® - n).

Proof. As per Lemma 4.2.1, merge balancing may add up to (d-n) MERGE nodes and
up to (d - n) leaf APPLY nodes to T'. Adding each additional MERGE operator (and
the associated leaf APPLY operator) takes time constant in terms of the number
of nodes in T because only local modifications to T are involved. Thus, merge
balancing takes O(d - n) time.

Because of the additional MERGE and leaf APPLY operators added during merge
balancing, ¢ in the statement of Theorem 4.1 can be as large as (2dn+n). Therefore,
during the execution of the LRA, the number of nodes in T can be as large as
(d +1)(2dn + n) = 2d%n + 3dn + n which is O(d? - n).

Testing each of the 11 logical rewrite rules at a node in T takes time constant
in terms of the number of nodes in T'. Rewrites themselves also take time constant
in terms of the number of nodes in T because only local modifications to T are
involved. When considering a dimension ¢, the LRA. never revisits a node and
therefore, logical rewriting in a dimension 7 takes time proportional to the number
of nodes in T which has the O(d? - n) upper bound. Thus, logical rewriting in a

dimension takes O(d? - n) time. Since there are d dimensions, the LRA runs in
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O(d® - n) time. The combined run time of merge balancing and the LRA is also

O(d® - n) because merge balancing can be performed in only O(d - n) time. O

A Canonical Form for AML Trees

In this section, a canonical form for AML trees is defined. Canonical trees are
defined for two reasons. First, it will be shown that the LRA produces canonical
trees. Second, it will be shown that a canonical tree minimizes the number of func-
tion applications—user-defined function applications for non-leaf APPLY operators

and disk reading functions for leaf APPLY operators—in an AML tree 7.

Definition 4.3.1 (Canonical node) Let d be the mazimum dimensionality of
any node in an AML tree T. A node X in T s ‘an i-canonical node if no AML
rewrite rules appearing in Section 4.8.1 are applicable at X in the tree T’ obtained
from T by deleting all the SUB; nodes for all 7 # i. X is a canonical node if it s

an t-canonical node for all © such that 0 <1i < d.

Definition 4.3.2 (Canonical form of an AML tree) Letd be the mazimum di-
menstonality of any node in an AML tree T. T is in i-canonical form if all of its
nodes are i-canonical. T is in canonical form if it #s in i-canonical form for all i

such that 0 <1< d.

Due to Rule 7, it is necessary to define an z-canonical node in terms of T” rather
than in terms of T: once Rule 7 can be applied to a pair of nodes SUB; and SUB;
(¢# 7) in T, it can be applied to them repeatedly. In a canonical tree, all the SUB
operators have been pushed as far down as possible (other than such rearrangements

of SUB; and SUB; nodes possible due to Rule 7).
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Theorem 4.3 Let d be the mazimum dimensionality of any node in an AML tree
T. Suppose that the LRA is performing rewrites on T in dimension i (0 <i < d).
Suppose that during the traversal of T, the LRA is at a node X about to examine
whether any rewrite rule is applicable in dimension i at X. Suppose also that the
set V (for “visited”) includes the nodes of T' that the LRA has visited in dimension i
so far prior to the visit to the node X. The LRA maintains the following invariant:
(1) for all the dimensions k where 0 < k < i, T is in k-canonical form: and (2)

every node v € V s an i-canonical node.

Proof. There are two major cases to consider depending on whether or not a rewrite
rule is applicable in dimension 7 at X.

Case 1. Suppose that no rewrite rule is applicable in dimension ¢ at X. The first
part of the invariant holds trivially after the LRA finishes visiting X because T
does not change.

Now let us verify the second part of the invariant. After processing the node
X, the new value of V, say V', is given by VU {X}.

The foHoWing reasoning shows that X is ¢:-canonical. As per the assumption for
this case, no rule fired in dimension 7 at X. Suppose that the tree 7" is derived
from T as per Definition 4.3.1. If X is a leaf node, it is ¢-canonical because X has
no children and thus, no rewrite rule can fire between X and its child in the TV.
If X is a non-leaf node, and a rewrite rule becomes applicable between X and one
of its children Z in 7", the rule that becomes applicable must be one of Rule 6,
8, 9, or 10 and thus X must be a SUB; node. But then, Rule 7 would have been -

applicable in dimension ¢ between X and its child node in 7. This contradicts the
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assumption that no rule fired in dimension 7 at X. If Z is one of the children of X
in both T and 7", then also the assumption that no rule fired in dimension 7 at X
1s contradicted.

That the second part of the invariant holds can be shown by contradiction. For
the sake of contradiction, let us assume that a rewrite rule becomes applicable in
dimension ¢ at a node Y in V’. ¥ must be different from X because X is i-canonical
(as per the reasoning in the previous paragraph). The rewrite rule that became
applicable must involve the node X because otherwise, the rewrite rule would have
been applicable in dimension 7 at ¥, which would violate the second part of the
invariant that held before the LRA’s visit to the node X. It can be verified that no
matter which rewrite rule became eligible at node Y, the invariant before the LRA’s
visit to the node X would not hold, thereby giving the necessary contradiction.

As an example verification, suppose that Rule 8 became eligible at Y in the tree
obtained by deleting all of the SUB; (7 # 7) nodes from T'. Thus, Y is a SUB; node
and X is a MERGE; node. Now the node Y is not an z-canonical node because Rule
8 is applicable at Y. Therefore, the second part of the invariant did not hold before
the LRA visited the node X, which is a contradiction.

Case 2. For the rest of the proof, we assume that a rewrite rule fires in dimension z
at X. Since no rule can fire at a leaf node, X must be a non-leaf node. The proof
involves a case analysis checking all the 11 rewrites rules and showing that the loop
invariant holds no matter which rule fires (in dimension ¢). We will only show the

analysis for Rule 8; the analyses for the other rules are similar.
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G
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SUB; SUB;

Figure 4.5: Structure of an AML tree before and after a rewrite.

To verify the first part of the invariant, it is necessary to ascertain that after
rewrite using Rule 8, the tree T remains in k-canonical form for 0 < k£ < i:. The
schematic diagram in Fig. 4.5 shows the structure of T before and after the rewrite
using Rule 8. In a test for “k-canonical”-ness, the SUB; nodes play no part. Without
the SUB; nodes, the structures of the trees T' and 7" in Fig. 4.5 are identical.
Therefore, since the tree T is assumed to be in k-canonical form for 0 < k < ¢, the
tree T’ will also be in k-canonical form and the first part of the invariant holds.

Now let us verify the second part of the invariant. Due to the application of
Rule 8, the set V does not change. * Let Y be the MERGE; node that results from
applying Rule 8 at X (a SUB; node). It is necessary to show that all the nodes
v € V' (which is the same as V) continue to be i-canonical. > The proof of this
claim is by contradiction. For the sake of contradiction, let us assume that a rewrite
rule_ becomes applicable in dimension 7 at a node Z € V’. The rewrite rule that

became applicable must involve the MERGE; node because otherwise, the rewrite

4In general, V'—the new value of V—is rule dependent. For example, for Rule 11, V' = VU{X},
where X is the APPLY node that results from applying Rule 11. The values of ¥; and ¥; given in
Fig. 4.4 can be used to determine the V' sets.

SWhen V' = VU {X}, it is necessary to show that the node X is i-canonical and that—despite
the addition of the node X—the other nodes in V' continue to be i-canonical. To show these
results, arguments similar to the ones used in Case 1 for proving the second part of the invariant
can be used.
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rule would have been applicable in dimension i at Z, which would have violated
the second part of the invariant that held before the LRA’s visit to the node X.
Rule 8—which pushes a SUB; below a MERGE;—is the only rule that satisfies the
constraints of this scenario and accordingly, Z is a SUB; node. In that case. however.
Rule 6, which combines two SUB; nodes, would have been applicable between Z and
X. Therefore, the second part of the invariant did not hold before the LRA visited
the node X, which is a contradiction.

Thus, the invariant mentioned in the theorem statement is maintained. O

Recall from Fig. 4.4 that the LRA performs logical rewrites in each of the
dimensions 0 through (d — 1), in that order. When the LRA finishes visiting the
last node in T in a dimension ¢ (0 < 7 < d), the set of visited nodes V includes all of
the nodes in T and therefore, T becomes i-canonical. After the LRA has processed
dimension (d — 1), the invariant of Theorem 4.3 still holds and the resulting tree is

in canonical form. Thus, we can conclude:
Theorem 4.4 The logical rewrite algorithm generates canonical AML trees.

Proof. This follows immediately from the invariant of Theorem 4.3 at the conclusion

of the LRA. O

Optimality of Canonical Trees

In this section, it will be shown that the canonical trees produced by the LRA
minimize the number of applications of user-defined functions. The number of
applications of user-defined functions is a good cost measure because user-defined

functions are potentially costly. Further, ArrayDB treats disk reads as special types
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of APPLY functions and therefore. minimizing the number of function applications
minimizes costly disk I/O. (The numbers of applications of user-defined functions
are minimal subject to the fact that ArrayDB currently does not detect and elimi-

nate common subexpressions.)

Definition 4.3.3 (Cost of an AML tree) Suppose that an AML tree T contains
k APPLY operators (including leaf arrays that are treated by AML like APPLYs) and
that these APPLY operators are numbered 1 through k where k > 1. Suppose that,
to produce the result armé/ of T, the i-th APPLY function (1 < i < k) gets evaluated

n; times (n; > 0). The cost of T, written cost(T), is defined to be 5 | n;.

Theorem 4.5 For a canonical AML tree T produced by the LRA, cost(T) is min-

imal.

Proof. 1t will be shown that cost(T) is minimal in the sense that if any function
application in T were to be removed, the result of T would change. This claim is
proved by contradiction. For the sake of contradiction, suppose that it is possible to
remove a function application in the canonical tree T without changing the result
of T.

As an aid to the proof, a tagging mechanism is introduced as follows. Suppose
that each cell in the output array of an operator in 7 is “tagged” with all of the
function applications that contributed to it. The tags “pass through” the SUB
and MERGE operations (which do not change cell values). Suppose that an APPLY
operator’s user-defined function f gets evaluated j times and that the individual

function applications are arbitrarily numbered f; through f;. Conceptually, when
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Figure 4.6: Illustration of the tagging mechanism.

f’s function application number 7 (1 < z < j) takes place, all of the cells in the
resulting range box get tagged with the union of all of the tags of the cells in the
domain box, plus the new tag f;.

Fig. 4.6 illustrates how APPLY performs tagging. In that figure, the APPLY
operator’s user-defined function is d; Dy = (2,2); and Ry = (1,2). d is evaluated
four times to generate the output array and accordingly, d’s tags are named d;
through d4. Each of the four cells of the input array that fall under the domain-box
shape have their own set of tags that indicate their data lineage. Two of the cells
in the output array of the APPLY operator in Fig. 4.6 have six tags each: the d, tag
is due to the function d; each of the other five tags is present in at least one cell of
the input array that falls under the domain-box shape.

For concreteness, suppose that f; is the particular function application of a
user-defined function f that could be removed from T" without changing 7"’s output
array. This implies that none of the cells of T”’s output array are tagged with f;:
all of the cells with the tag f; got filtered out. Now one can start in 7 from the

APPLY node that applied f and move up the tree towards the root until one gets
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to the first intermediate array that has no f; tags. ® Suppose that the intermediate
array was generated by the operator X. X is either a SUB node (which filtered out
the f; tags) or an APPLY node (whose patterns did the filtering). Let us consider
the two cases separately.

Suppose that X is an APPLY node which applies a user-defined function g. One
or more cells in X’s input array contain the f; tag. Choose an arbitrary cell from
among such cells and call it ¢. When X applies g to the input array, none of the
domain box positions within the input array include the cell ¢ (or otherwise the f;
tag would not get deleted). Therefore, there must exist at least one APPLY pattern
P; that eliminates all of the potential domain boxes that overlap ¢. In other words,
there must exist a pattern P; such that Pi[k] = 0 for (¢[i] — D;[i] + 1 < k < t[i]).
But then, using Rule 11 that pulls a SUB out of an APPLY, a SUB; node can be
pulled out of X. Thus, T would not be in canonical form—a contradiction.

Suppose that X is a SUB; node and that T” is the tree that is obtained from T" by
deleting all of the SUB; nodes (5 # 7). (The tree T” is used because i-canonical-ness
of X is going to be tested.) Suppose that X’s child in 7" is called Y. If Y is a
MERGE; node (for any j), X can always be pushed below Y using either Rule 8 or
Rule 9. If Y is a SUB; node then X and Y could be combined using Rule 6. Finally,
suppose that Y is an APPLY node which applies a user-defined function g. (g may
be equal to f.) Y’s output array is an ordered collection of range boxes and because

of the way tagging is performed, X must delete at least one complete range box if

SIf an AML expression contains more than one APPLY operators that apply f, then distinct
aliases can be created for the name ‘f’. Alternately, function application numbers for f can be
chosen in such a way that a function application number uniquely identifies the instance of f that
caused the function application.
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it is to delete the f; tags. Therefore, X’s pattern must be of the form “a000---0b".
where a,b € (04 1)~ and there are R,[z] 0’s sandwiched between a and b. But then,
such a SUB; pattern permits the application of Rule 10 that pushes a SUB into an
APPLY. Thus, in all the three cases, a rewrite rule would be applicable at X and T

would not be in canonical form—a contradiction. O

An Example of the Logical Rewrites Using LRA

Let us demonstrate how the LRA works on a variant of the TVI query introduced
in Chapter 1. Suppose that the shape of the 7-band thematic mapper array A4 is
(1024, 1024, 7). The TVI array will then be of shape (1022,1022,1). Suppose that
A has been laid out on disk in band-major order and that a function f. is used to
read A one band at a time. Suppose that a new query, ;TVI, is posed on the TVI
array. 3 TVI extracts one-fourth of the TVI array from the middle. The clipping is
achieved using two SUB operators in Equation 4.11. (The tile shape T is equal to

(1024,1024,1).)

sUB; (02°°15110%%¢ suBy(025°1°110%%, APPLY(¢v7, MERGE,(10,
APPLY(nr,SUB,(0010000, APPLY (fa, A, T, T)), (3, 3), (1, 1)),
APPLY(nr,SUB,(0001000, APPLY (fa, 4, T, T)), (3, 3),(1,1))),

(1,1,2),(1,1)))) (4.11)

When the :TVI query in Equation 4.11 is rewritten using the LRA, the ex-

pression in Equation 4.12 results. In Equation 4.12, the two SUB, operators have
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been pushed into the leaf nodes as reflected by the P, patterns in the leaf nodes.
The SUBp and SUB; nodes have been pushed as far down as possible. The original
clipping window of shape (511, 511) has grown slightly to (513.513): the additional
elements are required to noise reduce the pixels on the boundary of the window.
The rewritten AML expression in Equation 4.12 shows that, to generate a fraction

of the TVT array, it is sufficient to process only portions of bands 3 and 4.

APPLY(tvi, MERGE2(10,
APPLY(nT, SUB(0%°°1°1302% suB, (0%°°1%130%%,
APPLY(fa, A, T, T, P, = 0010000))), (3,3), (1, 1)),
APPLY(nr, SUBo(0%°°151302%4 suB, (0%°51°130%%,
APPLY(fa, A, T, T, P, = 0001000))), (3,3), (1,1))),

(1,1,2),(1,1)) (4.12)

4.4 Plan Generation

The plan generation phase takes as input a tree containing logical AML operators
and produces as output a plan tree containing physical operators. ArrayDB uses the
physical operators to implement AML’s logical operators. The physical operators
are implemented using the iterator paradigm. Iterator-based plans generate the
arrays in pieces rather than in full and reuse the memory used to store the array
pieces. Therefore, iterator-based plans usually run in less buffer space than the

equivalent plans that generate intermediate arrays in their entirety. In a database
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management system, buffer space i1s usually at a premium. and therefore plans

requiring less buffer space are preferable.

4.4.1 ArrayDB Physical Operators

ArrayDB has six physical operators (iterators): APPLY_P, REPLICATE_P, REGROUP_P.
COMBINE_P, LEAF_P, and REORDER_P. (The suffix “_P” emphasizes that these are
physical operators.) Together, APPLY_P and REPLICATE_P implement APPLY; COM-
BINE_P implements an AML subtree containing only SUB and MERGE nodes; and
LEAF_P implements AML’s leaf arrays. REGROUP_P and REORDER_P ensure that
the data stream that flows through the pipeline formed by connecting the physical
operators has certain properties. ‘

Each of ArrayDB’s physical operators has a specific number of input streams
associated with it: LEAF_P has no input stream; APPLY_P, REPLICATE_P, RE-
GROUP_P, and REORDER_P have one input stream each; and COMBINE_P has k
input streams (k > 0). Each physical operator has exactly one output stream.

ArrayDB’s physical operators are implemented using the iterator paradigm.
Specifically, each physical operator is a chunk iterator in that it produces and con-
sumes array chunks. (Chunks of an array are non-overlapping subarrays contained
within it.) Each iterator can answer three calls: Init(), GetNezt(), and Close().
The Init() call initializes an iterator so that the iterator is ready to provide data
upon request. In answer to a GetNext() call, an iterator produces the “next” array
chunk and puts the chunk in the iterator’s unique output stream. The Close()

causes an iterator to perform some final housekeeping and the iterator closes itself
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down. Typically, an iterator receives one Init() call, followed by several GetNext()
calls, and then a Close() call. Each iterator makes just one pass over its input array.
(Notice that iterators cannot answer Reset() calls.)

Iterator-based implementation of ArrayDB’s physical operators offers several
benefits. First, compatible iterators can be connected to one another to form a
pipeline through which data travels and gets processed; no complex control routines
are necessary. Second, it becomes unnecessary to store intermediate arrays on disk
during query evaluation: array data produced by an iterator is passed directly to
the iterator that needs it. Third, the three interface routines Init(), GetNext(), and
Close() provide a nice design abstraction: iterators can be designed independently
of one another as long as their interfaces are well-understood. ©

Each physical operator expects its input chunks to appear in a particular order
and produces its output chunks in a particular order. For all the physical operators

except the REORDER_P operator, these two iteration orders are the same.

Definition 4.4.1 (Chunk iteration order) Suppose that d is the mazimum di-
menstonality of any array appearing in an AML plan. Chunk iteration order 7
(i-order for short), where 0 < i < d, for array A means that the chunks of A are
sorted using their position in dimension i as the primary sort key, and that the re-
maining dimensions are secondary sort keys, taken in order of increasing dimension

values, starting from 0.

For example, when d = 4, 2-order means the chunks are sorted in dimension 2,

“Graefe [22] gives many other advantages of iterators and gives several examples of iterator
functions. Iterators are frequently used during query evaluation in RDBMSs. Garcia-Molina et
al. [19, Chapter 6] describe iterators for several SQL physical plan operators.
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then dimension 0, then dimension 1, then dimension 3: l-order sorts by dimension
1, then 0, then 2, then 3; and 0-order sorts by dimension 0. then 1. then 2. then
3. For d = 2, if dimension 0 is the row dimension and dimension 1 is the column
dimension, 0-order is the row-major order and 1-order is the column-major order.

ArrayDB’s physical operators are summmarized in Fig. 4.7. For each operator,
the following parameters are given: input chunk shape, output chunk shape, buffer
space requirement assurmuing that the operator generates its output chunks in i-
order, and any parameters specific to an operator. In Fig. 4.7 and in the physical
operator descriptions that follow, the generic names A4 and B refer to a physical
operator’s input and output array, respectively; D and R refer to a physical op-
erator’s input and output chunk shapes, respectively; and D ¢ and R.f refer to an
APPLY node’s domain and range box shapes, respectively. For REGROUP_P and
REPLICATE_P operators, the buffer space requirement is given partly in terms of
number of i-slabs. When allocating z-slabs, ArrayDB’s unit of memory allocation
is a chunk slab of height D[] of the operator’s input array A, assuming that the
operator is producing its output array in the z-order. The size of such a chunk slab

is (Jj%%') - D[i] array elements.

