
Query Processing Techniques for Arrays

Arunprasad Prabhakar Marathe

A t hesis

presented to the University of Waterloo

in fulfilrnent of the

thesis requirement for the degree of

Doctor of P hilosophy

in

Computer Science

Waterloo, Ontario, Canada, 2001

@ b p r a s a d P r a b h h Marathe 2001

National tibrary 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques
395 WetIington Street 395, Ne Wellington
Ottawa ON K1A O N 4 Ottawa ON K I A ON4
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or seIl reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la fonne de microfiche/fXrn, de

reproduction sur papier ou sur fonnat
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimes
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.

Abstract

-4rrays are a common and important class of data. This thesis addresses the fol-

lowing questions: In a database management system for arrays, how should logical

array manipulations be specified? How can such specifications be optimized'? The

two main contributions of this thesis are a language, called the Array Manipulation

Language (AML), for expressing array manipulations, and a collection of optimiza-

tion t ethniques for AML expressions.

AML defines a framework for array manipulation. The framework dehes how

arbitrary externally-defined functions can be applied to arrays in a structured man-

ner. AML can be adapted to different application domains by choosing appropriate

external function definitions. In this thesis, the digital image processing domain is

used to demonstrate the utility of the AML framework.

AML queries can be treated declaratively and sub jected to rewrite op t irniza-

tions . Remit ing minimizes the number of applications of potentidly cos tly extemal

functions required to compute a query result. .4ML queries can also be optimized

for space. Query results ase generated a piece at a time by pipelined execution

plans, and the amount of memory required by a plan depends on the order in

which pieces are generated. &4n optirnizer c m consider generating the pieces of the

query result in a variety of orders, and can efficiently choose orders that require less

space. ,4n AMLbased prototype array database system c d e d ArrayDB has been

built, and it is used to show the effectiveness of these optimization techniques.

Acknowledgement s

My advisor Dr. Ken Salem provided e x ~ e r t guidasce and a supportive en\-ironment

for this research. 1 leamed many things fiom him in two areas of computer science:

database management systems and software engineering.

My parents and my otheï family members have dways provided encouragement

and support for my studies.

I have benefited from discussions with many people about various topics that

hacl some connections to the topic of this thesis. Their names in alphabetic order

are: Robert Bernechy, Dr. Lee Dickey, Dr. George Freeman, Dr. Michael Jenkins,

Greg Onufer, Dr. Jefhey Shallit, Dr. Fr& Tompa, and Dr. Joseph Wilson.

My thesis examination cornmittee (which consisted of Dr. George Freeman, Dr.

Richard Muntz, Dr. Tamer Ozsu, Dr. Ken Salem, and Dr. Frank Tompa) made

several suggestions t hat improved the quality of this t hesis.

To all the persons mentioned above go my sincere thanks.

I also thanli NSERC (Naturd Sciences and Engineering Research Council of

Canada) for providing partial funding for this research.

Contents

1 Introduction 1

1-1 Problem Statement . 3

1.2 Thesis Contributions . 5
- 1.3 .4 n Illustrative Example . 1

1.4 Thesis Outline . 12

2 The Array Manipulation Language 13

2.1 Data Mode1 ând Terminology . 13

2.2 A1ML Operators . 16

2.2.1 SUBSAMPLE . 18

2.2.2 MERGE . 20

2.2.3 .4PPLY . 25

. 2.2.4 Moreon Patterns and Shapes 31

2.2.5 S r i m m a q . 32

2.3 -4ML Design Goals . 33

3 On the Expressiveness of AML

. 3.1 Image Algebra's Data Nodel 39

. 3.2 Image Algebra Operators 41

. 3.2.1 Induced Operators 42

. 3.2.2 Global Reduce Operators 43

. 3.2.3 Spatial Transformations 43

. 3.2.4 Image Catenation 44

. 3.2.5 Image Restriction 45

. 3.2.6 Image Extension 46

. 3.2.7 Imagetemplate Product 47

. 3.3 The Unçharp Masking Computation 55

. 3.4 Cornparison Srimmary 5s

4 AML Query Processing 60

. 4.1 AML Query Processing Overvietv .. 61

. 4.2 Preprocessing 64

. 4.3 Logical Rewriting 67

. 4.3.1 AML Logical Rewrite Rules 68

. 4.3.2 Rewrite Rules and Merge Balancing 69

. 4.3.3 Logical Rewrite Algorithm 72

. 4.4 Plan Generation 83

. 4.4.1 -4rrayDB Physicd Operators 86

. 4.4.2 Plan Generation Algorithm 93

. 4.4.3 Map Spreading 95

. 4.5 Plan Refinement 106

vii

. 4.51 Physical Operator M e m o - Cost Estimation 110

4.5 -2 -4n Example Illustrating the Dynamic Programming .. lgori t hm 1 I 1

4.6 Query Etduation . 112

5 The Query Suite 114

5.1 DESTRIPE . 115

5.3 TV1 . 111

5-3 NDVT . 117

6 Eiperirnental Results 125

6.1 The Workioad . 126

6.2 Experimental Setup . 127

6.3 Effectiveness of Optimization . 1%

. 6.3.1 Effect of Optimization on Query Evaluation Time 12s

. 6.3.2 Effect of Optimization on B&r Space Requirement 132

6.4 Cost of -4rrayDB Query Optimization 136

6.5 Quality of .4 rrayDB7s Query Evaluation Plans 139

6 Scale-up of -4rray Sizes . 139

6.5.2 Cornparison with C++ Programs 139

7 Related Work 143

'7.1 Array Operation Implementation 144

7.1.1 Relational Mapping . 144

. 7.1.2 Byte Sequence Mapping 146

. 7.1.3 Redundancy and Partitioning 154

. 7-2 Manipulation of -4rray Data 155

7.2.1 Collection-oriented Array Languages 156

. 7.2.2 Scalar-oriented Array Laquages 166

. 72-3 Summaryof Array Languages 171

7.3 Supporting -4rrays in Database Management Systems 173

. 1.3.1 Relational Database Systems 173

. 7.3.2 Array Database Systems 177

8 Conclusions and F'uture Work 181

S.1 Conclusions . 181

. 8.2 Future Wkrk 183

8.2.1 Laquage and Query Optimization Extensions 183

8-22 Integration of Arrays with Relations 186

. 8.2.3 Pardel Evaluation of A-ML Queries 1S7

A Proofs of LogicaI Rewrite Rules 190

. A.1 Introduction 190

. .4.2 Proofs 191

Bibliography 204

List of Figures

. 1.1 A Thematic bilapper image and various derived images 9

1.2 A noise reduction filter . 10

2.1 Subarrays and slabs . 16

2.2 Examples of the SUBSAMPLE operation 19

2.3 Examples of the MERGE operation- 21

. 2.4 -4n illustration of the APPLY operation 27

. 3.1 Image extension in Image Algebra 47

3.2 Template, image. and imagetemplate product 43

3.3 Illustration of a translation invariant template 51

4.1 Overview of AMI, query processing 61

4.2 Illustration of merge bdancing . 66

. 4.3 Summary of the AML logical rewrite d e s used by ArrayDB 6s

. 4.4 Pseudecode of the logical rewrite algorithm 73

. 4.5 Structure of an AML tree before and after a rewrite 79

4.6 Illustration of the tagging mechanism 82

4.7 Properties of A r r - D B 's physical operators

4.8 REPL~C ATES operator's b&er space requirement

4.9 P l a n f o r a n ~ ~ ~ ~ ~ n o d e - .

4.10 Plan for a subtree made up of W B and WERGE nodes

4.11 Illustrating plan generation and plan rehement

4.12 SUB-MERGE-only trees .

4.13 Effect of Nter and write patterns .

4.14 The MapSpread algorithm .

4-15 Folding a SUB; operation into a map

4-16 Folding a IVIERGE; operation into a map

4-17 Illustration of MapSpread .