APPLY P and REPLICATE_P

APPLY_P and REPLICATE_P implement the logical APPLY operator. A user-defined
function that maps a subarray of the shape of a domain box to a subarray of the
shape of a range box 1is associated with each APPLY_P operator. Each GetNext()
call to APPLY_P results in one application of such a function. The REPLICATE_P

keeps track of an APPLY’s patterns and forwards from its own buffer (possibly
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Operator Input Output Buffer Space Special
Name Chunk Chunk Required (for Parameters
Shape Shape z-order)
(D) (R)
APPLY_P Dy Ry |R;] elements function  refer-
ence
REPLICATE_P | (1,1) Dy Dyi] i-slabs | APPLY patterns
of B+|Dy|
elements
REGROUP_P any any (I'g[[%] - D[{]) i-| R has shape
slabs of A + |R| (1,1)
elements
COMBINE_P | (1,1) (1,1) 1 element k maps, one from
each child
LEAF_P — Rj(tile shape) | |Rf| elements (1 | leaf APPLY pat-
for a DEFAULT | terns; array ref-
leaf) erence
REORDER_P any any | B| elements the only iterator
with 2 orders

Figure 4.7: Properties of ArrayDB’s physical operators.
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Figure 4.8: REPLICATE_P operator’s buffer space requirement.

overlapping) domain boxes on demand to its parent APPLY_P node. From APPLY
patterns, a REPLICATE_P node knows which of the result chunks (of shape R ¢) are
to be generated, and supplies the parent APPLY_P with only the necessary domain
boxes.

Aﬁ APPLY_P requires enough buffer space to store one range box. An i-order
REPLICATE P requires buffer space equal to D/[i] i-slabs of B plus the size of
one domain box (for output). Fig. 4.8 illustrates how the Dj[i] i-slabs are used.
Fig. 4.8(a) shows the buffer of a 0-order REPLICATE_P operator. All the array
elements that are totally contained within the window are buffered and the value of
Dy[i] is 3. After the parent APPLY_P node has performed the function applications
that require the array elements in the bottom row of the buffer in Fig. 4.8(a), the
REPLICATE_P node “slides down” (Dj[i] — 1)—which is 2—i-slabs and refills the
“topmost” i-slab using the necessary GetNext() calls to its child. (Recall from
Fig. 4.7 that a REPLICATE_P node’s input chunk shape is (1,1).) The new position
of the window is as shown in F'ig. 4.8(b). The shaded portion in Fig. 4.8(b) shows
the “topmost” 0-slab. The two bottom 0-slabs in Fig. 4.8(b) are obtained from the

two top O-slabs in Fig. 4.8(a) as suggested by the dashed arrows.
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COMBINE_P

The COMBINE_P operator implements an AML subtree consisting of only SUB and
MERGE operators. If the subtree has k leaf nodes (X > 0), then the COMBINE_P
operator has k input streams, each one coming from a leaf. Such a tree can be
thought of as implementing a function that maps the cells of the leaf arrays to the
cells of the root array. The function is one-to-one and onto, and is, in general,
partial.

A data structure caﬂed a map is associated with each input stream of a COM-
BINE_P operator. A map encodes the mapping function from input cells (of a
subtree leaf array) to output cells (of the subtree root array). SUB and MERGE op-
erations are defined such that the mapping function can be expressed as a mapping
of input slabs (in each dimension) to output slabs. That is, in every dimension, if
two cells are located in the same slab in the input, then both cells will be mapped
to a common slab in the output if they are mapped at all. The number of slabs of
an array A is S0~ 4[j], whereas the number of cells is [[om{#)=! 4[;]. Since
the former is usually much smaller than the latter, a map has a compact encoding.
The encoding can be computed—as described in Section.4.4.3—from the patterns
used by the SUB and MERGE operations that the COMBINE_P implements.

The COMBINE_P operator’s input and output chunk shapes are (1,1) and its

buffer space requirement is just one array element.

LEAF_P

LEAF_P provides access to arrays stored on disk and is the only physical opera-
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tor with no child. ArrayDB treats AML’s leaf arrays like APPLY operators and
therefore, LEAF_P operations look much like APPLY_P operations.

ArrayDB assumes that leaf arrays are stored on disk using regular tiling [58. 18].
A GetNext call to a LEAF_P operator reads one tile of shape B ¢ from disk into the
LEAF_P’s buffer. Therefore, a LEAF_P operator’s buffer space requirement is |R 1l
array elements. DEFAULT LEAF_P nodes have a constant value stored in all the
array cells. They require 1 element of buffer space—just enough to store 1 copy of
the constant value.

A LEAF_P node has APPLY patterns associated with it. LEAF_P uses these
patterns to read only those tiles that are needed for AML expression evaluation,
avoiding unnecessary disk I/O. In the current implementation of ArrayDB, arrays

are stored on disk using UNIX flat files. A tile is read using one read system call.

REGROUP_P

The REGROUP_P operator is used to change the chunk shapes. It takes a stream of
chunks of one shape as input, and produces a stream of chunks of another shape
as output. This requires that the REGROUP_P operator buffer a certain amount of
data—a topic which will be treated in detail in Section 4.5.

It is complicated to define the behavior of a general REGROUP_P operator that
translates an arbitrary input chunk shape to an arbitrary output chunk shape be-
cause the chunk length in some dimension may not divide evenly into the array
length in that dimension. To avoid this difficulty, ArrayDB’s REGROUP_P operator
has output chunk shape equal to {1,1). ArrayDB’s physical operators do not pro-

duce partial output chunks and therefore, the length division problem never occurs
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in a REGROUP_P operator’s input stream. A REGROUP_P operator's buffer space
requirement is |E| (to hold one output chunk) plus ([gl[%] - D[i]) i-slabs of A4 (to
change chunk shapes). A REGROUP_P node with both D and R equal to (1.1) is a

no-op.

REORDER_P

Like REGROUP_P, the REORDER_P operator is used to ensure that a stream of
chunks has a particular property that is expected by downstream operators. As its
name suggests, the REORDER_P operator changes the order in which chunks appear
in a stream. All other operators produce output chunks in the same order in which
they consume input chunks. If a chunk producer wishes to use one chunk order
and the chunk consumer wishes to use another, a REORDER.P operator must be
inserted between them to re-order the chunks.

For changing the chunk order, a REORDER_P node must materialize its entire
output array B and so it needs |B| elements of buffer space. The motivation for
having REORDER_P operators in an AML plan is that by materializing some arrays,
it may be possible to generate some other downstream arrays in favorable orders—
orders that require less buffer space. The topic of whether to insert REORDER_P

operators in a plan and where to insert them is treated in detail in Section 4.5.

4.4.2 Plan Generation Algorithm

The iterator plan tree is generated by a recursive, top-down translation of an AML

expression tree T'. The action taken by the translator depends on the type of node
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it encounters in T':

o If the root node of the expression tree is a non-leaf APPLY node with do-
main box ﬁ, and range box R}, an APPLY_P node, a REPLICATE_P, and a
REGROUP_P node are added to the plan as shown in Fig. 4.9. The APPLY_P
node’s input chunk shape is D ¢ and its output chunk shape is B f- The REPLI-
CATE_P node’s input chunk shape is (1,1) and its output chunk shape is D;.
The REPLICATE_P also gets the APPLY’s patterns so that it can forward ap-
propriate domain boxes to the parent APPLY_P node. The REGROUP_P node’s
output chunk shape is (1,1) and its input chunk shape matches the output
chunk shape of its child iterator.

® If the root node of the expression tree is a SUB or a MERGE, the translator
finds the maximal tree of SUB and MERGE operations rooted at that node.
The tree is translated into a k-ary COMBINE_P operator and k& REGROUP_P
operators, where k is the number of leaves of the tree. This translation is
shown in Fig. 4.10. The output chunk shapes of all the REGROUP_P nodes
are (1, 1), which match the input chunk shape of the parent COMBINE_P node.
Each REGROUP_P node’s input chunk shape is the same as the output chunk
shape of its child iterator. The COMBINE_P node also gets & maps—one for
each input stream—that are derived from the SUB and MERGE patterns. The

map derivation is described in Section 4.4.3.

» [f the root node of the expression tree is a leaf APPLY, a LEAF_P operator is
generated. The LEAF_P operator gets its leaf APPLY patterns from the APPLY

operator.
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Figure 4.9: Plan for an APPLY node.
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Figure 4.10: Plan for a subtree made up of SUB and MERGE nodes.

The plan generation algorithm converts the AML expression given in Equa-
tion 4.12 for the optimized $TVI query to the iterator plan shown in Fig. 4.11(a).
In Fig. 4.11(a), a shape shown next to an edge indicates the shape of the chunks
in the data stream represented by that edge. Some of the physical operators that
appear in such an iterator plan tree may be unnecessary. Such operators—indicated

by arrows in Fig. 4.11(a)—are eliminated during plan refinement.

4.4.3 Map Spreading

This section describes an algorithm called MapSpread that shows how to replace
an AML subtree containing only SUB and MERGE operators with a COMBINE_P
operator. The deleted SUB and MERGE operators leave their footprints behind

as maps that are associated with the COMBINE_P operator. Map spreading helps
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Figure 4.11: Illustrating plan generation and plan refinement.

because it achieves data filtering (SUB’s effect) and data combining (MERGE’s effect)

without generating any intermediate arrays.

Definition 4.4.2 (SUB-MERGE-only tree) A SUB-MERGE-only tree G is a subtree
of an AML tree T such that all the nodes in G are of type SUB or MERGE; the parent
of the root node of G is an APPLY node 8; and all the children of G’s leaf nodes are

also APPLY nodes (leaf APPLY or non-leaf APPLY).

Definition 4.4.3 (Exterior nodes and exterior edges) For a SUB-MERGE-only
tree G, the APPLY nodes identified in Definition 4.4.2 are exterior to G. The APPLY

node that is the parent of the root node of G s called the top exterior node of G; the

81f the root node of G is also the root node of T, then such an APPLY node does not exist.
Nevertheless, for uniformity and to simplify the presentation, such a root node will be assumed
to have as parent a no-op APPLY node. This no-op APPLY node performs simple data copy.
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Figure 4.12: SUB-MERGE-only trees.

edge that connects the root node of G to the APPLY node is called the top exterior
edge of G. The APPLY nodes that are the children of G's leaf nodes are called the
bottom exterior nodes of G; the edges that connect G’s leaf nodes to these APPLY

nodes are called the bottom exterior edges of G.

Notice that a SUB-MERGE-only tree G has one top exterior node but can have
one or more bottom exterior nodes. Any AML tree T with at least one SUB or
MERGE node contains one or more SUB-MERGE-only trees within it. (If 7' contains
only APPLY nodes, it has no SUB-MERGE-only trees in it.) MapSpread replaces each
SUB-MERGE-OIJY tree with a COMBINE_P operator.

For examples of SUB-MERGE-only trees, consider the AML expression for the
rewritten form of the ;TVI query given in Equation 4.12. The most important
parts of Equation 4.12 have been reproduced in the form of a tree in Fig. 4.12.
(A and A; are aliases for the base array A.) The tree in Fig. 4.12 contains three
SUB-MERGE-only trees as shown. The SUB-MERGE-only tree containing the MERGE
operator has three exterior nodes: one of them is top exterior and the other two

are bottom exterior.
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Definition 4.4.4 (Map) Suppose that the mazimum dimensionality of any array
appearing in an AML tree T is d. A map C ¢s a pair (F, W), where F denotes
a set of filter patterns and W denotes a set of write patterns. The set of filter
patterns F s written (fo, f1,--, fa-1), where f; is the filter pattern for dimension

t. The set of write patterns W is similarly written (wo,wy,---,Wwqg—1)-

MapSpread associates a map with each edge of a SUB-MERGE-only tree G and
with the top exterior and bottom exterior edges of G. Each such edge connects a
child node to its parent node. The child node’s output array is called the input
array of the map associated with the edge. Thus, each map has a unique input
array. The target array of a map is the output array of the SUB-MERGE-only tree
in which the map occurs. Thus, all the maps in a SUB-MERGE-only tree share the

same target array.

Definition 4.4.5 (Effect of filter and write patterns) Suppose that the input
and the target arrays for a map X are Y and Z, respectively. For every dimension
t (0 <i<d) and for 7 > 0, the i-slab of Y at the indez index(f;,j + 1) is mapped

to the i-slab of Z at the indez indez(w;, 7 + 1).

Fig. 4.13 illustrates the effect of filter and write patterns. In that figure, F is
{fo = 0010, f; = 10} and W is {we = 00100, w; = 0011}. The four elements from
Y get selected and written to the four selected positions in Z.

A superscript to F, W, and C denotes an edge, or equivalently, the array associ-
ated with that edge. For example, F* refers to the set of filter patterns associated
with the edge (or the array) X. Individual patterns in F and W default to “1”s if

they are not written explicitly. A set of filter patterns is called an identity if all of
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Figure 4.13: Effect of filter and write patterns.

the patterns are “17s. Identity W sets are defined similarly. An identity map has
an identity F and an identity W.

Here is a high-level overview of how MapSpread works on a SUB-MERGE-only
tree G. An identity map is associated with the top exterior edge of G. This map
spreads downwards to all the bottom exterior edges of G. For each SUB and MERGE
node along the way, the map is modified so that the effect of that SUB or MERGE
node is absorbed in the map.

After a map reaches an edge X, the following invariant holds: the filter and
write patterns in CX describe how to map the selected array elements from the
input array of CX to the selected array elements of the target array of CX (as
per Definition 4.4.5). Because of this invariant, the maps that reach G’s bottom
exterior edges map the selected elements from the leaf arrays of G to the output
array of G. Therefore, all of the SUB and MERGE nodes in G can be replaced by a
single COMBINE_P node. If G had k leaves, then the COMBINE_P node will have k
maps associated with it—one for each leaf.

The MapSpread algorithm appearing in Fig. 4.14 traverses a SUB-MERGE-only

tree G (which is contained in an AML tree T') in preorder so that the maps can
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be spread from edge to edge in a top-down fashion. The tree-traversal code is not
explicitly mentioned in the algorithm steps. Suppose that for a node A in G, the
edge connecting A to its parent node (possibly the top exterior edge) is called the
parent edge and that the edges connecting A to its (one or two) children (possibly
bottom exterior edges) are calied the child edges. Throughout MapSpread, it is
assumed that when a map spreads from a parent edge to a child edge, the child
edge gets a copy of the parent edge’s map, but some patterns in this copy get
modified according to the computations of MapSpread. In the algorithm steps

shown in Fig. 4.14, only such map-modifying computations are mentioned.

Proof of Correctness of the MapSpread Algorithm

MapSpread replaces a SUB-MERGE-only tree G with k& (k > 0) leaves with a COM-
BINE_P operator that has k£ maps associated with it. MapSpread is correct if G’s
output array is identical to the COMBINE_P operator’s output array. Before proving
MapSpread’s correctness, it is necessary to define the COMBINE_P operation. Since
COMBINE_P’S effect is a combination of the effects of the SUB and MERGE oper-
ations, the following definition is less formal than those for the SUB and MERGE

operations (Definition 2.2.4 and Definition 2.2.5, respectively).

Definition 4.4.6 (COMBINE_P) Suppose that a COMBINE_P operator hask (k > 0)
input arrays and that a map C? is associated with the input array 5 (1 < 7 < k).
The COMBINE_P operator’s output array is the target array for all of the k maps.
COMBINE_P maps the elements of input array j to elements of the target array

using map C? as described in Definition {.{.5. That is, the filter pattern f; € F?
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1. Associate an identity map with the top exterior edge of G.

2. MapSpread’s action depends on the type of node that it encounters while
traversing G in preorder.

@ Suppose that MapSpread visits a SUB; node whose pattern is P. Suppose
that the SUB node’s parent edge is Y and that its (only) child edge is
X. Let F¥ = {fo, fi, "~ fi,---}. FX will be {fo, f1,---, fl, -}, where,
for all 7 > 0, f!is defined by: fI[j]1 = P[j] A filcount(P,j) — 1].
(For notational convenience, the definition of f; is extended such that

fil-1]=0.)
If X is a bottom exterior edge, then assign the map C¥X to the COMBINE_P
node.

@ Suppose that MapSpread visits a MERGE; node whose pattern is P.
Suppose that the MERGE node’s parent edge is Y, that its left-
child edge is X, and that its right-child edge is Xp. Let F¥ =
{fo, fr,-- = fir---} and let WY = {wo, w1, --,w;,-~}. CXt consists of
fXL = {f()’flv"" 3!7"°} and WXL = {w01w17"'sw:'a"'}- CXR con-
sists of FX& = {fy, f1,---, f7, -} and WX& = {wo,wy, ", w?,---}. fi,
wi, fI', and w} are defined as follows.

(a) For all j > 0, f[j] = filindex(P,j + 1)} Forall j > 0, wij] =
w;i[j] A Plindez(f;, count(w;,J))]-

(b) For all j > 0, f/[j] = filindez(P,j + 1)]. Forall j > 0, w{[j] =
wi[j] A Plindex(f;, count(w;, j))].

If X, (or Xg) is a bottom exterior edge, then assign the map C*t (or

CXRr) to the COMBINE_P node.

Figure 4.14: The MapSpread algorithm.
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determines which slabs of the input array appear in the target. and the write pattern

w; € WY determines where in the target they appear.

Notice that, like SUB and MERGE operations, COMBINE_P operation does not
reorder the i-slabs that it processes. It also does not permute the array elements
within an i-slab. More precisely, consider two arbitrary i-slabs numbered j; and j,
(71 = 0, j2 > 0) in the target array such that j; and j, came from the same input
array A. Suppose that the :-slabs j; and j, are numbered j| and j}, respectively,
in A. Then, 5; < j, implies j < j3. This observation is useful when proving
MapSpread’s correctness. In particular, it tells us that when proving the correctness
of the steps that fold a SUB; or a MERGE; operator into a map, it is sufficient to

consider mappings among the i-slabs only.

Theorem 4.6 Suppose that M is the output array generated by a SUB-MERGE-only
tree G with k leaves (k > 0). Suppose that MapSpread replaces G with a COMBINE_P
operator with k maps and that the COMBINE_P node’s output array is N. The arrays

M and N are identical.

Proof. Some of the notation used in this proof comes from Fig. 4.14. In each
step, MapSpread folds in a SUB; or 2 MERGE; operation into a map. The proof is
by induction on the number of such foldings (that is, on the number of SUB; and
MERGE; operators in G'). We shall only prove the correctness of an arbitrary folding
step. There are two cases to consider based on whether the operator to be folded
in is a SUB operator or a ' MERGE operator.

Case 1 (Folding a SUB; operator): Suppose that, before a SUB; operator is folded

into the map CY, the output array of the operator tree is ¥, and that after folding
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Figure 4.15: Folding a SUB; operation into a map.

the SUB; operator into CY, the output array of the operator tree is Y’. The aim is
to show that ¥ and Y are identical.

Suppose that the SUB; node’s input array is X and that its output array is U.
The map C¥ maps elements in U, to those in Y. That mapping—formally defined in
Definition 4.4.5—can be thought of as occurring in two steps. First, FY filters out
the unnecessary elements in U; and produces an intermediate array U,. Second,
WY maps the elements of U, to those in Y. The new map C* (conceptually)
performs similar operations on the input array X and produces an intermediate
array V2 before mapping it to Y’. The arrangement is as shown in Fig. 4.15.

Since WY = WX 9 it is sufficient to show that the intermediate arrays U, and
V, are identical. This will be shown by proving that the i-slab 7 (7 > 0) of X isin
U; iff it is in V4. A proof of this claim follows.

The i-slab 7 (j > 0) of X is equal to the i-slab (count(P,j)—1) of U; iff P[j] = 1.
The i-slab (count(P,j) — 1) of Uy is in U; iff fi[count(P,j)—1] = 1. Therefore, the

9Recall that MapSpread explicitly mentions computations of only those filter and write patterns
that change.
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Figure 4.16: Folding a MERGE; operation into a map.

i-slab 7 (7 2 0) of X is in U, iff (P[] =1) A (fi[count(P,5)—1] =1).

The z-slab j (7 > 0) of X isin V5 iff fI[j] = 1. According to the definition of f/,

the i-slab 7 (7 > 0) of X is in V5 iff (P[] =1) A (filcount(P,7)— 1] = 1).
Case 2 (Folding a MERGE; operator): Suppose that, before a MERGE; operator is
folded into the map CY, the output array of the operator tree is Y, and that after
folding the MERGE; operator into CY, the output array of the operator tree is Y.
The aim is to show that Y and Y’ are identical.

Suppose that the MERGE; operator’s left input array is Xy, that its right in-
put array is Xpg, and that its output array is Uj. After folding, two new maps
are generated: C¥t = {FXr WXr} and CX® = {FXr WXr}. Suppose that the
intermediate arrays U, and V> are defined similarly to their definitions in Case I.
The arrangement is as shown in Fig. 4.16. We shall only prove that the map C*t
is formed correctly. A symmetric proof can be used to prove that the map CX® is
formed correctly.

That CX¢ is formed correctly will be shown by proving the following three

statements: (1) the i-slab j (7 > 0) of X isin Y iff it is in Y”; (2) the i-slab j
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(7 > 0) of Y comes from X, iff the ¢-slab j (7 > 0) of ¥ comes from A: and (3)
for all 7 > 0, w{j] = 1 = w?[j] = 0. The third statement ensures that the i-slabs
that are contributed to ¥ by CXt are not overwritten by those contributed by C*r.
(It is unnecessary to prove w?[j] = 1 = w[j] = 0 because this statement is just the
contrapositive of the third statement.) It is also unnecessary to consider the write
patterns of the other maps (shown using the arrows attached to the COMBINE_P
operator in Fig. 4.16) because they do not interfere with one another because of the
induction hypothesis and because they do not change during this MERGE-folding
step.

The first statement can be proved as follows. The z-slab j (j > 0) of X is
equal to the i-slab index(P,j + 1) of U,. The i-slab index(P,7 +1) of U; isin Y
iff filindez(P,7 +1)] = 1.

The i-slab 7 (7 > 0) of X is in Y’ iff f/[j] = 1. From the definition of f/, the
i-slab 7 (7 > 0) of X is in Y iff fi[indez(P,j +1)] = 1.

The second statement can be proved as follows. The ¢-slab 7 (7 > 0) of Y comes
from Xy, iff (wi[s] = 1) and the i-slab (count(w;, j) — 1) of U; comes from X. The
i-slab (count(w;, j) —1) of U, comes from X iff the i-slab (indez(f;, count(wi, 3)))
of U; comes from Xj. The i-slab (indez(f;, count(w;, j))) of U, comes from X, iff
Plindez( f;, count(w;, 7))] = 1. Therefore, the i-slab j (7 > 0) of ¥ comes from X,
Hf (wif] =1) A (Plindez(fi, count(wi, 5))] = 1).

The i-slab 7 (7 > 0) of Y’ comes from X iff wi[j] = 1. According to the
definition of w!, the ¢-slab j (7 = 0) of Y’ comes from X iff (wi[j] = 1) A
(P[index(f;, count(w;, j))] = 1).
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| Node F %% ]
C 1dentity identity
D identity {w2=10}
E identity identity
F { fo = 0%°1513¢%4 } identity
A { fo = 0%°°1%190%% | f; = (°°15130251 } identity
G identity {w2=01}
H identity identity
I { fo =0%°1°130%4 } identity
-4-2 { fO . 025515130254’ fl — 025515130254 } identity

Figure 4.17: Illustration of MapSpread.

The third statement can be proved as follows. Consider the definition of w?. If
wi[7] = 1, then (w;i(j] = 1) and (P[indez(f;, count(w;,5))] = 1). In other words,
if wi[j] = 1, then (wi[j] = 1) and (Plindez(f;, count(w;,5))] = 0). From that

conclusion and the definition of w!, w[j] = 0 follows immediately. O

An Example Ilustrating the MapSpread Algorithm

When map spreading is performed on the three SUB-MERGE-only trees in Fig. 4.12,
the maps shown in Fig. 4.17 result. In Fig. 4.17, the map associated with an edge

connecting a child node to a parent node is shown as belonging to the child node.

4.5 Plan Refinement

The plan refinement phase begins by deleting no-op REGROUP_P nodes and no-
op COMBINE_P nodes from an iterator plan tree. A REGROUP_P is a no-op if its

input chunk shape and output chunk shape are the same. A COMBINE_P node is
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a no-op if the following two conditions hold: (1) the COMBINE_P node has only
one child; and (2) the map in the COMBINE_P node for its only child is an identity
map. Eliminating no-op REGROUP_P and COMBINE_P nodes avoids unnecessary
data copying.

The plan shown in Fig. 4.11(a) contains 5 no-op REGROUP_P nodes (indicated
by arrows). They are deleted in this step of plan refinement and the plan shown in
Fig. 4.11(b) results.

The most important task of the plan refinement phase is to determine the chunk
ordering to be used by each operator in an iterator plan tree. Chunk reordering
operators (REORDER_P) are added to the plan if necessary to ensure that each
operator can consume chunks in the expected order.

Chunk iteration order is important because it affects the amount of data that
must be buffered by physical operators. The amount of buffering required depends
on several factors: the input and output chunk shapes, the shape of the whole
array, and the order in which chunks are processed. Fig. 4.18 illustrates this in
two dimensions. The left hand side of the figure shows an array with shape (8, 8)
being regrouped in O-order (row-at-a-time) from chunks of shape (1,4) to chunks
of shape (2,2). Clearly, the REGROUP_P operator must buffer 2 rows of cells, or a
total of 4 input chunks. The right hand side of the figure shows the same regrouping
operation, but this time in l-order (column-at-a-time). The REGROUP_P operator
must now buffer 4 columns of the array, or a total of 8 input chunks, twice as much
as Was-required in 0-order. Modifying the shape of the array would change this

comparison. For example, if the array were twice as wide, the memory requirement
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Figure 4.18: Regrouping in O-order and in 1-order.

for 0-order would double, but the requirement for 1-order would remain unchanged.

The optimizer attempts to minimize the total memory requirements of a plan
by considering a large space of possible evaluation orders for the operators in an
AML iterator plan tree. Minimizing the memory requirement is important because
it can make the difference between a plan that can execute entirely in memory and
one that cannot. In the latter case, it is necessary to split the plan by materializing
partial results on secondary storage, with a corresponding increase in execution
cost.

If a physical operator consumes a total of & chunks, there are k! ways those
chunks could be ordered. The optimizer does not consider all such orderings. In-
stead, it comsiders d possible iteration orders for each operator, where d is the
maximum dimensionality of any array appearing in the AML plan. These d orders
are the i-orders defined in Definition 4.4.1 for 0 < 7z < d. Other orders, such as
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the Z-curve or the Hilbert curve described in Section 7.1.2, are also possible and
possibly even useful, especially if chunks in the base arrays have been laid out in
such an order on secondary storage. For simplicity’s sake, the optimizer does not
consider them.

Because an array consumér’s chunk ordering must match that of the array pro-
ducer, the ordering decisions for the various operators are not independent. Never-
theless, a producer and a consumer can use different chunk orders if a REORDER_P
operator is inserted between them in the plan. A REORDER_P operator itself has
a memory cost, since the entire array must be buffered to change the chunk or-
dering. '° In considering a change in chunk order, the optimizer must balance the
additional cost of reordering with the potential downstream benefits it may bring.

In an n-operator plan, d" possible assignments of iteration orders to operators
exist. A dynamic programming algorithm is used to find a minimum memory cost
assignment of iteration orders to plan operators in time O(nd?). For each operator
z and order z, the algorithm determines C;(z), the minimum cost of the plan subtree
rooted at z assuming that z’s output is in z-order. Let X be the set of children of

z in the plan. The minimum subtree cost can be expressed recursively as:

Cilz) = ai(z) + 3 min(Ci(y), min(C;(y) + cji(reord(y)))) (4.13)
yek

where ¢;(z) is the memory cost of operator z itself in i-order, and ¢ji(reord(y)) is

the cost of a j-order to i-order REORDER_P operator inserted between y and z in

10ArrayDB uses random access to read chunks (tiles) of an array stored on disk. Therefore, a
LEAF_P operator does not materialize its entire input array in memory.
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the plan. In other words, to produce z’s result in i-order, each child of z either
produces its result in i-order or it produces its result in some other order and a
REORDER_P is inserted after that child to convert its output to i-order before it
reaches z. If z is a LEAF_P operator, then C;(z) = ¢i(z).

The dynamic programming algorithm proceeds bottom up through a plan tree,
generating the costs C;(z) for a node z once all the costs C;(y) are known for all
the children y of the node z. To each plan tree node = with & children, the dy-
namic programming algorithm associates a cost table containing d rows of the form
(Ci(x),choice;, choicey, - - - , choicex), where 0 < i < d and choice; is the iteration
order for the j-th child (1 < 7 < k) to achieve the subtree cost Ci(z). When
the dynamic programming algorithm finishes, d plans are available to evaluate the
AML expression, each one generating the result array in a certain order. Out of
these d plans, the cheapest plan is chosen for evaluation. The iteration orders of
the operators in the cheapest plan are determined using a top-down traversal of the

plan tree to select the appropriate “choice” entries from the cost tables.

4.5.1 Physical Operator Memory Cost Estimation

Optimization depends on memory cost estimates c¢;(z) for each operator z in a
plan. The cost of a particular operator depends on details of its implementation—
for example, in what size units it allocates space. In general, each operator has an
associated costing method which can be invoked by the optimizer to obtain a cost
estimate for evaluation of that operator in a particular order. The cost estimates

that are currently being used in ArrayDB are based on the simplifying assumption
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that the unit of buffer space allocation when i-order is being used is a slab of
input chunks in dimension 7. The size of such a slab depends on the length of the
chunk in dimension 7 and on the lengths of the entire input array in the remaining
dimensions. Under this assumption, the cost estimate for each type of physical
operator is given in Fig. 4.7 under the column heading “Buffer Space Required (for
t-order)”. In general, the cost vector for a LEAF_P operator can be maintained
In system catalogs, and it would depend on the access method implemented by
the leaf. Currently, LEAF_P operators take input from flat files and have costs as

described in Fig. 4.7.

4.5.2 An Example Illustrating the Dynamic Programming
Algorithm

When the dynamic programming algorithm is applied to the plan in Fig. 4.11(b),
the cost tables shown in Fig. 4.19 result. The node names in Fig. 4.19 refer to
those in Fig. 4.11(b). The costs in Fig. 4.19 are calculated based on the following
assumptions. The array element size for the leaf arrays is 1 byte. For the noise
reduce function, both the input element size and the output elements size are 1
byte each. For the TVI function, the input element size is 1 byte and the output
element size is 8 bytes.

From Fig. 4.19, we learn that there are two cheapest plans for evaluating the

%TVI query: all the iterators can iterate in 0-order or all can iterate in 1-order.
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Node Dimension 0 Dimension 1 Dimension 2
cost in KB | choice | cost in KB | choice | cost in KB | choice
B 4198 0 4198 1 4721 0
C 4198 0 4198 1 5242 0
D 4197 0,0 4197 1.1 4720 0.0
E 2099 0 2099 1 2360 2
F 2099 0 2099 1 2360 2
G 2097 0 2097 1 2097 2
H 2097 0 2097 1 2097 2
I 1049 — 1049 — 1049 —
J 2099 0 2099 1 2360 2
K 2099 0 2099 1 2360 2
L 2097 0 2097 1 2097 2
M 2097 0 2097 1 2097 2
N 1049 — 1049 — 1049 —

Figure 4.19: The result of the dynamic programming algorithm.
4.6 Query Evaluation

After plan refinement, the plan is ready for evaluation. Suppose that Toot is the
root node of such a plan. From the output chunk shape and the output array shape
of root, it is easy to determine n, the number of GetNext() calls to be made to
root, by dividing the size of the latter by the size of the former. The pseudo-code
in Fig. 4.20 describes how the output array of root can be generated one chunk
at a time. ! The chunks arrive in a particular order (such as row-major order or
column-major order) and can be processed immediately by the application or they

can be stored in a buffer for later use.

11Other methods are possible. For example, by adding as the root node of the plan tree a
REGROUP.P operator whose input chunk shape is the output chunk shape of root and whose output
chunk shape is the output array shape, the output array can be generated by one GetNext() call
to the new REGROUP_P operator.
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Determine n, the number of GetNext() calls to the root iterator;
Init(root); // initialize the root iterator
fori—1lton

GetNext(root);

Process this chunk of the result array or store it for later use;

end for // for loop ends
Close(root); // close the root iterator

Figure 4.20: Pseudo-code to generate the result array of an AML expression.

The simplicity and generality of the pseudo-code in Fig. 4.20 are due to the
iterator paradigm used to implement the physical operators. First, the Init() calls
spread in an iterator plan tree from the root to the leaves. Then, the GetNext()
calls cause the result array to be generated chunk by chunk and finally, the Close()
calls spread from the root to the leaves. The simple for loop in Fig. 4.20 hides a
complex sequence of Init(), GetNext(), and Close() calls that get made to generate

the result array.



Chapter 5

The Query Suite

One way to evaluate performance of a DBMS is to run it on a benchmark. For exam-
ple, the OO7 benchmark [7] is intended to measure the performance of an object-
oriented DBMS. The Transaction Processing Performance Council offers several
benchmarks for transaction systems and decision support systems [14]. However,
it appears that no benchmark for an array DBMS exists. Therefore, a suite of
array queries was created to measure ArrayDB’s performance. The queries in the
suite are described in this chapter. The empirical results obtained by measuring
ArrayDB’s performance on the queries in the suite are pr;asented in Chapter 6.
Three queries in the SEQUOIA 2000 storage benchmark [65] deal with rasters,
and they can be considered array queries. However, AML can express only ar-
ray manipulating portions of those queries. Further, when measuring ArrayDB’s
performance in Chapter 6, the effect of image clipping—the common operation per-
formed by all the three raster queries—will be considered. The three raster queries

also perform things such as selecting a band from a multi-band satellite imaée,
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computing an arithmetic function of several wavelength band values, and lowering
the image resolution by a constant factor. The queries described in this chapter
perform similar image manipulations.

The suite contains five queries from the digital image processing domain. For
easy reference, the queries in the suite are given the following names: TVI. NDVI,
DESTRIPE, MASK, and WAVELET. TVI, NDVI, and DESTRIPE are based on
common image processing operations described in [37]. MASK was inspired by
a query described in a paper by Lohman and colleagues [38]. WAVELET uses
wavelet reconstruction as a method of constructing a high-resolution image from
four low-resolution images [63].

The following five sections describe the query suite. For simplicity and unifor-
mity, all the queries except WAVELET are constructed such that they manipulate
one or more bands of a multi-band satellite image such as the image A shown in
Fig. 1.1. For brevity, bands 1 through 7 of that image will be denoted by the names
A, through A;.

5.1 DESTRIPE

The destriping procedure [37, page 483]—a noise removal operation—is an exam-
ple of an image rectification and restoration operation. Such operations correct
distorted or degraded image data to create a more faithful representation of the
original scene.

Some multispectral scanners aboard satellites sweep multiple scan lines simul-

taneously. To do that, they have multiple detectors in each band. The multiple
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detectors—for example, six—are carefully calibrated and matched prior to the satel-
lite launch. However, their radiometric response tends to drift over time, resulting
in relatively higher or lower values along every sixth line in the image data (for
example). Valid data is present in the defective lines but it must be normalized
with respect to their neighboring observations. The normalization is performed by
subtracting a value ¢ from every sixth line in the original image. The value 4§ is
determined by computing a histogram for scan lines 1, 7, 13 and so on; a second
one for lines 2, 8, 14, and so on; and so forth. These histograms are compared in
terms of their mean and median values to arrive at the value of 4. Lillesand and
Kiefer show an illustration of the destriping procedure [37, page 484).

For concreteness, let § = 25. Suppose that the APPLY function deduct25 with
unit-sized domain and range boxes performs the noise removal for one pixel value.
The APPLY pattern in dimension 0 can be used to apply deduct25 selectively to
the scan lines 1, 7, 13, and so on. The corrected lines can then be merged with
a subsampled version of the original image where the problem lines have been
eliminated. In the AML expression below, it is assumed that destriping is performed
on band five. The AML expression for As is SUB,(0000100, A); the other bands can

also be extracted from A similarly.

MERGEq(10°, APPLY(deduct25, As, {1, 1), (1, 1),10%),sUB(01%, A5)) (5.1)
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5.2 TVI

Computing vegetation indices using between-band differences and ratios is a com-
monly used image enhancement method. Image enhancement aims to create en-
hanced images from the original image data to increase the amount of information
that can be visually interpreted from the data. As the name suggests. vegetation
indices indicate presence and condition of green vegetation.

- Chapter 1 described the computation of the TVI array shown in Fig. 1.1 in
detail. The AML expressions for the TVI array and for the intermediate arrays
used to compute it appeared in Section 2.2.5. Therefore, only the AML expression

for the final TVI array appears here.
APPLY(tvi, MERGE2(10, APPLY(nr, A3), APPLY(nr, Ay))) (5.2)

Here, Dywi = (1,1,2), Rupi = (1,1), Doy =(3,3), and R,, = (1,1).

5.3 NDVI

Like TVI, NDVI (Normalized Difference Vegetation Index) is also a vegetation
index. NDVI is computed from data in AVHRR (Advanced Very High Resolution

Radiometer) sensor’s bands 1 and 2 using the formula

by — by

NDVI=———,
bz + by

(5.3)
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where b; and b, represent data from bands 1 and 2, respectively [37. page 448].
Vegetated areas have positive NDVI values; areas with clouds. water. and snow
have negative NDVI values; rock and bare soil give NDVI values near 0. It is
preferable that the data values b, and b, be in terms of radiance or reflectance [37,
page 448], ! rather than in units of pixel intensities.

Suppose that the pixel intensities in bands A; and A, are in the range 0 to 255.
Pixel intensity and absolute radiance are related to each other by the following

formula [37, page 481]:

bout = LMA){'25—5LMIJ\' ~bin+ LMIN. (5.4)

Here, b,y is the absolute spectral radiance value, b;, is the pixel intensity, LMIN
is the spectral radiance corresponding to the pixel intensity of 0, and LM AX is
the spectral radiance required to generate the maximum pixel intensity of 255. The
constants LMIN and LM AX are sensor-specific.

Suppose that the APPLY function dn2ar performs the conversion described by
Equétion 5.4 and that the APPLY function ndvi computes the NDVI as per Equa-
tion 5.3. dn2ar has unit-sized domain and range boxes. The AML query for the

NDVTI computation can now be given as follows.

APPLY(ndvi, MERGE2(10, APPLY(dn2ar, A;), APPLY(dn2ar, A,)),(1,1,2),(1,1))
(5.5)

1Radiance is 2 measure of the “brightness™ of a point on the ground, whereas reflectance is a
measure of the amount of light reflected by a surface. Radiance and reflectance are related [37,
page 22].
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5.4 MASK

MASK is an example of an image classification operation. Image classification
categorizes all the pixels in a digital image into one of several classes. MASK's
computation is described as follows [38]: In an image, retrieve all the pixels whose
intensities, when averaged with all the neighboring pixels, are between two constant
values, say 10 and 100.

The result pixels of the MASK query might not form an AML array and there-
fore, MASK’s result is a binary image containing a ‘1’ in each position where the
pixel satisfies the criterion and a ‘0’ in all the other positions—these are the two
classification classes.

Suppose that band 1 contains the original n x n image and that the function
avg9 with ﬁaugg = (3,3) and R.m,gg = {1,1) calculates the average of the 9 pixels
(a central pixel and its 8 neighbors), compares it to the two constants 10 and 100,

and returns either 0 or 1. The AML expression for MASK is as follows.
APPLY(avg9, 41, (3,3),(1,1)) (5.6)

Due to APPLY’s semantics, the output array of MASK has the shape (n—2,n—2).
If necessary, such a mask can be expanded—using MERGE operators—by adding
two rows and two columns to it. The boundary pixels can be arbitrarily assigned

to the class ‘0. (Other ways of handling the boundary condition are also possible.)
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Figure 5.1: Wavelet decomposition.
5.5 WAVELET

WAVELET’s computation is an example of multi-resolution image processing. In
multi-resolution image processing, images need to be viewed at multiple resolutions.
For example, in remote sensing, the spatial resolution required to study an urban
area is usually much different than that needed to study an agricultural area or
the open ocean [37, page 599]. The wavelet transform is one way to decompose an
image into many components so that the image can be reconstructed at multiple
resolutions as needed. To understand how wavelet reconstruction works, it is first
necessary to describe the wavelet-based image decomposition.

Fig. 5.1 shows an n x n image A on the left. Wavelet decomposition transforms
each row of A as follows. A row is logically divided into £ groups of 2 adjacent
pixels each. (n is even.) Suppose that the pixel values in a group are b and c. As

per the wavelet transform with the Haar basis [63], two functions k; and h,, defined

by the following equations, are applied to b and c.

Ry = (b+c)/2 (5.7)
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Figure 5.2: Wavelet reconstruction.

ha = (b—c)/2 (5.8)

In Fig. 5.1, image B gathers the results of ali the A, function applications and
image C gathers the results of all the h; function applications. Images B and C
have shapes n x 3. Next, the decomposition just described is applied to all the
columns in images B and C. As a result, the column lengths shrink by half and a
set of four § x 3 images D, E, F, and G is generated. D contains the low-frequency
compornents of 4, whereas G contains the high-frequency components of 4. The
decomposition may then proceed recursively on the image D. (n is conveniently
chosen to be a power of two.) The decomposition ends when a set of “small”—for
example, 32 x 32—images is generated.

Wavelet reconstruction combines four low-resolution images to form a high-
resolution image. Fig. 5.2 illustrates wavelet reconstruction. Image names have
been retained from Fig. 5.1. Suppose that D, E, F, and G are % x 3 images.