4-18 Regrouping in O-order and in 1.order

4.19 The result of the dynamic programming algorithm

4.20 Pseudecode to generate the result array of an AML expression . . .

5.1 Wavelet decornposition .

5.2 Wavelet reconstruction .

6 . 1 Characteristics of queries in the suite

6.2 Cïipping widow . - . .

6.3 RuMing times of ArrayDB with optirnization on
6.4 Speedup curves for ArrayDB with optimization on

6.5 Running times of ArrayDB with optimization off

6.6 Costs of the TV1 plans with different tile shapes

6.7 Costs of the TV1 plans with different tile sizes

. 6.8 Costs of the +TV1 plans using tno dgorithms 135

. 6.9 Queryoptimization timeofkrayDB 137

. 6.10 Query optimization and e~aluation times of TV1 13s

. 6.11 Scale-up of ArrayDB with optimization on 140

. 6.12 Cornparison of ArrayDB versus C++ programs 1-11

. 7.1 .4 rray linearization in a linear order and in a tiled order 149

. 7.2 Irregular, partially aligned. and t o t d y nonaligned tilings 150

. 7.3 Z curve, Hilbert cuve . and Gray code mapping 151

- ! . 4 Linearization scheme for a two-dimensional array 152

. 7.5 Two linearization schemes studied by Rosenberg 152

. 7.6 Iteration-space traversal of a tiled loop nest 168

xii

Chapter 1

Introduction

Arrays are a common and important class of data, with inherent structure and

order. -4 digital image can be modeled as a two-dimensional array. -4 digital

video is just an ordered collection of such images aad is a three-dimensional may.

Arrays can dso mode1 sequences (such as time series), matrices, finite element

grids, scientific data sets, and many other types of data. With the unprecedented

gro~vth of the Intemet and the World Wide Web, use of many of these data types

is becoming widespread.

Although support for arrays is needed in fields such as remote sensing, medi-

cal imaging, CAD dratving management, geographic information sys tems, scientific

visualization, and scientific applications [4, 40, 381, present-day database manage-

ment systems (DBMSs) do not provide adequate array support: arrays can neither

be easily defined nor conveniently manipulated.

Relational DBMSs do not permit users to define relational attributes of type "ar-

rayn. -4t most, one c a s declare as attribute of type "binary large object" (BLOB)

to store arrays. However. a database system treats a BLOB as a chunk of uninter-

preted data with no semantics attached. The interpretation of a BLOB's contents

is left entirely to the user.

Database systems also la& language support for array manipulations. Typica l l~

a database system only permits read and write operations on BLOBs. If m a y

indices and values are stored in relations, SQL can be used for array manipulations.

EIowever, SQL queries for simple array manipulations are typically cumbersome to

mi t e and inefficient to evaluate.

Some modern object-relational DBMSs permit users to add new abstract data

types (ADTs) to a database system and thus an "array" ADT (with associated

methods) can be defined. Array expressions, however, are not optimized by the

DBMS. Array expression optimization is important because arrays might be large.

Evaluation of expressions involving large arrays may be time-consuming and resource-

intensive.

Supporting arrays in a DBMS is a multi-faceted research problem involving ar-

ray storage and indexing, array manipulation using an array query language, anay

query optimization, and integration of array data with other types of data com-

monly found in a DBMS. The research reported in this thesis focuses on two of these

aspects: array query specification and array query optimization. An array query

language should be able to express a useful class of array queries in the language's

intended application domain and the query optimization techniques should ensure

t hat the queries are efficiently evaluated.

1.1 Problem Statement

This thesis addresses the following general questions: In n-hat language should log-

ical array manipulations be specified in a DBàIS? Can such ana-manipulating

queries be op timized? Are array query op timizations valuable*? This thesis con-

centrates on arrays occurring in a database of digital images such as satellite or

medical images.

Notice that this thesis does not address the problem of how to select the arrays

to be manipulated. A specific instance of this problem occurs-for esample. in

image retrieval-when an image database system is queried for images containing

specific sub-images such as red roses. In this thesis, the focus is on the array ma-

nipulations and-with a view to query op timization---on some of their properties,

such as whether a manipulation results from repeated applications of a primitive

operation, or whether a manipulation involves some redundant computation.

-4.n array query language should have at least some of the following properties

if it is to be used in a database environment: declarativeness, independence from

the physical data model, expressiveness, and ex*ensibility- Further, for efficiect

query evaluation, it is desirable that an array query language be optimizable. The

following description elaborates on why these properties are desirable and points

out their interrelationships.

With a declarative array query language, a user specifies what logical array

manipulations have to be done and not how they are to be done. The latter decision

is left to the query optimizer and evaluator. The query optimizer may consider such

things as physical organization of stored arrays (to exploit clustering) and limited

resources (such as b d e r space available to eiduate operations) n-hile mapping a

logical operation to one or more physical irnplementations. It can then choose a

good evaluation strategy (plan) by comparing the costs of the alternatives avaïlable

to it.

An array query language that allows definitions of views promotes separation of

logical data and its physical storage. A vien presents manipulated arrays-defined

on base arrays-as if they were base arrays. A vien- may be the basis of future

manipulations that may generate other vienrs- For example, one scientist's vien-

of a satellite image database system majr consist of images shoaing features such

as vegetation, water sources, and arid areas. Another scientist's view of the same

database system may consists of images showhg cloud cover or levels of ultraviolet

radiation. Both sets of images may be defined on (the same or different) base

images and on other view images.

-4n array query language should be expressive and possibly estensible. Expres-

siveness is desirable because even in restricted domains, array manipulations are

diverse. Many of them are application-specific. Extensibility is desirable because

it may be diffidt to make a language expressive enough for all applications. If an

array manipulation cannot be expressed in a language directly, it may be possible

to extend the language so that the manipulation can then be expressed.

-4rray query optimization is an important problem. Arrays are u s u d y large

and therefore must be maintained on secondary storage, such as disks, or on ter-

tiary storage, such as tapes. Accessing such arrays requires costly 1/0 operations.

-4rray manipulations tbemselves may be CPU-intensive. Therefore, m a y queries

are costly in terms of CPU tirne. b a e r space. and 1/0 bandwidth. Potential gains

fiom array query optimization can be substantial.

Some of the above-mentioned features of an array language are mutually in-

compatible. For example, a language with fewer operators is usually easier to op-

timize [40]. Such a language, however, may not be very expressive because it does

not contain many operators. Extensibility ob tained through user-dehed functions

may be at odds with optimizability because it may be hard to optimize an ar-

ray query that involves user-defmed functions. Declarativeness not only facilitates

query op timization but dso rnakes i t difficult by leaving many expression evaluation

decisiuns to the optimizer and eduator .

1.2 Thesis Contributions

The two main contributions of this thesis are the following.

1. An array data model and a query Ianguage for array manipulation.

The array data model gives precise meaning to array data. Arrays have

rectangulâr (hypercubical, in general) shapes and a.ll the elements in an array

have the same type. Based on the array data model, a laquage called the

Array Manipulation Language (-4ML) is proposed. AML is an algebra: it is a

collection of three operators that operate on anays. AhlL has the followirig

properties. AML expressions can be treated dedaratively by rewriting them

to equivalent forms. It is extensible in that it permits user-defined functions

for array manipulations. AML d o w s view definitions and is optimizable.

AML is novel in that it is designed to esyloit structural locality often found in

array manipulations. Two of the three AML operators are indes-based: the

third operator-cded ~ ~ ~ ~ ~ - p e n n i t s applications of user-defined functions

to an array in a structured manner. APPLY maps subarrays of arbitra--

shapes to subarrays of arbitrary shapes-a flexibility not aiailable in previous

array languages .

2. A collection of optimization techniques for efficiently evaluating

AML queries.

-4lvIL queries are optimized for query evaluation time and memory space.

Query evaluation time is reduced by treating .4ML queries declaratively and

by sub jecting them to rewrite op timizations. Rewrite rules exploit s tnictural

information from ,4ML operators. Rewritten AML expressions reduce the

reading and processing of unnecessary data and therefore, they usually eval-

uate &ter than the original expressions. AML expressions c m be evaluated

using pipelined evaluation strategies based on iterators, tvhich generate ar-

rays a piece at a time. An optimizer can reduce the memory required to

eiduate a query by intelligently selecting the order in which pieces of arrays

are generated. For example, row-by-roiv generation of an array may require

substantially less memory than column-by-colurnn generation, depending on

the specifics of the array operation and on the physical organization of the

input arrays [17].

-4-ML query processing has been implemented in a prototype database system

called ArrayDB. ArrayDB has been used for ernpirical evaluation of the array

que- optimizations mentioned in the previous paragaph. The ex~eriments

were performed on a suite of AML queries from the digital image processing

domain. The experimental results show that the optimizations are effective.

AML operators are structural and index-based. Not surprisingly. AalL queq-

optimization techniques are also structural in that they do not depend on d u e s

of individual array elements, but rat her on the spatial relationships arnong array

elements. The results in this thesis suggest that even by restricting attention to

such a special class of array operations, usefd array manipulations can be defined

and optimized.

AML is not the first language to support array manipulations, although few

other languages are as well-suited as AML to array query optimization. Compar-

isons of AMI, to array programming languages (such as -4PL [30, 351) and array

query languages (such as AQL [36]) can be found in Chapter 7.

1.3 An Illustrative Example

In digital image processing, digital images are subjected. to a series of processing

steps, at the end of which nem digital images are created. Commercial satellites and

digital scanners are two of the sources for digital image data. Online digital image

repositories and digital video also contain digital images. The example described

here cornes from the satellite image processing domain. It is based on the digital

image processing operations described by Lillesand and Iiiefer [37, Chapter 71.

Fig. 1.1 shows a multi-spectral image (array A) captured by the Landsat The-

matic Mapper sensor. Two of the array dimensions are spatial and the third is

spectral. The seven slices through the cube along the spectral dimension are im-

ages of the same scene, each taken using a sensor sensitive to electremagnetic

radiation in a different spectral band-

Fig. 1.1 also shows several other arrays that might be derived from the Thematic

Mapper image. Array J in Fig. 1.1 holds the transformed vegetation index (TVI)

for the scene. The TVI value at a spatial position in the scene represencs the

amount of green biomass present there [37]. The TV1 value at any position can be

computed from the intensity values of the third and fourth spectral bands at the

corresponding position in the Thernatic Mapper image using the function:

where b; denotes the intensity value from band i.

Another useful image that might be derived from array A is a band ratio image,

computed as the ratio of two of the spectral bands of the Thematic Mapper image.

Ratio computation can be a useful data analysis tool because it can compensate

for vairiations in absolute brightness (cell values) in the original image that might

be caused by topographic features. Ratio images also convey the spectral or color

charact eris tics of image features , regardless of scene illumination condit ions [3 71.

Array in Fig. 1.1 is a ratio of Thematic Mapper bands 3 and 7, defhed at each

position by

The Thematic Mapper image may include noise from a variety of sources such

seven-band Thematic Mapper image

I l
band 3 image

1
band 4 image

1
band 7 image

1
noise-reduced noise-reduced noise-reduced

merged image
I
t

TV1 (transfonned vegetation
index) image

merged image
1
t

band 3hand 7
ratio image

Figure 1.1: A Thematic Mapper image and various derived images.

Figure 1-2: -4 noise reduction filter.

as periodic drift or malfiuiction of a detector and electronic interference betweec

sensor cornponents. Noise can either degrade or totally mask the true radiometric

information content of a digital image. Hence noise removal usuaUy precedes any

subsequent enhancement or classification of the image data [37]. The objective of

noise ïemoval is to restore an image to as close an approximation of the original

scene as possible. In Fig. 1.1, both the TV1 array and the band ratio array are de-

fined using the noise-reduced versions (arrays E, F, and G) of the original Thematic

Mapper bands (arrays B, C, and D). Many types of noise reduction are possible;

difTerent types are suitable for different applications. For this example, noise re-

duction is achieved using a kind of convolution filter in dich the noise-reduced

value of a particular cell is computed using the original value in that cell and the

values of ifs S immediate neighbors. (Noise reduction is applied independently to

the images in the mious spectral bands.) The exact calculation, which is adapted

from [37]. is shown in Fig. 1.2. vo is the original cell value; vl through v8 are the

values of its eight neighbors, numbered clocbwise fiom the upper left.

This example illustrates several points. First, there is a wide mie ty of com-

plex, domain-specific transformations that might be applied to arrays. An array

query language that hopes to be able to express them must either be very ex-

pressive or extensible. Second, there is considerable room for querJ- optimization.

One opportuaity for optimization is the reguiarity and structure thar: ma>- esist in

cornplex-lookîng manipulations. In Fig. 1.1: for example, given a particular cell in

a derived array such as array J, it is possible to determine esactly which cells of

the original Thematic Mapper image contribute to its d u e . It is also possible to

calculate J's cell values in any order. Techniques such as caching and view mate-

rialization can be used to eliminate redundant calculations. For example. both the

TV1 array and the band ratio array are derived fiom array E. Hence it mi& be a

good idea to materialize (compute and store) array E. Third, arrays B through I ï

are different views on the same base array -4. A scientist studying green biomass

may be interested in only the TW anays such as the array J . She can be pre-

sented a view of the database system that consists of only the TV1 arrays. She

need not be aware that TV1 arrays are views on the 1-band Thematic Mapper

arrajrs. Fourth, the data transformation functions themselves may have properties

that c m be exploited by an optimizer that understands them. For esample, the

noise reduction technique used to produce arrays E, F, and G in Fig. 1.1 is a

discrete twdimensional convolut ion. An optimizer wi th some knowledge of linear

systems might be able to iafer that adding two noise-reduced images is equivalent

to applying noise reduction to their sum-

Each of the arrays B through K in Fig. 1.1 c m be described using an AML ex-

pression or query. This example will be used throughout the thesis to illustrate how

aa AMLbased database system can exploit some of the optimization opportunities

described in the previous paragraph.

1.4 Thesis Outline

The rest of the thesis is organized as follotvs. The array data mode1 and the

AML que- language are described in Chapter 2. Chapter 3 compares AhIL to

Image Algebra-an expressive language used to specify digital image processing

operations. The cornparison shows that A M L c m express a usefd subset of the

operators in Image Pilgebra, thus providing some evidence of AML's expressiveness

in the image processing domain. Chap ter 4 presents algorithms for processing AML

queries. These algorithms describe how to generate an optimized evaluation plan for

an AML query and how such a plan can be evaluated esciently to obtain the query

result. Chapter 5 contains the descriptions of 5 digital image processing queries

that form a query suite. Chapter 6 contains experimental results-obtained using

the queries in the query suite-that show that the query optimization techniques

of Chapter 4 are effective. Chapter 7 surveys the related work. The survey's scope

is not limited to the database field because arrays have been studied by researchers

in other areas also. The conclusions and some directions for future reseach appear

in Chapter 8.

Chapter 2

The Array Manipulation

Language

This chapter first describes the m a y data mode1 (Section 2.1) and then the Array

Manipulation Language (-4ML) based on this data mode1 (Section 2.2). Many

of the definitions have been presented in [41], in which -4ML was introduced. A

discussion of ..\ML'S design goals appears in Section 2.3.

2.1 Data Mode1 and Terminology

Throughout this thesis, a vector arrow, as in Z, ddeotes an infinite vector of integers.

The usual notation qi] refers to the element with index i. Indexing starts at zero.