Wavelet reconstruction begins by combining D and E by putting one atop the

other in dimension 2 to generate the image H. Likewise, F' and G combine to form
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I. 2 Suppose that (d, €) is a pair of matching pixels in H with d coming from D
and e from E. According to the Haar wavelet transform, two functions hy and ho

are applied to the pair {d, e) thus:

hi=d+e (5.9)

ho=d—e (5.10)

In Fig. 5.2, the function h performs the tasks of h; and i by producing a 2x1
array with values (d + e, d — e) as output for each pair of pixels {(d, ¢). Therefore,
the result of applying & to H (image B) is twice as high as H. Similarly, A applied
to I produces the image C. The images B and C of shapes n X 3 are put one atop
the other to form the image J. * The function k is similar to & except that one
application of k£ produces a 1 x 2 array. Therefore, applying k to J produces an
n X n high-resolution image A. Wavelet reconstruction can continue on the image
A by combining it with three other n x n images.

Both wavelet decomposition and wavelet reconstruction can be expressed using
AML queries; the following description only shows how wavelet reconstruction is
achieved using AML. Specifically, it is shown how AML can express one step of
wavelet reconstruction whereby the four low-resolutions images D, E, F, and G

in Fig. 5.2 combine to form the high-resolution image A. The four low-resolution

2These two steps are unnecessary; they are included only because later on in this section, AML
will be used to express the wavelet reconstruction computation. Having these steps facilitates a
simple transiation of wavelet reconstruction to AML.

3Once again, this step is performed only because it facilitates a simple translation of wavelet
reconstruction to AML.
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images are typically stored together in one array. Suppose that the array X stores
D, E, F, and G concatenated in dimension 0. D can be extracted from X as

follows; the other three images can be extracted from X similarly.
D = suBe(1™/20%"/2 X)) (5.11)

The AML expressions for the images B, C, and A are as follows.

B = APPLY(h, MERGE.(10, D, E), (1,1,2),(2,1,1)) (5.12)
C = apPpLY(h, MERGE,(10, F, G),(1,1,2),(2,1,1)) (5.13)
A = appLy(k, MERGE,(10, B, C), (1,1,2),(1,2,1)) (5.14)

It is an interesting fact that all the wavelet decomposition and reconstruction
transforms (and not just the ones with the Haar basis functions that we have
chosen) have recursive structures similar to the ones shown in Fig. 5.1 and Fig. 5.2.
Therefore, AML can express all such transforms.

Wavelet decomposition and reconstruction can also be used to obtain a lossy
image compression algorithm. During wavelet decomposition shown in Fig. 5.1, the
image G containing the high-frequency components of A is not stored. Due to the
nature of wavelet decomposition, many of the coefficients in G are zero (or close to
it). In addition, the human eye is less sensitive to high-frequency components than
it is to low-frequency components and therefore, discarding G does not introduce
noticeable degradation in image quality. For higher compression ratios, images

such as £ and F in Fig. 5.1 can also be discarded at the expense of drops in image
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quality.
The 1mage decompression proceeds as per the wavelet reconstruction shown in
Fig. 5.2. When one or more of images E, F', and G are absent (because they were

discarded during image compression), all-zero images are used in their places.



Chapter 6

Experimental Results

ArrayDB’s performance was measured using many experiments. This chapter de-
scribes the results of some of the more informative experiments.

Section 6.1 describes the workload, which consists of the five queries from the
query suite described in Chapter 5. Section 6.2 describes the experimental setup.
The remainder of the chapter presents the experimental results and makes three
points. First, Section 6.3 shows that the array query optimization techniques are
effective. Second, Section 6.4 shows that the query optimization techniques are not
too costly. Third, Section 6.5 shows that ArrayDB’s iterator-based evaluation plans
are usually able to evaluate array queries efficiently. In particular, ArrayDB’s query
evaluation performance scales up. Moreover, for three out of the five queries in the
query suite, ArrayDB’s query evaluation performance comes relatively close to that
of custom C+4+4 programs. The experimental results also suggest some possible

enhancements to ArrayDB that could lead to performance improvements.
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L Query Shapes of Input Arrays | Output Array Shape | AML expression
TVI 2 x (1024, 1024, 7) (1022.1022.1) Equation 5.2
NDVI 2 % (1024, 1024, 7) (1024,1024, 1) Equation 5.5
DESTRIPE | 2 x (1024, 1024, 7) (1024, 1024, 1) Equation 5.1
MASK 1 x (1024,1024,7) (1022,1022.1) Equation 5.6
WAVELET 1 x (2048, 512) (1024,1024, 1) Equation 5.14

Figure 6.1: Characteristics of queries in the suite.
6.1 The Workload

The empirical results reported in this chapter were obtained using a workload con-
sisting of the five queries described in Chapter 5. Fig. 6.1 summarizes the query
suite. (For WAVELET, n in Equation 5.11 is 1024.) The first four queries are posed
on a 7 MB base array A. A contains a 7-band Landsat Thematic Mapper image
of the Washington, D.C. area. WAVELET’s base array contains four 512 x 512
images that are concatenated in dimension 0, as would have been produced by the
wavelet decomposition procedure described in Section 5.5. Thus, for WAVELET,
Ais (2048, 512) with [A] = 1 MB. The output arrays of TVI and MASK have sizes
slightly less than 1 MB; the other three queries produce exactly 1 MB output data.
The suite in Fig. 6.1 will be referred to as the “7 MB” suite. For the experiments
described in Section 6.5.1, the suite size is scaled up by increasing the sizes of the
two spatial dimensions of the base arrays appropriately. Queries in the scaled up

suites generate scaled-up output arrays.
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6.2 Experimental Setup

The performance experiments were run on a computer called Mattawa. Mattawa is
a Sun Ultra-10 computer running the Solaris 2.6 operating system and has 128 MB
of main memory. During the experiments reported in this chapter for which running
times were measured, Mattawa’s buffer cache was disabled using the “direct I/O”
feature available in Solaris 2.6. This avoids the problem of caching of the input
array during one experimental run affecting the running times of successive runs.

Unless stated otherwise, measured running times are wall-clock times, which
include CPU time and I/O time. To obtain the timings reported in this chapter,
Mattawa was run in single-user mode to ensure that wall-clock times were not af-
fected by other users’ processes. For timing experiments, each query was run 21
times and confidence intervals were calculated for the mean running time. The
t-distribution with 20 degrees of freedom was used to establish the confidence in-
tervals. The confidence level was set at 0.99 or 99%. In the graphs of query running
times that appear in this chapter, confidence intervals are not plotted unless their
widths are greater than +5% of the mean running times. (This was done to reduce
clutter in graphs.)

Unless stated otherwise, the experiments were run on the “7 MB” suite in
which the input arrays were laid out on disk using tiles of shape (64,64). Each
array element is one byte, so the total tile size is 4 KB. The output chunk shapes
of the LEAF_P operators (which implement AML’s leaf arrays) were made to match
the tile shapes. Accordingly, each tile was read using one I/O operation.

In the descriptions of empirical results, the phrase “optimization on” means



CHAPTER 6. EXPERIMENTAL RESULTS 128

that all the AML query optimizations discussed in this thesis were enabled: the
phrase “optimization off” means that the logical rewriting step and the step in
the plan refinement phase that deletes no-op physical operators from an AML plan
were disabled.

6.3 Effectiveness of Optimization

This thesis describes two important array query optimization techniques. The
first one saves disk I/O and CPU time by reducing the reading and processing of
unnecessary array data. The experiments reported in Section 6.3.1 demonstrate
the effectiveness of this technique. The second technique reduces the buffer space
requirement of an array query plan by choosing iteration orders of iterators intel-
ligently. The experiments reported in Section 6.3.2 show the eflectiveness of this

technique.

6.3.1 Effect of Optimization on Query Evaluation Time

To show that suB-pushdown reduces unnecessary disk I/O and CPU processing, it
1s necessary to introduce some unnecessary computation in the queries. This was
achieved by placing square clipping windows that were located at the centers of the
result arrays of the queries. Fig. 6.2 shows a clipping window (shown shaded) that
is situated within an output array. The clipping fraction is defined as the size of the
<lipping window divided by the size of the output array. For example, in Fig. 6.2,
the clipping fraction is % assuming that both the clipping window and the output

array are square. The clipping fraction was varied from I (no clipping) to 3.
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Vann clipping window

Figure 6.2: Clipping widow.

output array

For each of the queries in the suite, clipping windows were placed by prefixing

the query with two SUB operators. For example, the 1TVI query is given by
SUB;(0%5°1°1102%¢ suB,(02°°1°!10%°%, TVIQUERY)), (6.1)

where TVIQUERY is the TVI query defined by Equation 5.2.

Fig. 6.3 plots the query running times as a function of the clipping fraction,
with optimization on. As Fig. 6.3 shows, the running times of queries decrease
as more data is clipped. Ideally, the running times should decrease by a factor
of 4 as we move along successive points on a curve because the amount of data
produced by the query also decreases by a factor of 4 for successive points. In
practice, as the speedup curves in Fig. 6.4 demonstrate, gains reduce as the result
arrays get smaller. The falloff of the speedup curves can be attributed to at least
two reasons. First, there are some data-size-independent overheads in AML query
evaluation. Two examples of such overheads are the time to generate and optimize
a plan and the time to open and close files that contain base arrays. Such times do
not depend on the amount of data processed by a plan, and therefore, for smaller
result arrays (leading to smaller evaluation times), they contribute (relatively) more

to the total running times. Second, a shrinking clipping window may cause a
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Figure 6.3: Running times of ArrayDB with optimization on.

higher percentage of overhead in I/O. The number of tiles touching the boundary
of a clipping window is proportional to the perimeter of the window, whereas the
number of tiles enclosed within the clipping window is proportional to the area of
the window. As a clipping window starts to shrink, the former quantity starts to
dominate the latter. Therefore, smaller clipping windows cause a higher percentage
I/O overhead. Further, array data from tiles in the former class needs to be filtered
and this ﬁlterin.g adds a higher percentage of CPU overhead.

Fig. 6.5 shows the performance of ArrayDB with optimization off. The graphs
are flat because the clipping SUBs are not pushed down in AML trees. Each query
generates its full result array and then performs the necessary clipping. The running
times show a slight drop between the % and i points because by default, physical
operators doing clipping are put on top of each AML plan tree. For % queries, these

operators do data copy—a degenerate form of clipping. In } queries, such operators
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do clipping and therefore copy less data.

A comparison of the 1 points of the curves from Fig. 6.3 and Fig. 6.5 shows
that evaluation is faster with optimization on even at } points (when there are no
clipping SUB operators to push down). This is because the plans generated with

optimization off may contain no-op physical operators that introduce additional

data copying costs. ArrayDB’s query optimizer eliminates such no-ops.

6.3.2 Effect of Optimization on Buffer Space Requirement

The experiments in this section show that the dynamic-programming-based buffer
space optimization is effective in that it intelligently picks iteration orders for plan
iterators. For brevity, the memory costs of only the TVI plans are presented.
However, the observations made are also valid for other queries in the suite.
ArrayDB stores AML leaf arrays on disk using regular tiling, and tile shapes
affect memory costs of AML plans. In the first experiment, the tile size is fixed
at 4 KB and the tile shapes are varied. TVI’s base array is three-dimensional and
therefore the dynamic programming algorithm produces the cheapest plan that
generates TVI's result array in O-order, in l-order, and in 2-order. Fig. 6.6 shows
the costs of the plans generated by ArrayDB for the TVI query, with and without
optimization. On each line, the best (cheapest) plan costs are printed in italics.
Fig. 6.7 reports the results of the same experiment but with the tile size varied.
The results contained in Fig. 6.6 and Fig. 6.7 demonstrate the importance of
proper assignment of evaluation order to plan iterators. Several important points

can be made from the results. First, the choice of evaluation order is important:
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Tile Shape Costs of TVI (in KB)

(Tile Size Optimization On Optimization Off
=4KB) | order 0 | order 1 | order 2 | order 0 | order 1 | order 2
(512, 8) 1065 38 2122 2222 138 2222
(256, 16) 541 49 2138 2337 248 2337
(128, 32) 279 82 2171 1853 477 2566
(64,64) 147 147 2236 936 936 3025
(32,128) 82 279 2171 477 1853 2566
(16, 256) 49 541 2138 248 2337 2337
(8,512) 38 1065 2122 188 2222 2222

Figure 6.6: Costs of the TVI plans with different tile shapes.

Tile Shape Costs of TVI (in KB)
Optimization On Optimization Off
order 0 | order 1 | order 2 [order 0 | order 1 | order 2
(128,128, 7) 2073 2078 4162 2075 2075 4164
(1024,1024,1) 4208 4208 6291 6302 6302 8391

Figure 6.7: Costs of the TVI plans with different tile sizes.
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bad orders are much worse than good orders. Second. best choice of evaluation
order depends on data layout (tile shape). Unless layout is fixed for all data (which
is not a good idea because different workloads might benefit from different layouts).
evaluation order should be chosen dynamically to reflect layout of data used by a
particular query. The dynamic programming algorithm is flexible enough to adapt
to different array layouts: notice how the optimal plans generate the result arrays
in different orders as the tile shape changes. ! Third, the combination of evaluation-
order optimization and logical rewrite optimization produces substantial memory
cost reductions: plan costs without rewrite optimization are much higher than the
ones with rewrite optimization. It should be noted, however, that evaluation order
optimization by itself is also valuable: optimal plan costs continue to be lower than
non-optimal ones when rewrite optimization is turned off.

Fig. 6.7 shows that plans with larger tiles (112 KB and 1 MB) cost more than
plans with smaller tiles do because larger tiles result in larger (partial) intermediate
arrays.

In Fig. 6.6, notice that when the optimization is on, the cheapest plans (33 KB)
cost only 1.5% of the costliest plan (2236 KB). Thus, tile shape has a tremendous
impact on a plan’s memory cost. Therefore, if one knows the types of queries that
will be posed often on a given set of arrays, the dynamic programming algorithm
can be used to suggest good array layout (tiling) schemes. This can be achieved by

running the dynamic programming algorithm on the anticipated queries assuming

In Fig. 6.6, the winning orders for non-square tile shapes correspond to dimensions in which tile
lengths are shorter. This follows from the operator cost assumptions given in Section 4.4.1 for the
two costly operators REPLICATE_P and REGROUP_P and from observing that TVI’s intermediate
arrays have square shapes in the spatial dimensions.
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Tile Shape Costs of $TVI (in KB)
Optimization On Optimization Off
Dyn. Prog. | All Zero | Dvn. Prog. | All Zero
(1024,1,1) 530 1057 2124 14701
(64,64,1) 86 8¢ 944 944
{1,1024,1) 8 8 35 35

Figure 6.8: Costs of the }TVI plans using two algorithms.

different tile shapes for the base arrays and then by choosing one (or a few) tiling
methods that yield low query costs. The dynamic programming algorithm can also
be used to choose an access path if more than one is available; that is, if an array
is stored using more than one tiling method. ArrayDB does not currently do this,
but there would be a substantial payoff in practice if this optimization was added.

The dynamic programming algorithm can generate plans in which different op-
erators use different evaluation orders. “Order 0” in Fig. 6.6 means that the final
operator uses O-order; other operators may use other orders. To determine whether
this flexibility is important, an experiment was designed that compared the dynamic
programming algorithm to another algorithm that performed simpler evaluation or-
der selection. The simpler algorithm always assigns the same iteration order to all
the iterators in an AML plan. For concreteness, suppose that this ‘All Zero’ algo-
rithm assigns 0-orders to all the iterators and therefore can only generate the result
arrays row-by-row. 2 For a fair comparison, the dynamic programming algorithm
was also required to generate the result arrays in O-order.

Fig. 6.8 shows the “order-0” plan costs produced by the two algorithms (dy-

2An application that draws a digital image on a CRT screen may demand that a result array
be generated in row-major order.
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namic programming and ‘All Zero’) for the $TVI query. The tile shape is varied
and the optimizations are selectively turned on and off. As can be seen, the dyv-
namic programming algorithm adapts to different tile shapes and for the tile shape
(1024, 1, 1), produces cheaper plans than the “All Zero’ algorithm does. In particu-
lar, for the tile shape (1024, 1,1), the dynamic programming algorithm produces a
plan that generates tke noise-reduced versions of bands 3 and 4 in 1-order and then
uses an order-changing REORDER_P operator so that the result TVI array can be
generated in O-order. The ‘All Zero’ algorithm lacks this flexibility and therefore,

the cost of its plan is higher.

6.4 Cost of ArrayDB Query Optimization

The experiments in this section show that the query optimization times are small
compared to the query evaluation times.

Fig. 6.9 shows CPU time required for query optimization for the 7 MB suite.
For larger clipping fractions, the optimization times are insignificant compared to
the running ﬁmes of the same queries shown in Fig. 6.3. The optimization time
increases as clipping is introduced because the clipping SUBs are pushed down in
AML parse trees and this pushdown takes time.

AML query optimization time is a complex function of parameters such as
pattern lengths and the number of 1’s in patterns. As logical rewrites occur
during query optimization, the patterns associated with AML logical operators
change. Pattern manipulations performed during query rewriting are quicker for

shorter patterns than for longer patterns. For instance, the :NDVI query with
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Figure 6.9: Query optimization time of ArrayDB.

the clipping pattern 02°615!202%6 for both the dimensions 0 and 1 is optimized
in about 0.09 seconds as per Fig. 6.9. If the clipping is achieved with a much
shorter pattern “01”, the optimization time drops to 0.02 seconds. As a second
example, the optimization times of the %gNDVI query with the clipping patterns
(0110113Q15017(1001 22501 2392001 19(150)4 a4 0151 are 0.61 seconds and 0.03 seconds,
respectively.

The query optimization time also depends on the number of 1’s in patterns
because the execution time of a rule such as Rule 11 (which pulls a SUB out of an
APPLY) depends on the number of 1’s in a pattern and because, in the bitmap rep-
resentation of patterns that ArrayDB uses, the bitmap set up time is proportional
to the number of 1’s in the bitmap. Primarily due to this dependency, the query

optimization times in Fig. 6.9 drop a little as queries generate smaller arrays: as

the size of the clipping window decreases, so do the number of 1’s in the clipping
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Figure 6.10: Query optimization and evaluation times of TVI.

patterns. (The lengths of the clipping patterns are constant.)

Fig. 6.10 shows query optimization and evaluation times for TVI. The topmost
line in Fig. 6.10 shows TVI’s evaluation times without optimization. As can be
seen, benefit of optimization far outweighs the cost. The time required to generate
the full TVI array is more when the optimization is off than when it is on because
of two reasons. First, by default, two physical operators (of types REGROUP_P and
COMBINE_P) doing regrouping and filtering get put on top of each AML plan in
anticipation of clipping. When no clipping is needed, these operators do data copy—
a degenerate form of regrouping and filtering. Second, without query optimization,
the plan for TVI contains 4 other no-op operators—two of them of type REGROUP_P
and two of them of type COMBINE_P—that perform unnecessary data copy. During

the plan refinement phase, such no-op physical operators are identified and removed.
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6.5 Quality of ArrayDB’s Query Evaluation Plans

This section describes two experiments used to evaluate the query evaluation mech-
anism of ArrayDB. The first experiment tests the scalability of ArrayDB by running
queries on larger base arrays. The second experiment compares ArrayDB’s running
times with those of the special-purpose C++ programs for queries in the suite.

Several lessons can be learnt from the latter experiment.

6.5.1 Scale-up of Array Sizes

Fig. 6.11 shows the running times of the queries when the base array size is varied.
Five base array sizes are chosen: 7 MB, 15.75 MB, 28 MB, 63 MB, and 112 MB.
Queries compute full result arrays. The graphs in Fig. 6.11 are plotted on a log-log
scale. Nearly straight lines in Fig. 6.11 indicate good scale-ups of running times
for varying array sizes. The running time for NDVI shows a jump between 28 MB
and 63 MB because of paging activity: the total memory requirement of the plan is
larger than available memory. ArrayDB currently does not include plan operators
to materialize intermediate results on disk in the event that the plan is too large.

However, such operators would be relatively straightforward to add.

6.5.2 Comparison with C++ Programs

Previous sections showed the effectiveness of ArrayDB’s query optimizations by
comparing optimized and unoptimized query plans. Here, we attempt a more ab-
solute evaluation of the quality of ArrayDB plans by comparing them to custom,

query-specific C++ programs.
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Figure 6.11: Scale-up of ArrayDB with optimization on.