All of the elernents in the specid vector O are zeros. (The vector 1 is defined

similady.) Expressions involving operations on vectors, such as É = LZ/fJ, refer

to elernent-wise application of the operation; that is, qi] = LZ[i] / y i i] J . Similady,

predicates such as I < y are true iff Z[i] < $il for al l i 2 0.

Before defining AMI, arrays, it is necessaqi to define the concepts shape. vector

cont ainment , and domain.

Definition 2.1.1 (Shape) A shape d: is a n infinite vector of non-negative inte-

gers.

Wlen written, a shape7s elements are enclosed witithin angled brackets. For esample.

(3,4) is a 3 x 4 shape. Ali elements not listed explicitly are assumed to be ones.

Thus, the shapes (1,1,2) and (4,4) denote the infinite vectors (1,1,2.1.1,1, - -)
and (4,4,1,1,1, - -), respectively.

Definition 2.1.2 (Vector containment) A vector 5 Es in shape .; iff O 5 T < - . -

We -*te '5 E -4" o r "3F in -4".

Definition 2.1.3 (Domain) A domain is a set o f values.

Domains are written using the calligraphie letter V.

Definition 2.1.4 (Array) An array -4 consists o f a shape -Zr a dornain V.4 and a

rnapping Ma. The i-th elernent of A represents the length of the array in d imens ion

i. T h e mapping MA rnaps each vector z' in .Z t o an elernent of the a n a y 's domain ,

DA -

AML arrays have an infinite number of dimensions, numbered from zero. Each

m a y dimension is indexed by the non-negative integers. Vectors in an array shape

are also c d e d points or cells. The array element values are of the form Ma(Z)

for all 5 E 2. To refer to m a y element values, index values (vector indices for a

vector 5 E A) are enclosed within square brackets. For esample. -4[0. l] indicates

an element in array -4 in the O-th rom- and 1-st column. -4U elements not listed

esplicitly within square brackets are assumed to be zeros. Thus. both ;1[0.1] and

A[0,1,0,0, - -1 denote the same array element. Notice that ;l[i] denotes the element

of a one-dimensional array with the index i, whereas -X[i] denotes the length of the

array .4 in dimension i.

+

Definition 2.1.5 (Size) The size of an array A, aritten IAI, is nzO -4[i].

Definition 2.1.6 (Dimensionality) T h e dimensionality of array A ïs &en

dim(A). If IAl is O then dim(A) is undefned; i f 1-41 is rn t h e n dim(.-l) is oo;

othenvise, dim(A) i.s the smaliest i svch that -x[j] = 1 for al1 j 2 i. Ifdim(A) is

d? t hen A is called a d-dimensional array.

In this thesis, arrays are restricted to have finite size. Nevertheless, it will sometimes

be convenient to think of arrays as having infinite lengths in all dimensions. For

this purpose, -4[d is defined to be NULL for all points z' that are not in -4: where

NULL is a special value not found in any domain.

An anay having a length of zero in one or more dimensions is called a null

array. Such arrays have zero size and their dimensionality is undefined. Since there

axe no points in a null array, it has the value NULL at every point.

Definition 2.1.7 (Subarray) Let A and B be arrays, and let I be a vector in

A. A m y B is a subarray of A at Z iff Dg = DA, and for every point f in B,

B[y7 = A[z+m.

a subarray of
A a t X \

a slab d o n g
dimension 1

array A

- a slab d o n g
dimension O

Figure 2.1: Subarrays and slabs.

Notice that Defuiition 2.1.4 implies that z'+ i j is a point in -<. -4s Fig. 2.1 showso a

subarray is simply an m a y that is wholly contained ivithin another. The position

of the subarray within the containing array is identified by the position of the

subarray's smallest point (indicated by a dot in Fig. 2.1).

Definition 2.1.8 (Array slab) A slab of an array A in dimension i (i-slab for
+

short) is a subarruy of A with the shape (- - - , .4[i - 11, 1, .Z[i + 11, - - -).

As illustrated in Fig. 2.1, a slab is simply a slice of unit width through an array

along the specified climension. There are .@j i-slabs in an array A.

2.2 AML Operators

AML consists of three operators that manipulate mays. Each operator takes one

or more arrays as arguments and produces an m a y as result. SUBSAMPLE (SUB for

short) is a unary operator that can delete data. The size of the result of subsampling

as array A is never larger than IAl. MERGE is a b i n q operator that combines

two arrays defined over the same domain. APPLY applies a user-defined function

to a n array-in a manner described in Section 22.3-to produce a nen- a n a - -AU

of the AlML operators t&e bit patterns as parameters.

Definition 2.2.1 (Bit Pattern) A bit pattern P ̂ (o r P w h e n there i- 720 POSS-

bility of c o n . i o n) is an infinite binary vector.

The i-th element of a bit pattern is denoted by P[i] or P[i]. -4s for other wctors.

indexing of bit patterns starts at zero. Sometimes, patterns are of the periodic

form rrr - - -. written as r' , where r is a binary vector of finite length. In such cases.

the finite vector r can be used to represent the infinite pattern r'. For esample,

P = 1010 means P = 1010I01010 - - -. Notice that there is more than one finite

representation of any pattern of the foïm Y. For example, Q = 10 represents

the same pattern as P does. -4 regular-expression-like notation is used to describe

patterns succinctly. For example, oiljO*, for positive integers i, j and k, represents

a pattern in which j 1's are sandwiched between i O's on the left and k 0's on the

right. The bit-wise complement of a pattern P, obtained by replacing P's ones

with zeros and vice versa, is written P.

Two pattern functions, index and count, will be needed often.

Definition 2.2.2 (Index) I f P is a bit pattern (P # 0) and k a positive integer,

index(P,li) Zs the index of the k-th 1 in P (k 3 1). By definition, i f k = O or P = 0,

index(P, k) = 0. index(P, k) is undefined if P contains fewer tha2 k 1's (k 2 1).

Definition 2.2.3 (Count) If P is a bit pattern and k a non-negatiue integer,

count(P,k) is the nvmber of ones in the f i t k + 1 positions of P , Le., from P[O]

t o P[k] , inclusive.

Both functions are monotonically non-decreasing in k. Suppose that index(P. k)

is dehed. It should be obvious then that for any k 2 1. count(P. inder(P. k)) = k.

unless P = 0.

The following three sections describe and define the SUB. LIERGE. and APPL\-

operations. Some of the important properties of the individual operations and of

the expressions made up of them are also given. The proofs of the non-trivial

properties are given in Appendix A.

The SUB operator takes an array, a dimension number and a pattem as parameters

and produces an array. The dimension number will be written as a subscript, as in

B = SUB;(P, A),

where A is an array, P is a pattern, and i is the dimension number.

The SUB operator divides A into slabs along dimension i, and then keeps or

discards slabs based on the pattem P. If P[k] = 1, then slab k is kept and included

in B, otherwise it is not. The slabs that are kept are concatenated to produce the

result B.

several applications of the SUBSAMPLE operator are illustrated in Fig. 2.2. FVith

the SUB pattern "1Oy, the anay B in the top expression in Fig. 2.2 is formed by

choosing every other 1-slab of the anay A. In the middle expression, the SUB

pattern "10" is the same as "1010" and the latter pattern selects O-slabs (rows)

O and 2 from the array -4. In the bottom expression, the SUB pattem "0000111"

Figure 2.2: Examples of the SUBSAMPLE operation.

ex<euids beyond the boundary of the array A and therefore only two 1-slabs get

selected.

Referring to Fig. 1.1, the SUB expression B = ~ ~ ~ ~ (0 0 1 0 0 0 0 , A) extracts spectral

band 3 from the Thematic Mapper array A. The '1' in the third position of the

pattern indicates band 3. Similar expressions can be given for band 4 and band 7

arrays, C and D, respectively. SUB can also produce a low resolution version of an

image. For example, the expression S U B ~ (10, SUB (10, J)) produces a low resolution

version of the TV1 array J by dropping every other row and every other column.

Definition 2.2.4 (SUBSAMPLE) If B = SUB~(P,A) , then B is defined rn follows:

for au points Z in B , B[. . . . - l]? s'[il. i'[i + l]?. - .] = -A[. . . . qi - 11.
index(P. ?[il + 1): Z [i + 11,. . .]

Important Properties of SUEBA~ZPLE

The following theorems follow easily from the definition of SU BS AM PL E.

Theorern 2.1 (SUB with NULL array) SUB~(P? LVULL,) = NULL,.

Theorem 2.2 (SUB with 'O' pattern) SUB;(O, A) = NCJLL.

Theorem 2.3 (SUB with '1' pattern) S U B ; (~ , = ~) = A.

The following two theorems describe hotv tn-o adjacent SUB operations can be

combined or reordered. A proof of Theorem 2.4 can be found in Appendix -4.

Theorem 2.4 (combining two SUBS) s u ~ i (Q , S U B ~ (P , A)) = S U B ~ (R , A), where

P # O,, Q # 0, end R is defined by: i n d e x (R , j + 1) = i n d e x (P , index(Q, j + l) +l)'

fo. j 2 0.

Theorem 2.5 (reordering two SUBS) W h e n i # j ,

s u ~ i (Q , SUB~(P, A)) = S U B ~ (P , SUB;(Q, A)) -

The MERGE operator takes two arrays, a dimension number, a pattern, and a defadt

value as parameters. It merges the two arrays to produce its result. As it was for

SUB, the dimension number is written as a subscript, as in

b10 b l l

dirn 0-
dim 1

Figure 2.3: Examples of the MERGE operation.

where -4 and B are arrays, P is the pattern, and 6 is the default d u e . The esplicit

reference to 6 will often be dropped if the default is not important. MERGE is

defined only if Ve4 = VB and 6 E Da4,

Conceptually, MERCE divides both -4 and B into slabs along dimension i. C is

obtained by merging these slabs according to the pattern P; 1's in P correspond

to slabs fiom A (the first array) and 0's to slabs from B (the second array). For

example, if P = 101 (which stands for the infinite pattern 101101101 - -), then a

slab from B is sandwiched between two slabs from A. The merging process repeats

until al l the slabs fiom both -4 and B are e-xhausted.

Fig. 2.3 ihstrates the MERCE operation. The top example in Fig. 2.3 shows

that the default value may not be needed to form the merged array. The bottom

esample in Fig. 2.3 shows that the default value 6 rnay be used for two purposes.

First, in a dimension other than the MERCE dimension, the lengths of the two

arrays may not match. If so, the shorter array (B in Fig. 2.3) is expanded-using

b dues-to reach the length of the longer array. Second, as the two m a y s are

interleaved in the MERGE dimension, one array rnay run out of slabs before the

other does. In this case also. slabs fUed ~ i t h 6 values are used in place of the array

slabs from the shorter array.

In our running example in Fig. 1-1, mays H and I c m be formed using the

MERGE operator. .Irray H can be expressed as XIERGE~(IO, E. F) . The 31 ERGE

pattern "10' and the LIERGE dimension 2 has the effect of putting array F on top

of array E.

A common use of MERGE is to juxtapose two arrays. This can be achieved in

dimension i using the AML expression MERGE~(~-'[''O'~'~, A, B).

It is convenient to define MERGE formal- in t ~ v o steps. The first step generates

an array C' by interleaving slabs fiom -4 and B. as described above. Because of

shape mismatches between -4 and B: hotvever, or because of the particular pattern

P, some values in C' may be NULL, The second step eliminates this problem by

transfonning any such NULL values to the default value 6. The result of this final

step is indeed an array, and is the resdt of the hIERGE operation-

Definition 2.2.5 (MERGE) If C = MERGE;(P, -1, B, J) , the i n t e n e d i a t e array C'

is- defined as foilows:

if.&] = O and G[i] = O, t hen CI[;] = O; othenvise

C'[il = m a r (i n d e r (P , .x[i]), indez(F, &])) + l

for al1 points T in Cf:

- if P[Z[i]J = 1. then Cf[. . . . I [i - 11. qi]. qi + 11- -. -1 =

A[.- - , Z [i - l].ccrunt(P.F[i]) - 1,z'[i+ 11.. . .].

- otheNnse Cr[. . . ? T[i - Il. Z [i] , qi + Il.. . .] =

B[. . . , Z[i - 11, count (F, ~ [i]) - 1 , Z [i + 11. . . .]

The array C is then obtazned by removing any NUCL. values inside of Cl: Vc = Va4:

for all i > O, C[i] = C'[il; and for all points 5 in C , ifCr[ZJ = XGLL then C[q = 6.

othePwise C[q = Cf[q -

For some MERGE operators with particdar patterns. the arrays C and Cr-

mentioned in Definition 2.2.5-are identical. An unbalanced M ERGE operator is

one for Nhich the arrays C and Cf are not identical.

Definition 2.2.6 (Unbalanced MERGE) Let a w a y C 6e the result of the AML

expression MERGE~(P, A, B, 6). Th& MERGE operator -k unbalanced if ut least one

of the following two conditions hold:

1. There exists a dimension j # a' svch that À[j] # Z[j] .

h Fig. 2.3, the top MERGE is balanced, whereas the bottom MERGE is unbal-

anced. -4n -4ML expression that contains no unbdanced MERGE operators is said

to be in merge-balanced form. Theorem 2.10 and Theorem 2.11 that foilow holc!

ody for AML expressions in merge-balanced form.

Important Properties of MERGE

Theorems 2.6-2.S foLLow eady from the definition of 'IERGE. -1 proof of T h e

rem 2.9 can be found in Appendix A.

Theorem 2.6 (MERGE with 'O' pattern) BIERGE~(O, -4, B, 6) = B.

Theorem 2.7 (MERGE wïth '1' pattern) M E R G E ~ (~ , -4: B, 6) = -4.

-4lthough M ERGE is not a commutative operation, the fouon-ing holds.

Theorem 2.8 (MERGE vvith reversed operands) MERGE;(P, -4, B. 6) =

M E R G E ~ (P , B, -2,6).

Theorem 2.9 (associativity of MERGE) Suppose that the AML ezpression

W E R G E ~ (Q , MERGE~(P, A, B, 4, C, S) U merge-balanced, P # O, P # 1, Q # 0, and

Q # 1. T h e n

where, for j 2 O! R and S are defined by: index(R, j + 1) = index(Q, index(P, j +
1) + 1), and S[count(R, j) - 11 = Q [j] if R[j] = O . ~ u r t h e n n o ~ e , the AML expression

o n the right hand side is merge-balanced.

Suppose that (AB) denotes a MERCE operation between the two arrays A and

B. The obvious distributive laws for the MERGE operation-that is, laws of the form

(A (B C)) = ((AB) (AC)) , where the individual MERGE operation are in arbitrary

dimensions-do not hold for the fouowing reason. The MERGE operation does not

delete data and (A(BC)) contains one copy of -4. whereas ((-AB)(-AC)) contains

two.

The follon-ing tnto theorems describe how a S U B operator can be pushed belon*

a MERGE operator. -4 proof of Theorem 2.10 appears in Appendis A.

Theorem 2.10 (pushing sUB through MERGE, version 1) 'uppose that

MERGE;(P, A, B, 6) is merge-balanced, and P # O . P # 1. and Q # O,

where the resulting MERGE is balanced, and for j > O , R, S, and T are defined

as follows. R[j] = Q[inder(P, j + l)]; S[j] = ~ [i n d e x (P , j + l)]; and T [j] =

P[index(Q, j + l)] .

Theorem 2.11 (pushing SUB through YERGE, version 2) Suppose that

MERGE,(P, -4, B, 6) is merge-balanced and i # j.

where the resdting MERGE is balanced.