A custom C++ program was written for each of the five queries in the suite.
ArrayDB cannot match the running times of the custom programs, ® and the objec-
tive of this experiment is to determine the performance penalty incurred by using
ArrayDB. In exchange for this performance penalty, ArrayDB offers benefits such as
a declarative query language, query optimization, and physical data independence.

The base array tile shape is set to (1024, 1024) so that the arrays are laid out in
band-major order. All of the queries generate full result arrays. Fig. 6.12 shows the
compariscn between ArrayDB and C++. For all of the queries except DESTRIPE,
both ArrayDB and C++ programs do the same number of I/0 operations for eval-

uating the same query and therefore, a comparison between their CPU times shows

3A similar observation was made by Musick and Critchlow [45] when they compared perfor-
mance of relational DBMSs and OR-DBMSs executing point, multi-point, and range queries with
that of native Unix fwrite and fread system calls.
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Query ArrayDB C++ | ArrayDB slower
CPU time (sec) | CPU time (sec) by a factor of

TVI 12.53 2.22 3.64
NDVI 8.05 1.47 5.48
DESTRIPE 5.44 0.03 181.33
MASK 3.67 0.34 10.79
WAVELET 9.36 0.18 52.00

Figure 6.12: Comparison of ArrayDB versus C++ programs.

the performance penalty of using ArrayDB. The performance penalty is shown in
the last column of Fig. 6.12 as the factor by which ArrayDB was slower than the
C++ program in each experiment.

For TVI, NDVI, and MASK, ArrayDB comes relatively close to the custom
programs. For DESTRIPE and WAVELET, ArrayDB is much slower. This is
mainly because ArrayDB’s plan involves much more copying and reorganization of
data in memory than what the custom programs do. When arrays are large, such
copying and reorganization is costly. A secondary reason is that ArrayDB fails to
detect common subexpressions.

The data copying overhead occurs in WAVELET and DESTRIPE for the fol-
lowing reasons. The AML query for WAVELET contains three MERGE operators
because APPLY is a unary operator and the inverse Haar basis functions are binary
operations. To apply the inverse Haar transformations, AML must first combine
the two input arrays (using MERGE) into a single array. In the resulting plan, the
MERGE is implemented by a COMBINE_P operator. At present, the implementation
of the COMBINE_P operator requires explicit data movement. The C++ program

for WAVELET avoids data movement by stepping through the elements of the two
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arrays in lock step, performing calculations on-the-fly (and thus avoiding function
call overhead also). For DESTRIPE, the C++ program reads the desired band
and simply corrects every sixth row in it, making updates in place. ArrayDB first
computes the corrected rows, then computes the uncorrected rows, and then merges
the arrays formed in the previous two steps.

ArrayDB’s failure to detect common subexpressions further affects DESTRIPE.
In the plan for DESTRIPE, ArrayDB reads the base array twice from disk, once
to compute the corrected rows and once to extract the uncorrected rows. * With
common subexpression detection, one reading would have been avoided.

Probably the most important lesson that can be learnt from this “ArrayDB
versus C++" experiment is this: efficient query evaluation requires both language
and optimization support. For example, an APPLY operator which applies a user-
defined function “in place” would have sped up DESTRIPE; a binary APPLY would
have sped up WAVELET. Alternately, one can argue that in both of these cases, a
more sophisticated query optimizer might have been able to generate better execu-
tion plans (at least, in theory). Of course, there is an interplay between language
design and query optimization. For example, index-based AML operators make
SUB-pushdown possible but do not help in reordering or combing two APPLY oper-

ators.

4This is the reason why ArrayDB and the C4+ program for DESTRIPE do not perform the
same number of I/O operations.



Chapter 7

Related Work

This chapter is a survey of array-related research. The survey is not restricted to the
database field, since arrays occur naturally as a data type in several domains and
array research exists in fields outside the database area. It covers three major array-
related issues: array operation implementation, languages for array manipulation,
and array support in database management systems.

Section 7.1 covers two methods for implementing array operations. The meth-
ods.map an n-dimensional array to lower-level abstractions (relations and byte se-
quences) before implementing array operations on the lower level abstractions. The
languages for specifying array manipulations are surveyed in Section 7.2. The lan-
guages are divided into two categories based on whether or not they have operators
that operate on entire arrays. Array query optimizations—and their relationships
with the optimizations considered in this thesis—are also studied in Section 7.2.
Section 7.3 summarizes how commercial and research DBMSs support array data.

Two DBMS categories are considered: general purpose relational DBMSs and spe-
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cial purpose array DBMSs.

7.1 Array Operation Implementation

This section surveys different methods for implementing array operations. (The lan-
guages and interfaces through which the array operations are specified are described
in Section 7.2.) Array operations are implemented by mapping n-dimensional ar-
rays to some lower-level abstraction. Then, operations on n-dimensional arrays are
mapped to operations on the lower-level abstraction. Two lower-level abstractions

considered in this section are: relation and byte sequence.

7.1.1 Relational Mapping

Since a relation is a set, no order exists among relational tuples. Therefore, when
arrays are modeled as relations, array element values are stored together with their
indices in relational tuples. For example, a two-dimensional array can be repre-
sented as a relation with tuples of the form (z, 7, val), where 7 and j are indices and
val is the array value at that index.

The biggest advantage of relational mapping is that it can be easily supported
through a relational DBMS. The SQL query language can be used for array ma-
nipulations and all of the benefits of database systems, such as physical data in-
dependence, transactions, concurrency control, recovery, and query optimization
are readily available. Complex array manipulations can be specified by embedding
SQL within a programming language such as C.

The relational mapping has several shortcomings also. Storing array elements
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as tuples introduces storage overhead for indices. More importantly, the space
required to store an array element is dependent on the array’s dimensionality. For
efficient array element access, auxiliary index structures may be required. For
example, for a relation with tuples of the form (i, j, val) mentioned above, indices
on ¢ and j may be necessary. Such index structures also add to the storage overhead.
Array manipulations themselves may be nonintuitive to specify and ineficient to
evaluate. For example, it is possible to write an SQL query that performs discrete
convolution—an APPLY-like operation—on a two-dimensional image (where image
shape and kernel shape are fixed). If the kernel contains k elements, the query
involves a k-way self-join of the relation that stores the image. Such a query is
probably inefficient to evaluate. When manipulating arrays using SQL, the result
relation (if it is an array) may have to be translated to a multidimensional form
before it can be used.

Modeling arrays as relations may be a good strategy for domains where sparse
arrays are often used, such as in on-line analytical processing (OLAP) applications
and in some scientific computations [74, 20]. Relational OLAP (ROLAP) systems,
for example, use star schemas or snowflake schemas to represent multidimensional
views of data [12]. In a star schema, tuples of the form (z, j,val) are stored in a
relation called the fact table and are interpreted as follows. 7 and j are foreign
keys that index separate dimenston tables and val stores the array element value
(called measure in OLAP terminology). The fact table is at the center of the star
and one or more dimension tables form its branches. The fact table stores most of

the multidimensional data; dimension tables are much smaller. Dimension tables
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are needed because in OLAP applications, dimensions can also have attributes.
For example, a “product” dimension can have attributes such as product number,

product description, and unit price.

7.1.2 Byte Sequence Mapping

In this approach, an n-dimensional array is represented as a one-dimensional ar-
ray of bytes. Files and binary large objects (BLOBs) support such byte sequence
mapping of n-dimensional arrays. Byte sequence mapping is also relevant for array
storage because many storage devices such as disk and tape present memory as a

linear array of “slots™ of fixed capacity.

The Linearization Problem

A key issue when mapping an n-dimensional array to a one-dimensional array is
how the n-dimensional array is linearized; that is, the order in which the elements
of the n-dimensional array are traversed. This is the linearization problem.

Rosenberg [55, 56, 54] identified several useful properties of a good linearization
technique: proximity-preservation, efficient indexing capability, storage utilization,
and extendibility.

A proximity-preserving linearization scheme supports clustering; that is, posi-
tions close to one another in the n-dimensional array are stored close to one another
in the one-dimensional array. Workload description is necessary to determine which
elements are used together in the one-dimensional array. If an explicit workload

description is unavailable, then a common assumption is that workload will ex-
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hibit spatial locality. That is, elements close to each other in the n-dimensional
array will tend to be used together. (For example, consider an n-dimensional range
query in a spatial database.) Under the assumption that the workload will ex-
hibit spatial locality, a proximity-preserving linearization scheme leads to better
performance of array operations especially since many one-dimensional arrays have
block-structured implementations. For example, a group of array elements that are
stored close to one another in a one-dimensional array can be read from disk using
one (or a few) disk read operations.

A linearization scheme supports efficient indexing if, given the index of an n-
dimensional array element, it can efficiently determine the element’s index in the
ore-dimensional array. Efficient indexing is important because element access is a
common array operation.

A linearization scheme utilizes storage efficiently if it does not leave large gaps
in the one-dimensional array.

Extendibility refers to the ability to change the linearization incrementally if
the n-dimensional array grows, shrinks, or changes its shape.

Not all the four properties of linearization schemes are mutually compatible.
The intuition that extendible allocation schemes must inevitably leave gaps when
storing arrays turns out to be accurate [55]. Rosenberg [56] studied whether ex-
tendible schemes can preserve proximity. He showed that finite arrays and arrays
infinite in only one dimension can preserve proximity globally. However, arrays

infinite in all the dimensions cannot preserve proximity globally.
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Linearization Schemes

A description of various linearization schemes follows. For each scheme, we note

which of the four desirable properties mentioned in the previous section it has.

Linear Order

Linear ordering (such as row-major ordering and column-major ordering) stores
successive slabs of an n-dimensional array consecutively in the one-dimensional
array and is the most common type of array linearization scheme. Row-major order
for an n-dimensional array refers to a scheme in which elements of the n-dimensional
array are traversed such that the rightmost index (the index for dimension n — 1)
varies -the fastest and the leftmost index (the one for dimension 0) varies the slowest.
Row-major order is shown in Fig. 7.1(a). Programming languages C and C++
define a row-major layout for their arrays, whereas Fortran defines a column-major
layout for its arrays. BLISS permits both row-major and column-major layouts
and lets users choose between them [73].

Linear orders offer clustering that is dependent on the dimension. The best
clustering occurs in a dimension whose index varies the fastest when traversing
an n-dimensional array. The worst clustering occurs in a dimension whose index
varies the slowest when traversing an n-dimensional array. Linear orders permit
fast indexing and efficient storage utilization, but are easily extendible in only one
dimension. For example, in row-major order, adding a new row to an n-dimensional
array is easy but adding a new column involves a lot of data movement.

Linear orders are easy to implement but the performance of an array query
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Figure 7.1: Array linearization in a linear order and in a tiled order.

requiring access to an arbitrary subarray may be poor.

Tiling

Tiling generalizes the linear order. A tile is a multidimensional subarray of an n-
dimensional array. Tiles partition an array. The array elements within a tile are
linearized in some order. The tiles themselves are also linearized in some order.

In the simplest form of tiling, called regular tiling, all the tiles of an array have
the same shape and size. A three-dimensional array tiled using regular tiling is
shown in Fig. 7.1(b). DeWitt et al. [15] used regular tiling to store raster images

' in the Paradise DBMS for geographic information systems. ArrayDB uses regular
tiles and stores them in a UNIX flat file. Both tiles and -elements within tiles are
stored in row-major order.

A natural extension of regular tiling uses tiles of various shapes and sizes. For
example, the T2 array database system stores images using tiles of possibly differ-
ent sizes [9]. Furtado and Baumann [18] proposed three tile categories more gen-
eral than regular tiling: irregular, partially aligned, and totally nonaligned. T'wo-

dimensional irregular, partially aligned, and totally nonaligned tilings are shown in
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Figure 7.2: Irregular, partially aligned, and totally nonaligned tilings.

Fig. 7.2, parts (a), (b), and (c), respectively. In irregular tiling, the hyperplanes
that cut the array along a dimension are not equidistant for at least one dimension.
In nonaligned tiling, some tiles exist whose vertices do not correspond to those of
the neighboring tiles. Partially aligned tiling is a kind of nonaligned tiling where at
least along one dimension, tiles are aligned (the column dimension in Fig. 7.2(b)).
In totally nonaligned tiling, no such dimension exists.

Tiling offers good clustering for elements within a tile if the tile size is small. For
large tiles, good clustering depends on the method used to linearize the tile elements.
Good clustering among tiles also depends on the method used to linearize the tiles.
Regular tiling provides efficient indexing; for more general types of tilings however,
an auxiliary index structure is necessary. Spatial access methods such as Quad
tree [16], K-D-B-Tree [53], PK-tree [72], R-tree [24], and R"-tree [5]—designed to
handle multidimensional points, lines, rectangles, and other geometrical bodies—
can serve as access methods for irregularly-tiled arrays. For example, an R-tree can

be built on top of such an array, permitting efficient access to the necessary tiles.
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Figure 7.3: Z curve, Hilbert curve, and Gray code mapping.

Space Filling Curves

Space filling curves such as the Z curve, the Hilbert curve, and the Gray code
mapping can be used to linearize arrays. The Z curve, the Hilbert curve, and the
Gray code mapping for a two-dimensional array are shown in Fig. 7.3, parts (a),
(b), and (c), respectively. These curves are defined recursively and they also allow
encodings of non-rectangular arrays [31].

These curves have good clustering properties. Arya et al. [2] found that the
Hilbert curve has better clustering properties than the Z curve when they used them
to encode multidimensional arrays and their spatial extents in the implementation
of a prototype DBMS called QBISM. Jagadish [31] also advocates the Hilbert curve
when mapping a multidimensional-space to a one-dimensional space. Space filling
curves permit efficient indexing. They utilize space well if array lengths are powers
of two and can be extended easily if the extended arrays also have lengths that are

powers of two.

Some Other Linearization Schemes

This section describes some linearization techniques that Rosenberg [55, 56, 54]

studied to illustrate the interplay among various criteria such as efficient indexing
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Figure 7.5: Two linearization schemes studied by Rosenberg [33].

and storage utilization.

Suppose that in a linearization scheme of a two-dimensional array, an element
with index [¢, 7] is stored at the location with address 2 - 37 — 1. (This example
is adapted from [55, page 291].) Suppose that the memory addresses start at 0.
The layout of an array with shape (3,4) under this linearization scheme is shown in
Fig. 7.4. In that figure, a number in an array cell denotes the cell’s position in the
linearization order. This scheme needs 108 memory locations to store 12 elements
and so it utilizes storage poorly. In addition, the linearization order computation
requires exponentiation—an expensive operation. Despite these shortcomings, it
is easy to see that an array stored using this scheme can be extended in both the
d.imens_ions easily.

Although the notions of extendibility and storage utilization are mutually in-

compatible, better storage utilization is possible for arrays of fixed shape—for ex-
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ample, square arrays. Fig. 7.5 shows two storage schemes for two-dimensional
extendible arrays (figures adapted from [54, page 664]). The scheme in Fig. 7.5(a)
stores array elements using a diagonal front and is useful for storing triangular ar-
rays, whereas that in Fig. 7.5(b) stores elements using a square front and achieves
extendibility in both the dimensions with no storage overhead for square arrays.
Rosenberg [35] gave a general result that efficient storage schemes can be designed

for arrays of any fized shape.

Linearization and ArrayDB

Array linearization schemes can be used for array storage on disk because disk
can be thought of as a long linear array of fixed-capacity “slots”. ArrayDB treats
AML’s leaf arrays like APPLYs whose function applications read array data from
disk. Each call to such an APPLY function reads an array chunk (a regular tile)
from disk. Thus, ArrayDB supports regular tiling. ! A regularly-tiled array’s tile
shape can be specified in ArrayDB’s array catalog. If array lengths are powers of
two, space filling curves such as Z curve, Hilbert curve, and Gray code mapping can
be viewed as regular tiling methods (where tile lengths are powers of two) and can
be supported in ArrayDB. Using the AML query optimization techniques proposed
in this thesis, ArrayDB avoids retrieving tiles that are unnecessary to compute a
query result. Further, ArrayDB chooses tile retrieval order intelligently so that

memory use of an AML plan is minimized.

1The current version of ArrayDB supports file-based regular tiling.



CHAPTER 7. RELATED WORK 154

7.1.3 Redundancy and Partitioning

Arrays are potentially large and an array collection may not fit entirely on a single
device and therefore may need to be stored across many devices. In some cases.
an array might be replicated and copies might be organized differently so that
more than one access path to the array is available. The issues of partitioning and
redundancy arise no matter which mapping (relational or byte sequence) is used to
implement array operations.

Redundancy involves storing multiple copies of arrays, typically on different de-
vices. If byte sequence mapping is being used, different copies can be linearized the
same way or differently. In both cases, higher I/O throughput can be achieved be-
cause more than one device can be kept busy simul.ta.neously while evaluating array
queries. In the latter case, many access paths to stored arrays are available and
thus workloads that vary in their data access patterns can be supported efficiently.
Redundancy also provides data protection in the event of device failure.

In partitioning, a logical array is stored not on one device but across several
.devices. The goal of partitioning is to improve I/O bandwidth: an array stored
across n devices (each with its own driver and channel) can be read and written
in parallel, cutting the access time by a factor of 1/n (ideally). The partitioning
method just described can be called inter-device partitioning because several devices
are involved in partitioning. Intra-device partitioning occurs when an array is stored
across multiple platters of the same disk (for example). In this case, parallelism
in data reading and writing can be achieved because multiple read /write heads are

available for I/O.
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Sarawagi and Stonebraker [58] studied redundant and partitioned array storage.
Their motivation for array partitioning was different. They used a robot arm con-
trolled tertiary device containing disks and tapes for inter-device array partitioning.
For disks, the time for the robot arm to switch media was large compared to the
average seek time for disks. Therefore, to reduce media switches, they partitioned
their arrays such that parts of arrays accessed together were stored on the same
media. In Titan [10], intra-device partitioning of 5-band satellite images is done
by storing data blocks of bands 1 and 2 contiguously and by storing data blocks of
bands 3, 4, and 5 contiguously. Such partitioning was motivated by the observa-
tion that most satellite data processing programs processed one of the two groups
mentioned.

Replication and partitioning problems for arrays do not appear much harder
than the corresponding problems for other data types such as relations and there-
fore, general data partitioning and redundancy schemes such as disk striping [57]

and Redundant Arrays of Inezpensive Disks (RAID) [49] can be used with arrays.

7.2 Manipulation of Array Data

This section is a survey of various programming languages, query languages, and
algebras in which arrays can be defined and manipulated. It is convenient to clas-
sify these languages in two broad categories: collection-oriented languages and
scalar-oriented languages. According to Sipelstein and Blelloch [62], a language
is collection-oriented if collection types and operations for manipulating them “as

a whole” are primitive in the language. (Sets, sequences, arrays, vectors, and lists
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are some examples of collection types.) In contrast, in a scalar-oriented language,
collections have to be manipulated element-wise by the programmer. For example,
to add two arrays of the same shape, a scalar-oriented language may require explicit
loops 1terating over the elements of the two arrays, adding the matching elements
in each loop iteration. For the same task, a collection-oriented language permits a
statement like C = A + B.

Section 7.2.1 describes collection-oriented array languages; Section 7.2.2 de-
scribes scalar-oriented array languages. In both cases, a major emphasis is on the
types of optimizations that the languages support and on the relationships of those

optimizations with the array query optimizations studied in this thesis.

7.2.1 Collection-oriented Array Languages

APL, Image Algebra, FORTRAN 90, and AML are examples of collection-oriented
array languages. In such languages, at least some (if not all) operators operate
on arrays as a whole. Due to high-level data abstractions and operations provided
by .collection-oriented array languages, the resulting programs are clearer, easier to
write, and more concise than programs written in scalar-oriented array languages.

Collection-oriented array languages differ from one another in whether they
permit nested arrays or not. APL and AML do not permit nested arrays, whereas
More’s array theory [43] and Vandenberg and DeWitt’s algebra [71] do. Collection-
oriented array languages differ in whether they permit only one-dimensional arrays
or multidimensional arrays. APL, AML, RasQL, Image Algebra, and many other
languages permit multidimensional arrays. The SEQUIN language of the SEQ
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sequence database system permits only one-dimensional arrays [60]. Collection-
oriented array languages and algebras are either heterogeneous or homogeneous.
Homogeneous languages such as AML and SEQUIN [60] map arrays to arrays.
Heterogeneous algebras—for example Image Algebra and Vandenberg and DeWitt’s
algebra [71]—may map arrays to non-array types.