The APPLY operator applies a user-defined function to an array to produce a new

array. In its most general form, it is written as

where f is the function to be applied. -4 is the array to apply it to. df and Ei/
are shapes. the Pios are patterns. and d = dim(.4). The parameters Bf and RI are

called the domain shape and the range shape, respectively. Sometimes. a domain

shape is called a domain box (and similarly for range shape). -4 special case of

APPLY is w~itten

B = A P P L Y (~ , - ~ , ~ ~ , # ! ~) ;

with the assumption that Pi = I for al1 O 5 i < d. In addition, either the range

shape or both shapes may be left unspecified when APPLY is written. These shapes

default to (1,1,1, - -) if they are not specified.

-4 simple way to define an operation, like APPLY, that applies a user-defined

function f would be to insist that f map from arrays of -4's shape and domain to

arrays of B's shape and domain. The operator would then simply compute B =

f (A). However, mmy common array functions have some structural locality: the

value found at a particdar point in B depends only on the values at certain points

in A, not on the values at all points in -4. For example, if f is a smoothing function

that maps each point in A to the average of that point and its neighbors, then to

determine the value a t some point in B, we need only look at the corresponding

point and its neighbors in -4. Such information c a n be very valuable for optimizing

the esecution of an expression involving the array operators.

The APPLY operation is defined so that this kind of structural relationship can

be made explicit when it exists. The APPLY operator requires that f be defined to

map subarrays of -4 ofshape Dtf to subarrays of B of shape Rj . In Fig. 2.4, f (A,Z)

refers to the result of applying f to the subarray of A of shape Df at 5. Thus,

dim O

B = APPLY

0 1 2 3

Figure 2.4: An illustration of the APPLY operation.

f (A, Z) is an array of shape RI. The AFPLY operator applies f to certain subarrays

of -4, and concatenates the results to generate B. This process is illustrated in

Fig. 2.4.

The pattern PI. can be thought of as selecting slabs in dimension i, with the

selected slabs corresponding to the 1's in the pattern. The function f is applied at

a point Z only if that point f d s in selected slabs in all the d dimensions of the may;

that is, o d y if P;[Z[i]] = 1 for all O 5 i < dim(=l). In Fig. 2.4, the patterns select

two slabs in each dimension, leading to a total of 4 applications of the function f.

Several features of the application of f should be noted. First, dthough the

selected subarrays may overlap in A, the results of applying the function do not

overlap in the resulting array B. Second, the anangement of resulting subarrays

in B preserves the spatial arrangement of the selected subarrays in -4. Findy, the

subarrays to which f is applied must be entirely contained within A. In the example

in Fig. 2.4, this means that even if the point [3,3] were selected by the patterns,

f (A. [3.3]) xould not be evaluated. since that subarray lies partial- outside of -4.

In the d n g example in Fig. 1.1. array E results from applying the noise

reduction function to array B. The expression for E is . ~ P P L Y (~ ~ . B. (3.3). (1.1)).

This implies that the domain and range shape for the function nr are (3.3) and

(1, l), respectively. As another example, the ratio array Ii c m be eqressed as

li = ex amp ratio, 1, (l , l , 2)) . Here, 6,,,j0 = (1: 1,2) and since range shape is
-.

not given, %tb defaults to (1 , l) . Sometimes, domain and range box shapes are

omitted for brevity. In such cases, those shapes are nlitten or mentioned in the

nearby text .

Definition 2.2.7 (APPLY) r f B = APPLY(f, A' f i j , El, pil - . - , Pdim(.4)-l). and f

is a fitaction that maps front arrays of shape Zf over domain De4 to arrays of shape

over domain V, then B is f o m a l l y defined as follows:

for al1 i 2 0,

If d [il > &] foc some i 3 O, then the definition above irnplies that B will be

a null array.

Often, it is necessary to apply a function to al1 non-overlapping subarrays of

a particdar shape- For example, given an image -4 with shape (1021.1024). an

inexpensive way t o compute a Ion- resolution version of -4 is to conceptudy "tileo'

A using non-overlapping subanays of shape (4,4) and to replace each tile with

the average of the 16 pixels under it. Since this t m e of function application is

quite cornmon, the TILED-~PPLY operator is defined to support it. Xssuming that

dim(-4) = d, the definition is as follows:

Important Properties of APPLY

Logical rewrite rules that commute, combine, or decompose AP FLY operations do

not exkt in the AML framework. Such operations would require some semantic

information about the user-defined functions associated with the APPLY operators.

The only information about user-dehed functions that the AML framework cap-

tures is the shapes of their domain and range boxes. Even if some semantic infor-

mation about the user-defined fwictions and how to use it were known, it may not

be straightforward to combine two successive APPLY operations if there are shape

mismat ches between their domain and range boxes. Nevert heless, t here are some

usefd ways to masipulate expressions involving APPLY, as the following theorems

show. Proofs of Theorem 2.13 and Theorem 2.14 appear in Appendix -4.

Theorem 2.12 (APPLY with a 'O' pattern) When Pi = 0,

Theorem 2.13 (pushing SUB into APPLY) Suppose that P and R are APPLV pat-

terns in dimension i, P # O, Q # 0. and Rf[i] > O .

For al1 j 2 0; R is defined as follows. IV denotes a logical OR operation on

bits-)

i f P [j] = 1; R[j] = O if P[j] = 0.

S is d e f i e d as follows. For all t svch that O 5 t < R f [i] ,

if P b] = 1 and R[j] = 1.

Theorem 2.14 (pulling S ü B out of APPLY) Suppose t h a t P and R are APPLY

patte- in d imemion i, P # 0 , and Of[;] > O.

A P P L Y (~ , A, PO, Pi, - - , P, - - .) = APPLY(f, SUB;(Q, A), Po, Pi, - - , R, - - -)

Q Zs defined as follows. (For notational convenience, the definition of P[j] is

extended such that Plj] = O for all j < O. V denotes a logical O R operation o n

bits.) For ail j > O. Q [j] = O i f f~ : , , -~ ,~+~P[t] = 0.

R is defined as follows. For aZZ j 3 O. R[count(Q. j) - l] = P[j] if Q[j] = 1.

In generd? it is not possible to push an APPLV operation through a UERGE

operation because some function applications may require data from both of the

argument arrays of the MERGE. h some specid cases, an APPLY may be pushed

through a AIERGE. Trvo examples of such special cases are: (1) when the APPLY'S

user-defined function has unit-sized domain and range boxes: and (2) mhen the

MERGE combines bvo arrays and the APPLY'S function applications are tiled such

that no tile needs data from both of the argument arrays of the MERGE.

2.2.4 More on Patterns and Shapes

Patterns and shapes appearing in AML expressions can be defined in terms of the

m a y arguments of their AML operators. -4s an example, if -4 is a two-dimensional

array in the expression

APPLY(f; -4. (1, .x[[1]))

then j is applied to each row of A. Aliases (as in SQL) can be used in AML

expressions when necessary to define names for unnarned intermediate arrays. In

the AML e-xpression A P P L Y (~ , S U B ~ (P , B) A; (l ~ - ~ [l])) , the alias A is used to refer

to the result of the inner SUB operation so that the APPLY'S shape argument can

be defined. The scope of such an alias is the -4ML operator in which it is defined.

In the case of the APPLY operator, it is also possible to refer to the domain shape

and the range shape in the operator's patterns. An example of this can be seen in

the definition of the TILEDAPPLY operation in section 22.3. In generd, a non-

constant pattern or shape element can be an arithmetic expression made up of

operators such as +. -, +? /, and !% (the modulus operator) on integer constants.

on array shape elements (e.g., -$[II). and on domain and range bos shape elements.

The result of such an expression must be a positive integer.

Pattern and shape definitions are not allowed to refer to the array contents.

Therefore, the shape of the reçult of an AML operation can always be determined

(without actually evaluating the operator) if the shapes of the operator's array ar-

guments are known. By induction, Rie can show that the shape of the result of

an arbitrary .4ML e4xpression can be determined once the shapes of the expres-

sion's terminal, or leaf, arrays are hou-n. This property is useful when evaluating

AML expressions because it implies that the space required to implement an AML

operation can be detennined in advance.