Operators in collection-oriented array languages are diverse. Nevertheless, as
Sipelstein and Blelloch [62] observed, some generic operators are common among
them. (Sipelstein and Blelloch’s survey included languages that manipulate col-
lections such as sets and lists, not just arrays.) A given collection-oriented array
language typically implements specific forms of some of the generic operators. Sipel-
stein and Blelloch’s append combines two arrays. AML’s MERGE Is its more general
implementation. Pack is like SUB: it filters data from an array according to a
boolean mask. Apply-to-each forms apply a function to every element of an array—
a functionality similar to APPLY’s. Some operators in each of Vandenberg and
DeWitt’s algebra [71], RasQL [4, 73], More’s array theory [43], Image Algebra [52],
the image processing toolbox of Matlab ? [29], and algebras for multi-dimensional
database systems * [1, 25] are similar to the above generic operators.

As already mentioned in Section 2.3, AML is a framework for array manipu-
lation in that it only specifies how user-defined functions are applied to arrays in
a structured fashion. Many collection-oriented array languages do not completely
specify some of their array manipulating operators and are thus also frameworks

for array manipulations to varying degrees. For example, in Image Algebra [52],

ZMatlab is a registered trademark of The MathWorks, Inc.

3Such algebras can serve as query languages in on-line analytical processing (OLAP) systems.
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value sets (which are parts of images) and operations on them are not restricted to
a fixed set. Image Algebra’s global reduce operator only specifies that it produces
a value from an image. In RasQL [4, 73], induced operators generate new values
but RasQL does not define a set of such operators. The framework approach makes
an array language extensible in that by fine-tuning some operators or by provid-
ing some user-defined code, the language can be customized for an application.
AML is unique in that it takes the framework approach to the extreme: it provides
no operators that can produce “new” values (domain elements not found in their

operands).

Query Optimization in Collection-oriented Array Languages

Collection-oriented array languages and systems that implement them support var-
ious types of query optimizations. The main aims of array query optimizations
are to reduce the CPU time, the I/O cost, and the memory requirements of array
query plans. Two major classes of array query optimizations can be identified:
logical query optimizations and physical query optimizations. Logical query opti-
mizations manipulate logical query expressions; physical query optimizations are
designed to improve the plans for array queries.

Logical query optimizations. Logical query optimizations are rewrite opti-
mizations. They systematically transform an array manipulating expression using
rewrite rules (or their equivalents) and generate a collection of one or more expres-
sions equivalent to the original one, out of which one is chosen for evaluation or
for further manipulation. Many array-related rewrite optimizations promote early

data filtering: the idea is to eliminate reading and processing unnecessary data.
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For example, AML’s logical rewrite optimization—which causes SUB-pushdown—
promotes early data filtering.

The ease with which SUB-pushdown can be performed is greatly affected by
the kinds of domain and range box shapes that an array language’s equivalent
of the APPLY operator permits. In particular, SUB-pushdown can be performed
easily in a language in which domain and range boxes are forced to be of unit
size. Vandenberg and DeWitt’s algebra [71], RasQL (4, 73], the transformation and
mapping functions of T2 [9], and Guibas and Wyatt’s scalar operators [23] permit
only unit-sized domain and range boxes. We shall describe two of the SUB-pushdown
approaches in detail: RasQL’s approach and Guibas and Wyatt’s approach.

In RasQL, trimming operations and projections (operators similar to SUB) can
always be pushed into and out of function application operators. Therefore, all
RasQL queries can be converted to a canonical form in which all the trimmings
and projections are done before all of the function applications are. Further, all of
the adjacent function applications can be combined using functional composition
because of the matching domain and range box shapes of adjacent functions. There-
fore, a RasQL expression in the canonical form has only one composite function.
An advantage of such a composite function is that its resultant array elements can
be generated on the fly without materializing intermediate results.

In Guibas and Wyatt’s approach, SUB-pushdown is performed only in effect, not
literally. They describe a technique to compile a subset of APL containing scalar

operators (operators that work on scalar operands, as opposed to array operands)

and grid selectors (index-based operators). Addition and multiplication are exam-
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ples of scalar operators; transpose and reversal are example grid selectors. SUB and
MERGE resemble grid selectors, whereas APPLY is a more general form of a scalar
operator.

Guibas and Wyatt designed a universal selector operator which can absorb any
number of grid selectors into it. After absorption, the universal selector has the
same effect on data that a combination of grid selectors would have on the same
data. The data structure representing a universal selector is called the stepper.
During a step called the “push” pass, steppers are pushed down in an APL expres-
sion tree. ? A stepper is modified when it encounters a grid selector node along the
way, and the modified stepper is passed on to the grid selector node’s children. A
scalar operator passes on the incoming stepper to its children unchanged. When
the steppers reach the leaf nodes, all the grid selectors can be eliminated from the
APL expression tree. Compiled code is generated for the modified tree.

RasQL operators and the subset of APL operators that Guibas and Wyatt chose
have limited power: they can only express array operations in which an output array
element is computed using a single input array element. They cannot express block-
based or region-based array processing operations such as a discrete convolution on
a two-dimensional image. In one respect the “push” pass is more general than
AML’s suB-pushdown: it can handle the transpose operator. Extending AML
with a dimension-reordering operator and generalizing SUB-pushdown so that it
can handle the new operator should not be very difficult.

The T2 array database system [9]—designed for remote-sensing applications—

4The “push” pass is similar to the map spreading process described in Section 4.4.3.
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permits hypercubical domain boxes and unit-sized range boxes in its equivalent
of the APPLY operator. The query language of T2 is very specialized. A T2
query chooses a dataset(s) of interest and a clipping region of interest within the
dataset(s). Each pixel in the clipping region is pre-processed using a transformation
function. A transformation function corrects things such as instrument drift. atmo-
spheric distortions, and topography. Then a mapping function maps a transformed
pixel to an output pixel. Multiple input pixels may map to an output pixel. An
aggregation function selects the “best” corrected pixel that maps to an output pixel.
T2 treats the transformation, mapping, and aggregation functions as black boxes,
like the way AML treats APPLY functions. Transformation and mapping functions
have unit-sized domain and range boxes. Aggregation functions have hypercubical
domain boxes and unit-sized range boxes. T2 achieves the effect of SUB-pushdown
by reading only pixels that fall within the clipping region. Exactly how T2 achieves
early data filtering is not explained in [9].

AML seems to be unique in providing built-in language support for domain
and range boxes of hypercubical shapes. * This allows AML to implement a wider
class of array operations directly. Further, such queries can also be optimized
using the AML query optimization techniques proposed in this thesis. Because of
hypercubical domain and range boxes, SUBs cannot always be pushed in and out

of APPLYs. Further, in the presence of mismatches of the domain and range box

SSome operators in Matlab’s image processing toolbox support arbitrary-shaped (but fixed)
domain boxes. Matlab can be interfaced with programming languages such as C, C++, and
Fortran using its MEX-file feature. Using MEX-files, Matlab arrays can be manipulated using
user-defined functions that can have general domain box and range box shapes. To achieve this
generality, however, external interfacing to a programming language is necessary.,
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shapes, adjacent APPLY operators cannot be composed in general. Therefore, the
result arrays cannot be generated on the fly (the way they can be in RasQL and
in the subset of APL that Guibas and Wyatt chose): intermediate arrays between
some function applications may need to be materialized, at least partially.

Permitting arbitrary-shaped (not necessarily hypercubical) domain and range
boxes would appear to be a logical generalization of AML’s choice of hypercubical
domain and range box shapes. (Image Algebra’s image-template product [52] per-
mits such arbitrary-shaped domain boxes but unit-sized range boxes.) However,
performing early data filtering might become quite difficult in such a general sce-
nario for the following reason. The amount of information that needs to be stored
for tracking lineage of data items in the clipping window increases. This, in turn,
makes the lineage tracking problem harder. (Information about a k-dimensional do-
main or range box whose side lengths are O(n) can be succinctly represented using
O(k - n) data items—something which seems impossible to do for an arbitrary-
shaped domain or range box.)

Common sub-expression elimination can be considered a type of rewrite opti-
mization. It avoids generating arrays more than once when one copy suffices. In the
SEQ database system, common sub-expressions are eliminated [60]; in the current
implementation of ArrayDB, they are not. Adding common sub-expression elimi-
nation optimization to ArrayDB is a non-trivial task. The dynamic programming-
based chunk order optimization requires the “optimality of subproblems” property.
That is, an AML plan with a minimal memory cost contains within it sub-plans

whose memory costs are also minimal. With common sub-expressions present, it
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may be necessary to generate a non-optimal sub-plan so that the memory cost of the
entire AML plan can be minimized. Logical rewrites should continue to work when
common sub-expressions are present. The plan iterators. however. become more
complicated: some iterators might need to keep track of more “state” information
because they have to feed array chunks into more than one output stream.

A major class of rewrite optimizations involves APPLY-like user-defined function
application operators. These optimizations can be divided into many sub-classes:
(1) those that reorder two function applications; (2) those that split a function
application into two or more parts; (3) those that combine two or more function
applications; and (4) those that exploit the dependency of a function application
on some of the “previous” function applications on the same array.

This class of optimizations are difficult to perform because the query optimizer
needs to be aware of the semantics of the user-defined functions. (In contrast, a
suB-pushdown type of optimization can often be performed using relatively simple
data lineage calculations that involve only array index manipulations.) The topic
of how to perform such optimizations in ArrayDB is addressed in Section 8.2.1 as
future work.

Simple forms of some of these optimizations have been proposed. For example,
in Image Algebra, templates can be split and combined [51], and thus the function
applications defined by image-template product can be split and combined. The
moving window optimization performed by the sequence database system SEQ [60]
falls into the fourth category. Consider the sequence 1,2,3,4,5,6,7,8,9,10. Sup-

pose that a moving window of width 5 slides everywhere in this sequence summing
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up the 5 elements that fall under it at any time. The resultant output sequence is
15.20, 25,30, 35,40. Once the sum 142+ 3+4+ 5 has been computed to vield 15.
the next element of the output sequence can be computed using 15 + 6 — 1. instead
of using the naive method 2+3+4+5+46. A benefit of the optimized computation
is that it uses fewer arithmetic operations. More important, the time required for
aggregation is independent of the window size. Image Algebra’s recursive templates
also offer potential for optimizations that belong to the fourth category.

Physical query optimizations. Physical query optimizations are designed to
improve the plans for array queries. ArrayDB generates execution plans composed
of chunk-based iterators. This allows pipelined execution, and gives the optimizer
the chance to choose iteration orders. Plans that manipulate array chunks and plans
that evaluate array queries in a pipelined fashion have been proposed in the past,
but ArrayDB’s method of intelligently choosing iteration orders for plan iterators
so that the memory costs of plans are minimized has been studied for the first time
in this thesis.

Let us look at how some array manipulating systems generate their plans. In
the RasDaMan system, leaf arrays are stored on disk in a tiled fashion and the
system generates tile-based plans. In such plans, alternative evaluation orders for
plan operators are not considered: all intermediate arrays are generated in row-
major order [73]. Execution plans in T2 are also chunk-based. Since T2 is a
parallel database, the plans take into account things such as dependencies among
chunks and memory available at each processor. The plans themselves consist of

lists of chunk-processing operations separated by synchronization markers. Chunk-
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processing operations in a list can be performed in any order; however, all such
operations must be completed before any chunk-processing operation in a subse-
quent list can be started. Parallel evaluation of AML queries is considered as
future work in Section 8.2.3. Execution plans in the sequence database system
SEQ [60] are iterator-based, and thus they permit operator pipelining. SEQ phys-
ical operators buffer sequence elements just like ArrayDB’s physical operators do.
However, SEQ processes one-dimensional arrays and therefore, has no concept of
operator evaluation order. SEQ plans can handle common sub-expressions in such
a way that a common-subexpression is neither evaluated multiple times, nor ma-
terialized. Handling common sub-expressions in ArrayDB is a non-trivial task, as
already mentioned earlier in this section.

The optimization potential of many array languages has not been fully utilized.
APL [30, 35], Nial (Nested Interactive Array Language) [34], Matlab, and Image
Algebra are examples of such languages. In case of Nial, More’s array theory [43]
can offer many expression optimization ideas because Nial is based on the array
theory. The array theory—based on APL and set theory—contains many axioms
and theorems that can be used as rewrite rules for array expressions. For example,
Axiom 32 of the array theory provides the following “rewrite rule”: Suppose that A
and B are non-empty arrays and that a replacement operator is one that replaces
eaph array element z by its image f(z) under a unary function f. Then, it does not
matter whether the replacement operator is applied before or after the reshaping of
B to the shape of A. At present, Nial's portable C interpreter Q’'Nial [32] does not

do expression optimization [33]. Matlab also does not perform rewrite optimizations
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on expressions formed using functional compositions of its array operators [39]. The
Image Algebra proposal contains some expression optimization ideas [52]. but there
is scope for more. APL programs are typically interpreted. not compiled. Although
some expression optimization ideas have been proposed in connection with APL

compilation {23, 69, 6], there is potential for more.

7.2.2 Scalar-oriented Array Languages

Scalar-oriented array languages require explicit element-wise array manipulations.
Many general purpose programming languages allowing array definition—for exam-
ple, C and Pascal—are scalar-oriented. In such languages, an indexing operation
applied to an array yields an array element of some type to which all the available
operations for that data type can be applied.

In scalar-oriented programming languages, complex array operations can be
defined using indexing, operations on base data types, and control structures such
as loops and conditional statements. In some of these languages, arrays can be
defined as an abstract data type (ADT). Complex array operations can then be
provided as methods of the array ADT. The ability to name and define array ADT
methods results in concise array manipulation code. Nevertheless, the definitions

of ADT methods still use primitive array operations.

Query Optimizations in Scalar-oriented Array Languages

In scalar-oriented programming languages, loops are commonly used to traverse and

process array elements. Programs (array-manipulating and general) spend much
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of their running time in loops and compilers for scalar-oriented languages perform
several loop-related optimizations. The following loop-related optimizations are

especially relevant for array manipulations.

1. Strength reduction [44, page 426] replaces an expensive operation such as

multiplication by a cheaper operation such as addition.

2. Loop unrolling [44, page 559] reﬁlaces the body of a loop with many copies
of the body and adjusts the loop-control code accordingly. The unrolled loop
may execute faster because it evaluates the loop-closing test and branch fewer
times than the original loop does. On the other hand, the unrolled loop takes
more memory and therefore may impact the effectiveness of the instruction

cache.

3. Loop inversion [44, page 587 transforms a loop such that the loop~closing
test before the loop body is moved after the loop body. Loop inversion helps
because only one branch instruction need be executed to close the loop, rather
than one to get from the end back to the beginning and another at the be-

ginning to perform the test.

4. Scalar replacement [44, page 683] replaces an array variable such as C[i, j] by

scalar temporaries, thereby making them available for register allocation.

5. Loop-invariant code motion [44, page 397| recognizes computations in loops
that produce the same value on every iteration of the loop and moves them

out of the loop.
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Figure 7.6: Iteration-space traversal of a tiled loop nest.

The loop-related optimizations mentioned above can improve the efficiency of
array-manipulating loops. It is doubtful, however, whether such optimizations (in
conjunction with some other optimizations) can achieve effects similar to those of
SUB-pushdown-like optimizations. In particular, it seems unlikely that sophisticated
data-flow analysis can be performed on the code that follows a loop so that it can
be determined that only a portion of the array manipulated by the loop is actually
needed.

Other Ioop_ transformations aim to make better use of the memory hierarchy,
to make a loop’s iterations executable in parallel by several processors, to make
a loop’s iterations vectorizable, or to achieve a combination of these benefits [44,
page 690]. They achieve such gains by interchanging two nested loops, by reversing
the order in which a loop’s iterations are performed, by fusing two loop bodies
together into one, by doing the opposite of fusion (called loop distribution) and
so on. Such transforms also improve the data cache utilization of numerical and

scientific programs manipulating large arrays.
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Tiling [44, page 694] modifies a loop nest so that the original loop’s iteration-
space traversal is modified and is replaced by a series of small polyhedra executed
one after the other. (The word “tiling” here is used differently than in Section 7.1.2.)
Fig. 7.6—adapted from [44, page 695]—suggests a tiled loop’s traversal pattern.
The original loop was a doubly-nested loop traversing row-wise or column-wise.
The tiled loop in Fig. 7.6 increases the depth of loop nest from two to four. If the
tile shape is chosen properly, tiling can reduce data cache conflicts by requiring
fewer elements of each array to be present in the data cache at once to perform the
given computation.

The tiles shown in Fig. 7.6 are like chunks used by ArrayDB plans in that
array elements in a tile are processed in temporal proximity. However, the tiling
optimization chooses tile shapes, whereas ArrayDB chooses chunk order (and not
chunk shape). Despite this difference, ArrayDB’s memory optimization also results
in better utilization of the memory hierarchy. ArrayDB minimizes the amount of
memory used by AML plans by generating intermediate and result arrays in pieces
rather than in full, by reusing the buffer space used to store the pieces, and by
considering different evaluation orders (such as row-major order and column-major
order). These techniques result in better memory utilization because pieces of
several arrays can be fit into smaller and faster memories such as cache, improving
their hit rates.

Compilers and optimizers for scalar-oriented array languages and collection-
oriented array languages face different problems when producing efficient array

manipulation code. In a collection-oriented array language, the optimizer can per-
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form SUB-pushdown-like optimizations relatively easily. Once such optimizations
are performed, however, the optimizer has to produce (and optimize if possible} low-
level code that implements the rewritten high-level expression. In a scalar-oriented
language, the low-level code—frequently containing loops—is written by the user
and loop-related transformations can be applied to such code. However, the com-
piler may not be able to infer high-level transformations such as the sUB-pushdown
transformation from such complex code.

It may be possible to achieve middle ground in case of a language such as AQL—
a scalar-oriented query language with low-level array manipulation primitives [36].
In AQL, high-level array operations can be defined using four array-related primi-
tives plus such things as conditionals and arithmetic operations. Two of the array
primitives create arrays; one performs subscripting (extracting a value from an ar-
ray); and one determines the shape of an array. Optimization of AQL expressions
is performed at the level of the primitive operations after replacing higher-level
operations with their definitions. It is possible to perform SUB-pushdown-like op-
timizations on AQL expressions composed of low-level operators. In fact, it is
possible to determine exactly which input array elements generate a given out-
put array element. That is, data lineage can be computed at the array-element
level rather than just at the array-chunk level. Nevertheless, because of arbitrary
fupctiona.l dependencies between the output array elements and the input array
elements that produce them, it is not obvious how to generate chunk-iterator plans
in which iterators read their input arrays only once. A potential advantage of AQL

is that if new high-level operators are added to AQL, it is unnecessary to generate
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rewrite rules involving those high-level operators. Instead. the AQL optimizer tries
to achieve the same effect with low-level rewrites. Whether such an AQL optimizer
is feasible, how exactly it would work, and how efficient it would be remain open

questions.

7.2.3 Summary of Array Languages

It should be evident from the survey of array languages in this section that AML is
not the first language to support array manipulations. Why was AML defined then?
Why not use one of the previously-defined languages for array manipulations? Why
not provide query optimization support for one of the previously-defined languages
rather than defining AML and optimizing AML expressions? Collection-oriented
array languages such as Nial and Matlab provide no optimization support; others
such as RasQL provide limited query optimization and cannot express region-based
or block-based array processing. Image Algebra is very expressive but its power
makes query optimization difficult. Scalar-oriented programming languages are also
very expressive but it is doubtful whether compilers for such languages can perform
complex data-low analysis so that early data filtering can be performed. In princi-
ple, AQL can offer a programming language’s expressiveness and a query language’s
optimizability but the feasibility of its query optimizer remains unproven. AML
attempts to strike a balance between expressiveness and optimizability. It permits
arbitrary user-defined functions that map subarrays to subarrays—something which
no previous language permits. At the same time, it applies user-defined functions

to arrays in a structured manner so that array query optimization remains feasible.
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ArrayDB minimizes memory use of AML plans by considering alternate evaluation
orders for chunk iterators—something which is a first among array query evaluators.

One reason not to optimize programs in one of the existing collection-oriented
array languages such as APL, Matlab, or Nial is that it may be difficult to recognize
in such languages opportunities for the kinds of optimizations that AML permits.
Further, not all of the operators in these languages are index-based and are thus
amenable to index-based optimizations. Therefore, only parts of these languages
will be optimizable. (As an example, Guibas and Wyatt showed how lineage de-
termination can be performed on a small subset of APL operators. [23].) AML, by
design, includes only optimizable operators and therefore, optimization opportuni-
ties are easily recognizable in AML. By identifying index-based manipulations in
an APL program (for instance) and by translating them to equivalent AML expres-
sions, it might be possible to extend the benefits of AML query optimizations to
selected portions of APL programs. Moreover, it might be possible to abstract the
rest of the APL program as a sequence of user-defined functions. After converting
an APL program to an AML expression thus, AML query optimizations would be
able to push data filtering operations through user-defined functions, if such an
opportunity exists. It would be an interesting research question to determine the

feasibility and effectiveness of such an approach to array query optimization.
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7.3 Supporting Arrays in Database Management
Systems

This section surveys methods by which commercial and research DBMSs support
array data. Section 7.3.1 covers how relational database systems provide support
for array storage and manipulation. Section 7.3.2 describes some special purpose

database systems built specifically for arrays.

7.3.1 Relational Database Systems

Relational database systems provide array support using four methods: binary large
objects (BLOBs), relations, abstract data types (ADTs), and optimized ADTs. The
first three of these methods are commonly available in commercial DBMSs; the last

one is available in only one research prototype at present.

BLOBs

An array stored in a BLOB is treated by a DBMS like a large chunk of uninterpreted
data, with no semantics attached to it. Severe restrictions are placed on relational
attributes of BLOB type. For instance, indexes cannot be created on them and
they cannot be used in SQL clauses such as SELECT DISTINCT, COUNT(DISTINCT),
GROUP BY, ORDER BY, PRIMARY KEY, and FOREIGN KEY [8, page 290]. When using
BLOBs, array manipulations are performed by application programs outside of a
DBMS. Although portions of a BLOBs can be selected and retrieved by an applica-

tion program, the DBMS provides neither the query language to manipulate BLOBs
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nor the optimizations (like SUB-pushdown) that can automatically perform early
data filtering. Therefore, working with BLOBs leads to inflexible and inefficient

array processing.

Relations

Arrays can also be stored as relational tuples made up of array indices and ar-
ray values. Array manipulations can then be performed using SQL. As already
mentioned in Section 7.1.1 however, SQL queries for typical array manipulations
such as convolution are unnatural and probably inefficient. In domains such as
online analytical processing and some scientific computations where sparse arrays

are frequently used, modeling arrays as relations might offer adequate performance.

ADTs

Database systems that support user-defined data types and user-defined functions
are called object-reiational DBMSs (OR-DBMSs) if the framework of a relational
DBMS is retained or object-oriented DBMSs (OO-DBMSs) if an object-oriented
framework is adopted. To support arrays in an OR-DBMS or in an OO-DBMS,
an array ADT along with a set of functions (methods) to operate on arrays should
be provided [66, 67]. In some cases, such an array abstraction is provided by
the DBMS. For example, the Informix Universal Server provides various modules
(called DataBlades) to support complex data [48]. ® An Image DataBlade module

is available that supports an image datatype, a wide variety of image formats, and

$Qracle supports a similar capability through cartridges.
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image-specific functions. Illustra [28], Postgres [68], and Paradise [13] also support
ADT extensions. Standardization initiatives are underway for an image datatype:
part five of the upcoming SQL standard for multi media (SQL/MM) is devoted to
still images [64].

In an OR-DBMS supporting ADTs, SQL queries have relational and non-
relational parts. Non-relational parts are made up of user-defined functions and ex-
pres.sions involving user-defined types—for example, AML expressions. OR-DBMSs
may perform a variety of optimizations on such queries. For example, they may op-
timize the placement of expensive user-defined predicates (the non-relational parts)
within a relational plan [27]. ¥ Nevertheless, optimization of the embedded non-
relational portion of the query itself is very limited. User-defined functions are
black boxes. Without some knowledge of the behavior of such functions, many
optimizations, such as reordering of operations, are not possible. In particular,
SUB-pushdown-like optimizations are not performed. Even pipelined evaluation—
which enables producer-consumer relationships using memory buffers—for such
non-relational expressions might not be available. In Illustra, for example, results
of every ADT method are written to disk, and no inter-method optimizations are

considered [59].

"Much work has been done in optimizing queries with user-defined predicates; two examples
are [13] and [26]). In [26], the results of user-defined methods are cached to avoid unnecessary
method invocations. Interestingly, expensive conditions can also occur in a purely relational SQL
query when the query involves a subquery and the subquery cannot be converted into a join.
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Optimized ADTs

User-defined functions can be expensive to evaluate. In fact. the non-relational
parts might dominate the total evaluation time of an SQL query in an OR-DBMS.
Hence treating user-defined functions as black-boxes with fixed costs is inadequate.

Optimizing non-relational expressions poses several challenges to an SQL optimizer.

1. Most SQL optimizers perform cost based optimization and so cost measures
need to be assigned to non-relational operators and to expressions made up

of such operators.

2. Type-specific optimizers are needed because different data types have different

operators with distinct semantics.

3. These optimizers need to be integrated with the SQL optimizer. SQL’s phys-
ical operators and a user-defined data type’s physical operators might be

different. Some way of bridging this gap is required.

PREDATOR is a framework in which several type-specific optimizers can be
plugged into the system’s evaluator [61]. PREDATOR supports enhanced abstract
data types (E-ADTs). An E-ADT is an ADT with a type-specific optimizer that can
optimize expressions made up of that ADT’s operators. Together, the array data
model, AML query language, AML optimizer, and AML evaluator can be treated as
an array E-ADT which can be plugged into PREDATOR. In PREDATOR, object-
relational queries are decomposed into relational and non-relational parts, and the
latter are handed to type-specific optimizers for optimization. Various E-ADTs

may have distinct query languages, and E-ADT optimizers may have different query
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evaluation techniques. Various type-specific optimizers may share the same file sys-
tem interface, storage manager, and record and schema utilities. The PREDATOR
proposal suggests various types of optimizations for E-ADTs—for example, rewrite
optimization, algorithmic optimization, and constraint optimization—and suggests
pipelined evaluation for E-ADT expressions. (Some of these optimizations for array

expressions are studied in this thesis.)

7.3.2 Array Database Systems

In contrast to the general-purpose relational DBMSs, array database systems are
specifically designed for arrays and other multidimensional data. Building a ded-
icated array DBMS allows its designers maximu:ﬁ flexibility to explore design al-
ternatives in different system components. Such a DBMS is likely to offer best
performance for array queries.
Array database systems are typically designed for specific application domains.
For example, in scientific computing, three file-based array storage abstractions are
~widely used: netCDF [50}, CDF [46], and HDF [70]. These packages—which can be
thought of as I/O libraries, and thus are array database systems in only a limited
sense—filled a data-management vacuum that existed because of the inability of
DBMSs to handle bulky array data.

NetCDF provides an API that is callable from high-level languages such as For-
tran, C, and C++. It stores data in self-describing, machine-independent files.
Array is the primary data type in a netCDF file. In netCDF version 2.4, it is possi-

ble to read parts of an array rather than the full array (a functionality provided by
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AML’s suB). In addition, mapped array accesses are possible. For instance, a two-
dimensional array in memory could be the transpose of that on disk. NetCDF per-
mits only one unlimited dimension per dataset. NetCDF provides no optimizer for
optimizing array manipulations and thus early data filtering cannot be performed
automatically. No plans are generated for array manipulations and therefore, no
physical query optimizations are performed.

Array database systems such as T2 [9] and Titan [10] have specialized query
languages targeted for remote-sensing applications. {The query language of T2 was
described in Section 7.2.1.) The RasDaMan array DBMS [3]—designed to handle
raster data, not just satellite images—is more sophisticated than either T2 or Titan.
It has an array data model, the RasQL query language (mentioned in Section 7.2.1),
a storage system that stores arrays in tiled form (described in Section 7.1.2), and
a query optimizer (described in Section 7.2.1).

ArrayDB is similar to the database systems such as RasDaMan and T2 in that
user-defined functions are applied to arrays. ArrayDB is more flexible than these
database systems because AML, on which it is based, allows user-defined functions
to be applied to subarrays, not just to individual array elements. This allows
ArrayDB to directly implement and optimize a wider class of array operations.

Multidimensional OLAP (MOLAP) systems such as Essbase are special-purpose
array DBMSs for decision-support systems that store data cubes as multidimen-
sional arrays [19]. Array operations in MOLAP systems (also called data cube
systems) are like spreadsheet operations: for example, reducing the dimensionality

of the cube by aggregating one or more dimensions, reducing the cube’s length in a
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dimension by aggregation possibly followed by slab selection. ranking (sorting) and
so on. In OLAP parlance, such operators are given catchy names such as pivoting,
rollup, drill-down and slice-and-dice. Since OLAP queries are highly specialized,
the most important type of query optimization in OLAP systems attempts to an-
swer a query by matching it against a set of pre-computed queries (materialized
views), and by performing some aggregations on a chosen materialized view. Such
queries can benefit from SUB-pushdown-like optimizations. Dimensions of data
cubes have complex hierarchies and to perform aggregations on such dimensions,
APPLY-like aggregation functions with variable-shaped domain boxes are needed.
SuB-pushdown-like optimizations in the presence of such aggregation functions are
more difficult to perform than when the domain and range boxes have fixed shapes.

Image information systems [11] are large image repositories with image in-
put /output and processing capabilities. Image database systems form a component
of image information systems. An image database system can be considered an ar-
ray database system in a limited sense because although an image database system
permits image storage and retrieval, its image manipulation capabilities are very
limited. Image database systems focus on the problem of choosing images from a
set, not on the problem of manipulating the images themselves. Thus, they are
complementary to a system such as ArrayDB. A typical retrieval query in an image
database system selects certain images from a large set of images. Such queries give
some textual information to identify the images to be retrieved, plus information
about color, size, and type of features or provide a sample image and request the

image database systems to retrieve all the images that look like the sample image.
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To help answer such queries, image database systems store metadata about images.
The metadata is mainly of two forms: text-based (a short description of the images
and/or a set of keywords related to images) and content-based (feature data). After
an image information system has selected a set of images based on their content, a

language such as AML can be used to manipulate those images.



Chapter 8

Conclusions and Future Work

This chapter summarizes the research reported in this thesis and points out some

directions for future research.

8.1 Conclusions

The research reported in this thesis addresses the general problem of how to ma-
nipulate a gi\}en collection of arrays. The array manipulation problem is viewed in
a database context and accordingly, issues such as a query language for array ma-
nipulations, optimizations of array manipulations, and promotion of physical data
independence are addressed.

AML is proposed as an array query and manipulation language. Array manip-
ulations are diverse and domain-specific and therefore, extensibility is a desirable
property of an array manipulation language. AML is extensible because it is defined

to be a framework for array manipulations: the operators (user-defined functions)
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producing new array values are external to AML. AML queries merely specify how
user-defined functions are applied to arrays to be manipulated. AML’s function ap-
plication operator is unique among similar existing operators in that it maps subar-
rays of arbitrary shape to other arbitrarily-shaped subarrays, rather than mapping
just an array element (or a subarray) to a single array element. The arrays on which
user-defined functions are applied can be formed by combining two or more arrays
or by taking selected parts from some other arrays. For doing such array filterings
and combinations, two other AML operators are provided. AML’s framework ap-
proach to defining array manipulations is very powerful. Any array manipulation
can be defined in AML by assuming the existence of powerful user-defined func-
tions. However, AML is designed to detect and exploit structural regularities in
complex-looking array manipulations automatically if such regularities exist.
AML expressions can be treated declaratively and subjected to rewrite opti-
mizations. The logical rewrites are done using the AML logical rewrite rules. The
rules are used to systematically transform an AML expression tree so that the data
filtering SUB operators are pushed as far down as possible. This SUB-pushdown
heuristic—which achieves early data filtering—has three effects. First, it reduces
the number of applications of the (potentially costly) user-defined functions. Sec-
ond, it reduces disk I/O because AML permits disk data read functions to be treated
like user-defined functions. Third, it reduces memory costs of AML plans because
smaller intermediate arrays are generated. The idea of SUB-pushdown is not new,
but its application in the presence of a general function application operator such

as APPLY is shown for the first time in this thesis.
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AML plans are optimized for memory use by considering alternate evaluation
orders (such as row-major order and column-major order) for the plan operators.
A dynamic programming algorithm minimizes the memory requirement of AML
plans. This approach is unique to AML.

The thesis shows AML’s usefulness as an array query and manipulation lan-
guage by comparing it to Image Algebra. To show the feasibility of AML query
optimization techniques, an AML-based array database system called ArrayDB was
built. ArrayDB’s performance was tested on a suite of satellite image processing
queries. The empirical results show that AML query optimization techniques are
effective and are not too costly. AML operators capture enough information about

array manipulations so that useful array queries can be optimized.

8.2 Future Work

The research reported in this thesis can be extended in many ways. The three direc-
tions identified in this section are: (1) language extensions and more general query
optimization techniques; (2) integration of arrays with relations; and (3) parallel

evaluation of AML queries. The following sections elaborate on these extensions.

8.2.1 Language and Query Optimization Extensions

AML operators can be divided into two classes. SUB and MERGE form one class.
Their effect is to filter and rename the array elements appearing in their operands.
In contrast, APPLY can generate new values using user-defined functions. AML can

be extended by adding new operators to either of these two classes. For example, a
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transpose operator (or its more general form. a dimension reordering operator) can
be added to the first class. APPLY can be made more versatile in several ways: by
associating weights with the elements in its domain box; by parameterizing these
weights; by making the domain box shape variable; by making function applications
dependent on some of the previous function applications; and so on.

Adding new operators to the first class has relatively less impact on query
optimization techniques. New operators in the first class should still permit the
determination of lineage information: given an array element in the result array
of an AML expression, it should be possible to determine the elements in the
base arrays that participated in its computation. With such lineage information, it
should not be too difficult to produce AML plans that avoid reading and processing
those elements of base arrays that have no bearing on any of the result array
elements.

Extending AML by permitting more general forms of APPLY operator may make
the query optimization considerably more difficult. For example, it is not obvious
how to optimize an AML expression in which APPLY operators have variable-shaped
domain boxes—especially if the shapes of the domain boxes are data dependent and
are not known at query compile time. Variable-shaped domain boxes are needed
in application domains such as sequence query processing and OLAP. Expression
optimization containing operators that fall into neither of the two classes {SUB,
MERGE} and {APPLY} is also likely to be challenging.

One reason for effectiveness of AML query optimizations is that SUB, MERGE,

and APPLY work well together and yield useful logical rewrite rules. In fact, how
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well a new operator interacts with existing AML operators and whether it vields
useful rewrite rules could be criteria when judging the new operator’s candidacy
for inclusion in AML.

It is possible to consider some new query optimization techniques without adding
new operators to AML or without extending the power of APPLY. In this thesis, the
only information about an APPLY function that is used during query optimization is
the shapes of its domain and range boxes. The functions themselves are considered
black-boxes for query optimization purpose: all the APPLY functions with a fixed
domain box shape and a fixed range box shape are optimized the same way.

A new class of optimizations can be considered by using semantic information
of user-defined functions. For example, suppose that two APPLY functions f and
g appear in an AML expression in succession and in that order. Further, suppose
that f’s range box shape matches g’s domain box shape and that g’s function
applications are tiled. In such a case it may be possible to combine the two functions
into a composite function h = f o g. If k is used in place of f and g, the resulting
query may require less buffer space and may be quicker to evaluate than the original
query.

As mentioned in Section 7.2.1, at least 4 categories of optimizations that involve
user-defined functions can be identified: those that change the order of two user-
dgﬁned functions, those that combine two or more user-defined functions, those
that split a user-defined function into two or more parts, and those that exploit
the debendency of a function application on some of the “previous” function ap-

plications on the same array. Performing these types of optimizations for arbitrary
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user-defined functions is difficult. One problem is how to convey the semantics of
the user-defined functions to the query optimizer. One way to do that is to restrict
the domain of the user-defined functions and to equip the query optimizer with the
rewrite rules from those domains. For example, a query optimizer with knowledge
of linear algebra and matrix algebra may be able to optimize many queries using
identities from those domains. In addition, restricting user-defined functions to a
finite set may be necessary to manage complexity. How to systematically apply

rewrite rules is another challenge.

8.2.2 Integration of Arrays with Relations

Relational database systems are in widespread use. The idea of an RDBMS provid-
ing built-in support for relations and arrays (and possibly many other data types)
raises several interesting research questions, some of which are identified in this
section. Some of the ideas in this section have been adopted from [60].

Here is an outline of how an RDBMS that permits relational attributes of type
“array” might work. Consider a relation called Employee stored in such an RDBMS.
Employee contains the following information about employees that work in a com-
pany: name, date of birth, and a digital picture. The schema for Employee is
(name:String, dob:Date, picture:Array). The following query retrieves the names

and clipped, low-resolution pictures of all the employees born after January 1, 1970.

SELECT E.name, AML("clip(lowres(E.picture))")
FROM Employee E
WHERE E.dob > ’01/01/1970°
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The non-relational (array) expression is flagged by the word “AML". This enables
the SQL parser to hand over the string within parentheses to the AML parser.
Suppose that clip and lowres are high-level operators that are defined using SUB
and APPLY, respectively. The AML parser performs macro expansions of clip and
lowres during parsing and generates an AML expression. The AML optimizer then
optimizes this AML expression and generates a plan for it. The top level SQL
optimizer treats the AML plan as a user-defined function with some cost which it
learns from the AML optimizer. The SQL optimizer then places the array plan at
an appropriate place within the relational plan.

The PREDATOR proposal [61] suggests an architecture for a DBMS that sup-
ports enhanced abstract data types—data types that are enhanced by type-specific
query optimizers. All types share some common utilities such as storage manager,
records and schema utilities, and file system interface. If queries are globally opti-
mized, types also share a utility that performs cost function mappings. Types such
as relations and arrays have separate query languages, optimizers, and evaluators.

Primitive types such as integers have no such enhancements. If and when SQL-
| based relational DBMSs start to offer built-in support for types such as arrays, the

system architecture would become more monolithic.

8.2.3 Parallel Evaluation of AML Queries

As mentioned in Section 7.2.1, AML is a collection-oriented language. Sipelstein
and Blelloch have observed that collection-oriented languages are data-parallel lan-

guages [62]; the parallelism comes from applying an operation over a potentially
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large set of data (arrays in case of AML). (In contrast, in control-parallel languages.
different operations can be executed in parallel.) Data-paraliel languages permit
efficient parallel implementations because the operators in such languages provide
implicit parallelism. The compiler does not have to do complex loop analysis to
find parallelism.

Some of the issues involved in building a parallel evaluator for AML are: data
layout schemes, methods for coordinating data retrieval, methods for coordinating
computation, and methods for interprocessor communication.

Due to its iterator-based implementation, ArrayDB’s query evaluator is well-
suited for parallel implementation. For example, a parent iterator that fills its
internal data buffer by making n GetNext() calls (in the serial case) to its child
may be able to use n threads instead to do the job. The threads can be as-
signed to one or more processors. It also seems possible to do thread synchroniza-
tion within the iterator paradigm. Data partitioning—the way data is partitioned
among processors—would be an important issue in a parallel AML evaluator. The
data partitioning problem for user-defined functions that consume and produce
one-dimensional streams has been studied [47]. In [47], the stream-processing user-
defined functions (functions similar to APPLY functions) are classified based on
the shapes of their input boxes (called “windows” in [47]). Windows can have unit,
fixed, or variable lengths and successive windows may or may not overlap. The ideas
in [47], coupled with linearization techniques mentioned in Section 7.1.2, might pro-
vide a suitable starting point for studying data partitioning schemes for a parallel

AML evaluator. SUB might prove useful for defining different data partitions as
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views on a set of base arrays. Because of the “sliding domain box” semantics of
APPLY, some data duplication may be necessary.

During the design and implementation of Titan, ! the problem of parallel eval-
uation of very specialized forms of queries on remote-sensing data was studied [10].

Prior work such as this should be useful when building a parallel AML evaluator.

Titan is a parallel shared-nothing database system for remote-sensing data.



Appendix A

Proofs of Logical Rewrite Rules

A.1 Introduction

This appendix contains the proofs of the non-trivial logical rewrite rules in Chap-
ter 2. A few general remarks about the theorems follow.

SUB and MERGE operators map slabs in their input arrays to slabs in their
output arrays. Therefore, proofs of the theorems show that the original expres-
sions and the rewritten expressions generate the same array slabs. Since SUB and
MERGE do not change or permute array cell values in slabs, it then follows that the
result arrays from the original expression and the rewritten expression are identical.
An APPLY operator decides whether a subarray of the input array participates in
préducing (part of the) result array based purely on whether the APPLY patterns
select the lower-left corner element of the subarray or not. Accordingly, proofs of
the theorems involving APPLY operators show that the original expressions and the

rewritten expressions select identical lower-left corner elements.

190
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The following observations, which follow from the definitions of SUB and MERGE.
help in the proofs of some of the theorems. Each observation establishes correspon-
dences between the i-slabs of the output array and the i-slabs of the input arrays
of a particular AML operator. The i-slabs themselves are numbered from 0: that

is, the slab number is the index of the i-slab in an array.