As a summary of this section, -4ML definitions of each of the arrays in Fig. 1.1 are

given below .

A single -4ML expression for an array such as the TV1 array J can be formed by

substituting the expressions for the intermediate arrays that are used to compute

J -

2.3 AML Design Goals

-4 discussion of AML's design goals appears in this section. The section also de-

scribes how a few peculiar design decisions affect and achieve the stated design

goals-

.4ML was designed with two goals in mind: query optimization capability and

extensibility. Recall from the discussion in Chapter 1 that array query optimization

is important because array queries may be time-consuming and I/O-intensive. Ex-

tensibility is desirable because array operations are diverse and domain-specific. It

seems difficult to determine a 'useful" set of array manipulations-even in a given

application domain-to be supported in an array query language.

It may be difEcult to design an extensible language that is also optimizable: a

query optimizer is lib-ely to know less about the language extensions than about the

THE

built-in features in the language. Thus. a query optirnizer is l ike- to do a better

job optimizing expressions in a language that has no estensions.

To tackle this seeming dilemma, AbII, is defined to be a framewo~k (rather

than a self-contained Zanguage) for m a y manipulations. l The framen-ork permits

user-defined functions to be applied to arrays: the intention is that - choosing

appropriate user-defhed functions, AML can be customized to different application

domains. To facilitate query optimization, the framework also puts a restriction on

the way user-defmed h c t i o n s are applied to sub-arrays of an input may. This

restriction is still expressive enough to mode1 region-based and block-based array

operations commonly found in image processing, for instance. The framework also

puts a restriction on the types of user-dehed functions themselves. In particular,

it ody supports those functions that map subarrays to subarrays.

Adoption of such a framework permits certain types of query optimizations.

In particular, since AML operators are index-based, the structural relationships

between the slabs of the output array and the slabs of the input array(s) of APuIL

operators can be exploited. That is, given a portion of an output array, it is

possible to determine those portions of the input mays that generated the output

array portion. This lzneage detemination optimization is valuable because it can

be ca.rried out on even complex AML expressions that are fomed by functional

compositions of AML operators and AML expressions. The lineage optimization

'In a language for array manipulation (or for data manipulation in generaI), one would expect
operators that generate domain elements not found in their operands. None of AML's operators
generate new data items (strictly speaking). The output array of a SUB or a MERGE contains
some or al1 of the array elements in its input array(s). (For MERGE, the default value S is either
irnplicitly or explicitly specified.) APPLY can generate new array elernents by applying a user-
defined function to its input array but the user-defined function is not part of AML.

also integrates well with the types of user-defined function applications that the

hamework supports through APPLY.

Since AML does not impose an order on the way user-defined functions are

applied to arrays, an -4ML que- optimizer may be able to exploit different orders

(such as row-major order or column-major order) to minimize memory used for

query evahation.

It is not easy to perform some types of array query optimizations in a simplified

frameworlc such as .4ML. For exampIe, reordering two user-dehed functions may

be a usefd optimization for some queries; decomposing a user-defined function into

two or more functions might help others. Some queries might benefit from replacing

two adjacent user-defined functions by their composite function. To perform such

optimizations, an optimizer needs to understand what user-defined functions do

and what some of their properties are (for example, dgebraic properties such as

commutativity and decomposability) in addition to how they are applied to arrays.

AML does not provide facilities for capturing such semantic information. Even if

such information could be captured, how to use it during query optimization is

another challenge. Nevertheless, the difficulty of optimizing the placement of user-

defined functions in an array query plan does not inhibit the AML framework from

performing lineage determination op timization and memory usage op timization.

It is argued in this thesis that even within a restrictive framework such as

AML, usefid index-based m a y operations can be defined and-more importantly-

optimized. The hamework supports array manipulations of arbitrary complexity.

On one hand, a complex m a y manipulation can be defined by abstracting it as a

single application of a user-dehed function that performs the comples a n a - ma-

nipulation. At the other extreme. a cornples-looliing array manipulation rna- be

built from structured applications of a few simple user-dehed functions. M I L

gracefdly supports both types of May manipulations. Howex-er. -\ML que- opti-

mization techniques are likely to do a much better job of optimizing queries of the

latter type.

Chapter 3

On the Expressiveness of AML

-4 query language is expressive if it can perform many useful operations in its

application domain. AML7s expressiveness in image processing can be judged by

an answer to the question: What image processing operations can AML express?

As mentioned in Section 2.3, AML can express any operation that produces an array

from an array. It can do this by using an APPLY operator that directly maps from

the input array to the output array. Such an operation will be called a singleton

APPLY.

.4ML is designed to exploit structural locality often found in array manipula-

tions: an output array element can often be computed from a small set of adjacent

elements of the input arrays. -4n AML evaluator is expected to optimize and ef-

ficiently evaluate array queries that contain structural locality. Since user-defined

functions are not interpreted by AML, e-upressions that contain singleton APPLY

operators n-ill probably not be optimized effectively. Therefore, when considering

.4ML7s expressiveness, the more interesting question is: Can a given image process-

k g operation be eqressed in AML withozlt using singleton APPLYS'?

DXch image processing operations shodd be considered in addressing this ques-

tion? In image processing, there is no single widel-accepted language: there is no

universal set of image processing operations against mhich some notion of espres-

sive Ycompleteness" might be defined. To provide some gauge of AML's ability

to e'cpress image processing operations. this chapter presents a detailed compar-

ison of AML to Image -4lgebra-an esqxessive language and a highly structured

mathematical foundation for image processing and image analysis [5l, 521. Image

-4lgebra was designed for the US. Air Force Systems Command. Image Algebra is

programming language and computer architecture independent. Lmplement ations

of Image -4lgebra in programming languages such as Fortran, Ada. Lisp. and Cf+

exist .

There are several reasons for choosing Image -4lgebra as the basis of this dis-

cussion. First, it is believed to be very expressive. Ritter and Wilson [52] have

gathered over 80 computer vision algorithms and their formulations in Image Alge-

bra. ' Second; it has served as the basis of at least one other array database system,

RasDaMan. RasDaMan's query language RasQL [4, 731 is based on a subset of the

Image Algebra operators. Third, Image Algebra, like AML, is an algebra. The fact

that the two have similar structures simplifies the cornparison tasli.

-4ML can express the following image-maaipdating operators of Image Alge-

bra without resoiting to singleton APPLYS: (1) induced operators; (2) global re-

duce operators; (3) some spatial transformations; (4) image catenation; (5) range

'It should be noted that some of these algorithms use assignrnent statements and loops in
addition to Image Algebra staternents.

restrictions and some domain restrictions: (6) image extension: and (7) image-

template product (non-recursive) . AP P LY can express the non-recursive image-

template product-Image .41gebïa7s most usefd operator. AML canno t espress

the following image-manipulating operators of Image Algebra without resorting

to singleton APPLYS: (1) arbitrary spatial transformations: (2) arbitra' domain

restrictions; and (3) recursive image-template product.

The rest of this chapter presents Image Algebra, and its relationship to .Al\rIL.

in more detail. Section 3.1 describes Image Algebra's data model. It also describes

some restrictions that are put on the Image Algebra's point sets for a meaningfd

comparison between Image -4lgebra and -4ML. Section 3.2 presents the various

types of operations found in Image Algebra, and discusses which c m be expressed

usefdly in -4ML. Section 3.3 describes the unsharp masking computation-a simple

yet useful image processing application. It then expresses the unsharp masking

computation in Image Algebra to show how Image Algebra's component operators

can be combined in an application. Finally, it also expresses the unsharp masking

computation in AML. Section 3.4 contains a summary of the comparison between

image processing operators in Image Pllgebra and AML.