Observation A.1 For the AML ezpression ¥ = SUB;(P, A), where P # 0. the
t-slab number j (7 > 0) of Y equals the i-slab number (indez(P,j + 1)) of A.

Observation A.2 For the AML ezpression Y = SUB;(P, A), where P # 0, the
t-slab number 5 (7 > 0) of A equals the i-slab number (count(P,j) — 1) of Y, if
Plj] = 1; if P{j] = 0, the i-slab number j (7 > 0) of A does not appear in the

output array Y.

Observation A.3 In the merge-balanced AML ezpression Y = MERGE;(P, A, B, §),
where P # 0 and P # 1, the i-slab number j (7 > 0) of A equals the i-slab number
(index(P,7 + 1)) of Y; the i-slab number 7 (j > 0) of B equals the i-slab number
(index(P,j +1)) of Y.

Observation A.4 Inthe merge-balanced AML ezpressionY = MERGE;(P, A, B,4§),
where P # 0 and P # 1, the i-slab number 7 (7 > 0) of Y equals the i-slab number
(count(P,7) — 1) of A ff P[j] = 1. The i-slab number j (7 > 0) of Y equals the
i-slab number (count(P,j) — 1) of A iff P[j] = 0.

A.2 Proofs

Theorem 2.4 (combining two SUBs) SUB;(Q,SUB;(P, A)) =suB;(R, A), where
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P #0,Q #0, and R 1s defined by: inder(R.j+1) = index(P.index(Q.j+1)+1).

for 7 > 0.

Proof. Let Y = sSuUB;(@,SUB;(P, A)) and let Z = SUB;(R. A). Further. let X =
SUB;(P, 4) so that ¥ = sUB;(@Q,X). ¥ = Z will be proved by showing that the
t-slab number 5 (7 > 0) of Y is identical to the i-slab number j (5 > 0) of Z.

According to Observation :A.l applied to the AML expression ¥ = suB;(Q.X).
the z-slab number 7 (7 > 0) of Y is the ¢-slab number (index(Q,j + 1)) of X.
According to Observatioﬁ A.1, applied to the AML expression X = suB;(P, A), the
i-slab number (index(Q, 7 + 1)) of X is the i-slab number (index(P,indez(Q, j +
1) +1)) of A.

Applying Observation A.1 to the AML expression Z = SUB;(R, A), we get that
the z-slab number 7 (7 > 0) of Z is the :-slab number (indez(R,j + 1)) of A.
From the definition of R, the i-slab number j (j > 0) of Z is the i-slab number

(indez(P.index(Q,j+ 1)+ 1)) of Aforall 7 > 0. O

Theorem 2.9 (associativity of MERGE) Suppose that the AML expression
MERGE;(Q,MERGE;(P, A, B, §),C, ) is merge-balanced, P # 0, P # 1, Q # 0, and
@ # 1. Then '

MERGE;(Q, MERGE;(P, A, B,4),C,§) = MERGE;(R, A,MERGE;(S, B,C,§),d)

where, for 7 > 0, R and S are defined by: indez(R, 7 + 1) = indez(Q,index(P, j +
1)+1), and S[count(R, j)—1] = Q[;] if R[j] = 0. Furthermore, the AML expression
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on the right hand side is merge-balanced.

Proof. Let YP = MERGE;(P, A, B,d); let Y? = MERGE;(Q,YF.C.8): let Z°% =
MERGE;(S, B, C,§); and let Z® = MERGE:(R, 4, Z5). The goal is to prove that }¥?
and Z¥® have the same i-slabs. Moreover, it needs to be shown that if the original
AML expression is merge-balanced, then so is the rewritten one.

Since the MERGE operator does not reorder or duplicate the slabs coming from
the same array, to prove that Y2 and Z® have the same i-slabs, it suffices to prove
the following: i-slab j (7 > 0) of Y ? comes from a particular array (A, B, or C)in
the original expression iff the i-slab j (7 > 0) of ZF comes from the same array in
the rewritten expression.

Let us choose C to be the arbitrary array. ! That is, it will be shown that: i-slab
7 (5 > 0) of Y? comes from C in the original expression iff the i-slab j (7 > 0) of Z%
comes from C in the rewritten expression. Suppose that the preceding statement
is denoted by £. A proof of £ follows.

As per Observation A.4 applied to Y2 = MERGE;(Q,Y?,C,$), the i-slab j
(j > 0) of Y9 comes from C iff Q[j] = 0. For easy reference, the ‘iff’ condition of

the previous statement is reproduced below as the condition Cji:

CIZQU]=0

As per Observation A.4 applied to Z® = MERGE;(R, A, Z%,6), the i-slab j
(7 > 0) of Z® is equal to the i-slab (count(R,j) — 1) of Z° iff R[j] = 0. As per

IThe proofs when the arrays A or B are chosen are similar and are therefore, omitted. The
definitions of R and § also change when either of A or B is chosen to be the arbitrary array.
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Observation A.4 applied to Z5 = MERGE;(S, B.C.4d). the i-slab (count(R,j) — 1)
of Z5 comes from C iff R[j] = 0 and S[count(R,j)—1] = 0. For easy reference. the

‘iff” condition of the previous statement is reproduced below as the condition Cs:
C;: R[j] =0 and S|count(R,j)—1]=0

£ is proved if it can be shown that for all j > 0, C;, & C,.

Proof of C; = C,. First, it will be shown that Q[j] = 0 = R[j] = 0. From
R’s definition, it follows that, for any j' > 0, if R[j’] = 1, Q@[] must be equal to 1.
(There could certainly exist indices 7” > 0 such that Q[;”] = 1, but R[;”] = 0.) The
conclusion R[j'] =1 = @[;'] =1 is just the contrapositive of @[j] = 0 = R[;'] = 0.
Having established that Q[j] = 0 = R[j] = 0, S[count(R,j) — 1] = 0 follows
immediately from the definition of S.

Proof of C, = C;. Given that R[j] = 0 and S[count(R,j)—1] =0, Qj] =0
follows immediately from the definition of S.

Next, let us prove that R and S are uniquely defined for all j > 0. R’s definition
gives all the indices j' > 0 where R[j'] =1 and thus bits of R are uniquely defined.
For S, observe that the condition R[j] = 0 is equivalent to the condition R[j] =1,
and thus (count(R,j) — 1) generates the successive integers 0,1,2, ==~

Finally, let us prove that if the original expression is merge-balanced, then so is
the rewritten one. In the original expression, A[j] = B[j] = C[j] = YP[j] = Y?[j],
for all dimensions j # 7, because the original expression is merge-balanced. In the
rewritten expression, A[j] = B[j] = C[j] = Z5[j] = ZR[j], for all dimensions j # 1,

because only the MERGE patterns in dimension 7 changed. Thus, the rewritten
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expression is merge-balanced in all the dimensions j # 1.

In the original expression YP[i] = A[{] + BJ[i], and Y?[i] = A[{] + B[i] + C[1]
because the original expression is merge-balanced. In the rewritten expression,
ZS[i] = B[i] + C [{], or otherwise the rewritten expression cannot be identical to
the original one. Similarly, ZR[i] = Ali] + Z5[i] = Ali] + B{i] + C[il, or otherwise
the rewritten expression cannot be identical to the original one. Therefore, the

rewritten expression is merge-balanced in dimension z. O

Theorem 2.10 (pushing SUB through MERGE, version 1) Suppose that
MERGE;(P, A, B, §) is merge-balanced, and P # 0, P # 1, and @ # 0.

SUB;(Q,MERGE;(P, A, B,§)) = MERGE;(T,suB;(R, A),suB;(S, B),J)

where the resulting MERGE is balanced, and for 7 > 0, R, S, and T are defined
as follows. R[j] = Q[indez(P,j + 1)]; S[j] = Qindez(P,j + 1)]; and T[j] =
Plindez(Q, 7 + 1)].

Proof. Let Y¥ = MERGE;(P, A, B, ¢); let Y? = suB;(Q,YF); let ZR = sus;(R, A);
let Z°5 = suB;i(S, B); and let ZT = MERGE;(T, Z%,2%,6). The goal is to prove
that Y9 and Z7 have the same i-slabs. Moreover, it needs to be shown that if the
MERGE operator in the original expression is balanced, then the MERGE operator
in the rewritten expression is also balanced.

Since $UB and MERGE operators do not reorder or duplicate the slabs coming
from the same array, to pfove that Y9 and Z7T have the same i-slabs, it suffices to

show the following three statements: (1) i-slab 7 (§ > 0) of A is in Y@ iff it is in
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ZT; (2)islab j (7 > 0) of Bisin Y® iff it is in Z7; and (3) z-slab j (j > 0) of ¥'?
comes from A iff the i-slab j (j > 0) of Z7 comes from A.

The first statement above can be proved as follows. As per Observation A.3
applied to Y = MERGE;(P, A, B, §), the i-slab j (j > 0) of A is equal to the
i-slab indez(P,j + 1) of YP. Now the i-slab indez(P,j + 1) of ¥YF is in Y9 iff
Qindex(P,7 + 1)] = 1.

Now the i-slab j (7 > 0) of A is in Z7 iff R[j] = 1. From the definition of
R, the i-slab j (j > 0) of A is in ZT iff Q[indez(P,7 + 1)] = 1. By comparing
this conclusion to the one reached in the previous paragraph, the first statement is
proved.

The proof of the second statement—which involves using the definition of S—is
symmetric to that of the first statement.

The third statement can be proved as follows. As per Observation A.1l applied to
Y9 = suB(Q, Y?), the ¢-slab 7 (5 > 0) of Y9 is equal to the i-slab indez(Q,j + 1)
of Y. Now the 7-slab indez(Q, j+1) of Y comes from A iff P[indez(Q,j+1)] = 1.

The i-slab 7 (7 > 0) of Z7 comes from A iff T[j] = 1. From the definition of T,
the i-slab 7 (j > 0) of ZT comes from A iff Plindez(Q,j + 1)] = 1. By comparing
this conclusion to the one reached in the previous paragraph, the third statement
is proved.

Finally, let us prove that the MERGE operator in the rewritten expression is
balanced. The MERGE operator in the original expression is balanced and therefore,
for all the dimensions j # 7, A[j] = B[j]. In the rewritten expression, ZR[j] = A[j]

and Z—.S[j] = B‘[y] for all § # 7 because the SUB operators with the patterns R and
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S do not change the array lengths of their argument arrays in dimensions other
than dimension i. Therefore, the MERGE operator in the rewritten expression is
balanced as far as all dimensions j 7# ¢ are concerned.

Next, let us prove that the MERGE operator in the rewritten expression is bal-
anced in dimension i. YP[i] = Af] + B[i] because the MERGE operator in the
original expression is balanced. Suppose that, in the original expression, the SUB
operator deletes a i-slabs of A and b i-slabs of B (¢ > 0, & > 0). Therefore,
Yo[i] = Ali] + B[i] — a — b. Now in the rewritten expression, the SUB operators
must delete a i-slabs from A and b i-slabs from B because otherwise, the two ex-
pressions will not be equivalent. Therefore, Z-k[i] = Afi] —a and Z5 [{] = B[i] - b.
Now Z-.T[z'] must be equal to Y@ [2] because otherwise, the two expressions will not
be equivalent. Therefore, ZT[s] = Ali] + B{i] — a — b. Now ZR[i] + Z5[i] is equal
to (A’[zl — a) + (B[i] — b) which, in turn, is equal to ZT[4]. Therefore, the MERGE

operator in the rewritten expression is balanced in dimension . O

Theorem 2.13 (pushing SUB into APPLY) Suppose that P and R are APPLY

patterns in dimension 7, P # 0, Q@ # 0, and Rs[i] > 0.
SUBi(Q, APPLY(f, A, Po, Py,---,P,---)) = SUBi(S,APPLY(f, 4, Py, P1,---,R,---))

For all § > 0, R is defined as follows. (V denotes a logical OR operation on
bits.)

Rlj] = VEEQ[((count(P,j) — 1) - Byi]) + 1]
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if P[] =1; R[j]=0if P[j] =0.
S is defined as follows. For all ¢ such that 0 < ¢ < E/[].

S[((count(R,7) —1) - Bs[i]) +t] = Q[((count(P,7) — 1) - By[i]) + ]

if P[jl=1and R[j] =1.

Proof. Let Y¥ = APPLY(f,A,P: = P) and let Y9 = suB;(Q,Y?). Further, let
ZR = APPLY(f, A, P: = R) and let Z5 = suB;(S, Z®). The goal is to show that Y?
and Z5 have the same i-slabs.

Let the phrase “f-application on the i-slab j of A” (where j > 0) refer to a
collection of function applications when the left edge of f’s domain-box is situated
on top of the i-slab 7 of A.

That both Y? and Z5 have the same i-slabs can be shown by proving the
following statement: for all 7 > 0 and for all £ where (0 <t < Ry[t]), the t-th i-slab
(0 < t < Ry[t]) resulting from the f-application on the j-th ¢-slab (j > 0) of A is
in Y9 iff it isin Z°.

Neither SUB nor APPLY permute the orders of the i-slabs that they process and
therefore, the slab numbers and the orderings among the k i-slabs (1 < k < R 1)
that are indexed by ¢ in Y9 and in Z% are preserved. Moreover, it is sufficient
to consider mappings among the z-slabs because this rewrite rule copies the AP-
PLY patterns P, (n # 2) from the original expression to the rewritten expression.
Therefore, identical function applications happen on the corresponding i-slabs in
the original expression and in the rewritten expression.

Consider the AML expression on the left-hand side of the rewrite rule. The f-
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application on the 7-slab j (§ > 0) of A produces the R[i] i-slabs (((count(P,j) —
1) - RBy[i]) 4 t) (where 0 < t < R;[i]) of Y” iff P[j] = 1. Each one of these i-slabs
(((count(P, j) — 1) - R¢[i]) + ) (where 0 < ¢t < E/[i]) of ¥ is present in Y@ iff
the corresponding bit Q[((count(P,j) —1)- Bf[i]) + t] = 1 and P[j] = 1. For easy
reference, the ‘iff’ condition of the previous statement is reproduced below as the

condition Cj:
Ci : Q[((count(P,j) —1) - R[i]) +t] =1 and P[j]=1

Now consider the AML expression on the right-hand side of the rewrite rule. The
f-application on the i-slab j (7 > 0) of A produces the B[] i-slabs (((count(R,j)—
1) - Rs[i]) + t) (where 0 < t < R/[i]) of ZR iff R[7] = 1. Each one of these i-slabs
(((count(R, j) — 1) - Bs[i]) + t) (where 0 < t < R/[i]) of Z® is present in Z5 iff
the corresponding bit S[((count(R,7) —1) ff,[z]) +¢t] =1 and R[j] = 1. For easy
reference, the ‘iff’ condition of the previous statement is reproduced below as the

condition Cs:
C: : S{((count(R,j) —1)- Bsli]) +t] =1 and R[j]=1

The theorem is proved if it can be shown that for all 7 > 0 and for all 0 < t < R/[i),
C, & C,.

Proof of Cy = C3. Choose an arbitrary j ( > 0) and an arbitrary ¢ (0 < ¢t <
R;[i]). First, it will be shown that C; = R[j] = 1. Since Q[((count(P,;) — 1) -
R4[i]) + t] = 1 for the particular value of ¢, it can be concluded that
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Vﬁ__’gq—lQ[((count(P, j) = 1) - Bfff]) + t] = 1 because the logical OR operation is
involved and one of the R[] bits is known to be 1. This conclusion, the assumption
P[j] = 1, and the definition of R allow us to conclude that R[j] = 1.

Given that P[j] = 1 and Q[((count(P,j) — 1) - B;[{]) + t] = 1, and hav-
ing proved that R[j] = 1, it can be concluded—using the definition of S—that
S[((count(R,j) — 1) - R4[i]) +t] = 1, where 0 < t < R¢[i].

Proof of C; = C;. Once again, choose an arbitrary 7 (j > 0) and an arbitrary
t (0 < t < Rffi]). First, it will be shown that C, = P[j] = 1. Given R[j] = 1
and the definition of R, P[j] = 1 follows. Given that R[j] = 1, P[j] = 1, and
S[((count(R, j)—1)-EB4[i])+t] = 1 (where 0 < t < R;[i]), it can be concluded—using
the definition of S—that Q[((count(P,5)—1)- Rs[i])+t] = 1 (where 0 < t < R,[1]).
Thus, C> = C) has been proved.

Finally, it will be shown the R and S are defined for all indices j > 0. From
R’s definition, it follows that if R[j] = 1, then P[j] = 1. Thus, the expression
(((count(R,7) — 1) - Rs[i]) + ) in the definition of S generates the consecutive
integers 0,1,2,3,--- and therefore, S is defined for all j > 0. It follows from R’s
definition that R[j] is defined whenever P[j] is and thus R is defined for all 7 > 0.

a

Theorem 2.14 (pulling sUB out of APPLY) Suppose that P and R are APPLY

patterns in dimension ¢, P # 0, and D[] > 0.

APPLY(f7AaP07P17"'.7P1"') =-'APPLY(f,SUB{(Q,A),Po,Pl,"‘,R,"')
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Q is defined as follows. (For notational convenience, the definition of P[j] is
extended such that P{j] = 0 for all j < 0. V denotes a logical OR operation on
bits.) For all § > 0, Q[7] = 0 iff v{zj__ﬁmeP[t] = 0.

R is defined as follows. For all j > 0, R{count(Q,j) — 1] = P[j] if Q[J] = 1.
Proof. Let YP = aAPPLY(f,A,P;: = P) and let Z9 = suB;(Q, 4). Further. let
ZR = APPLY(f, Z2, P; = R). The goal is to show that Y¥ and Z® have the same
1-slabs.

Let the phrase “f-application on the i-slab 7 of A” (where 7 > 0) refer to a
collection of function applications when the left edge of f’s domain-box is situated
on top of the i-slab 7 of A.

Tﬁat both ¥7 and ZE have the same i-slabs can be shown by proving the
following statement: for all 7 > 0, the f-application on the z-slab 7 (7 > 0) of A
results in R/[¢] i-slabs in Y'P iff the f-application on the i-slab j of A results in
R([i] i-slabs in ZR.

Neither SUB nor APPLY permute the orders of the i-slabs that they process and
therefore, the slab numbers and the orderings among the R[¢] i-slabs in ¥Z and in
ZR are preserved. Moreover, it is sufficient to consider mappings among the i-slabs
because this rewrite rule—like Rule 10—copies the APPLY patterns P, (n # 1) from
the original expression to the rewritten expression. Therefore, identical function
applications happen on the corresponding i-slabs in the original expression and in
the rewritten expression.

Consider the AML expression on the left-hand side of the rewrite rule. The
f-application on the i-slab j (j > 0) of A produces E/[¢] i-slabs in Y7 iff P[j] = 1.
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For easy reference, the ‘iff’ condition of the previous statement is reproduced below

as the condition Cy:

C,:Pljl=1

Now consider the AML expression on the right-hand side of the rewrite rule.
The i-slab 7 (7 > 0) of A is equal to the i-slab ((count(Q.;} —1) of Z°9 iff Q[j] =1
(as per Observation A.2). The f-application on the i-slab ((count(Q,j) — 1) of Z2
produces R[] i-slabs in Z® iff Q[7] = 1 and R[count(Q,j) — 1] = 1. For easy
reference, the ‘iff’ condition of the previous statement is reproduced below as the
condition Cs:

C2:Qj] =1 and Rlcount(Q,j)—1]=1

The theorem is proved if it can be shown that for all § > 0, C; & C>.

Proof of C; = C,. Choose an arbitrary 7 > 0. First, it will be shown that
C: = Q7] =1. From P[j] =1, V{=J._ B0+  P[t] = 1 follows because the logical OR
operation is involved and the bit P[j] is known to be 1. @’s definition then implies
that Q[j] = 1. (@’s definition defines exactly those indices 7 > 0 when Q[7] = 0; at
all the other indices Q7] = 1.)

Given that P[j] = 1 and having proved that @Q[j] = 1, it can be concluded—
using the definition of R—that R[count(Q,j) —1] =1.

Proof of C2 = C,. Once again, choose an arbitrary j > 0. Given that Q[j] =1
and Rfcount(Q,j) — 1] = 1, it can be concluded—using the definition of R—that
P[j] = 1. Thus, C, = C; has been proved.

Finally, it will be shown that ¢ and R are defined for all j > 0. @ is defined

for exactly those indices j where Q[j] is 0; for all the other indices 7/, Q@[] = 1.
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In the definition of R, notice that (count(Q,j) — 1) when @Q[j] = 1 generates the

successive indices 0,1,2,---. O
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