3.1 Image Algebra's Data Mode1

Image -4Jgebra is a three-sorted algebra; the three sorts are point sets, value sets,

and images.

A point set is a topological space and thereby provides notions such as a distance

function, neamess of two points, and neighborhood of a point. Image Algebra

CHAPTER 3. OX THE EXPRESSIVEXESS OF -41;ML

permits arbitrary point sets: finite or infinite: hypercubical (n-hen plotted) or non-

hypercubical: dense or spazse. For image processing, rectangular discrete point

sets whose plots are limited to positive quadrants of the coordinate ases are most

pertinent -

-4 value set is a homogeneous algebra: it is a set together with a finite collection

of operations. Some commonly used value sets in image processing are the sets of

integers, real numbers, and complex numbers.

An image is a function from a point set (also cded a spatial domain) to a value

set. The notation I : X + F miIl be used to denote an image I whose point set

is X and whose value set is F. It is often convenient to thinli of an image as a

set of pixels, where each pixel is of the form (2, I(x)) in which x E .Y is the pixel

location and I(x) E F is the pixel value. Image Algebra's data mode1 permits both

flat images and nested images (cded templates).

Restrictions on Image Algebra Point Sets

AML arrays have hypercubical shapes and array elernents are indexed using non-

negative integers. On the other hond, Image Algebra permits arbitrary point sets in

its images. Therefore, for a meaningful cornparison between the image processing

operators in these two languages, it vvill be necessary to put the following restrictions

on the Image Algebra point sets. Let the notation Zt (where t 2 1) denote the set

of non-negative integers from O to t - 1, inclusive. Then the point sets are restricted

to the form:

CHAPTER 3. 01V THE EXPRESSfi'Eh7ESS OF -.lh.fL 41

where k - > 1 and ni 2 1 (O < i 5 k-1). In other words? the point set is discrete: the

point coordinates are indexed by non-negative integers: and mhen plotted. the point

sets have rectangular (hypercubical, in general) s hapes whose lower-left corners are

located at the origin.

-4 non-rectangular point set can be converted to a rectangular one by enclosing

it with a minimum-bounding rectangle and then by extending the lower-left corner

of the rectangle to the ongin. .411 the additional points thus enclosed have a special

d u e a, which is a designated d u e in a value set F. Further, for unique identifi-

cation of a values, no F-valued non-rectangular image has any pixel values equal

to a. For brevity, fiiture references to a in this chapter will just c d it the "spe-

cial valuen. Usudy, image manipulating functions operating on a-values produce

a-values. (Any exceptions to this d e will be pointed out .)

3.2 Image Algebra Operators

Image -4lgebra is a heterogeneous algebra in that some of its operators convert

operands of one sort to results of a different sort. Image Algebra operators can be

broadly divided into h o classes: (1) operators that map images to images, and (2)

ail other operators. Examples of operators in the latter dass include operators that

map points to points, point sets to point sets, values to values, value sets to value

sets, images to point sets, and images to value sets. Point sets and value sets exist

in AML only as pûrts of arrays (as shapes and domains, respectively). Therefore,

CHAPTER 3. ON THE EXTPRESSlVENESS OF AM1;

this section relates AML to ody those operators of Image -4lgebra that map images

to images.

Image Algebra exists in several versions. For examplel an earlier version in [Sl]

does not contain some of the operators that a later version [52] does. The following

description is based on the image-manipulating operators that have been described

for Image Algebra in [52].

3.2.1 Induced Operators

Induced operators are image operators that are derived from the operators on value

sets. Binary d u e set operators such as addition and multiplication extend to

binary image operators; unary value set operators-for example, applying the sine

function or the thresholding function to a value-extend to unary image operators.

These extensions are performed by applying the operators pixel-wise.

Binary induced operators can be expressed in AML as follows. Let A : X -t F

and B : X + F be two i-dimensional images with dimension numbers O, 1,2, - - - , i-
l. A generic binary operation between them can be expressed in AML as Mows.

A P P L Y (~ , M E R G E ; (~ ~ , A, B), (17 1, - - - , 1, S) , (1,i))

APPLY is a unary operator and therefore, it is necessary to combine A and B using

a MERGE. f implements the binary operation between two values; its application

on the combined image produces the result m a y . Br [il is 2. Equation 3.1 can

also express induced operations between set-dued images and between images

and constants. (Constants can be implemented as AML arrays with the same value

everywhere.)

A generic u n q - induced Mage operation can be expressed in ,ji3IL as follows.

(f performs the appropriate u n q operation.)

3.2.2 Global Reduce Operators

-4 global reduce operator is a unary operator that performs an aggregation-for

example, summation or maximum-hding-on the values in its input image. It can

be described in AML as follows. (f performs the appropriate aggregation ignoring

the a values.)

APPLY(f, A, A, (1,1)) (3-3)

A globd reduce operator produces a value, whereas the above A M L expression

produces a one-element array.

3 -2.3 Spatial Transformations

Image Algebra's spatial based image transformations-for example, image transpo-

sition and image shift-change point sets of images. In its most general form, a

spatial transformation applies a function f to each point in an image's point set.

To capture such transformations in their full generality, a singleton APPLY operator

'Equation 3.3 uses a singleton APPLY operator. A global reduce operation is inherently of
the type of operations whose single applications require access to al1 of the array elements in
their operands. Therefore, we have made an exception to include it in the list of Image Algebra
operators that AMI, can efficiently express.

is needed. If g is the user-defined function associated mith such an APPLY opera-

torl g7s domain shape spans the entire input image -4 and g's range shape matches

the shape of the spatially transformed output image B (rvhose lower-left corner is

located at the origin: of course). The function g performs the necessaq- spatial

transformation. For some spatial transformations such as image shift. however,

AML does not need to resort to such singleton APPLY functions. The following

AML expression shifts an image by an amount k on the X-axis (dimension 1). The

mer element <r is the special value and NULL is a null a r r -

To shift a d-dimensional image, one needs at most d MERGE operaton-each one

shifting the image in one of the dimensions using the technique indicated in Equa-

tion 3.4.

3.2.4 Image Catenation

Let A : + F and B : Y -t F be two d-dimensional images such that X C Z

and Y C 2. The image catenation operation juxtaposes A and B in dimension i

(O 5 i < d). (In all other dimensions j, j # i, i [j] = Bk].) MERGE is weU-suited

to express image catenation, as the following expression shows.

CHAPTER 3. ON THE EXPRESSn/rENESS OF AIiTL

3.2.5 Image Restriction

Image Algebra dows tmo types of restrictions of images whereby a new image is

formed by selecting a subset of elements fiom the point set or the d u e set of an

original image. The point set is restricted in domain restriction, whereas the value

set is restricted in range restriction. A restriction on one of the two sets leads to

an irnplicit restriction on the other.

Suppose that 1 : X -t F is an image. Domain restriction is specified by a subset

Z of X; the range restriction is specified by a subset S of F. Image -4lgebra defines

no general syntax for specifying the sets Z and S. However, sjntsv exists for special

types of range restrictions. For example, thesholding is specified by the threshold

value k E P. Thresholding can also be defhed for two images A and B with the

same point set. A range restricted version of A c m be formed by comparing the

corresponding pixel values in -4 and B and by keeping the -4-values that satis6 the

cornparison. (4 x) < B (x) and A (x) # B (x) are two example comparisons.)

AML can express those domain restrictions where entire slabs in a dimension

are either kept or discarded. Suppose that the AML pattern P describes the i-

slabs that are kept or discarded. It is tempting to use SUB to express such domâin

restrictions but SUB combines the selected array shbs. Nevertheless, if such selected

slabs are appropriately spread apart-as per the folloiving AML expression-then

an effect same as that of a domain restriction is achieved.

Notice that the empty spaces created by the domain restriction are filled with the

special value a. Simultaneous domain restrictions in more than one dimensions can

be achieved likewise using a pair of SUB and MERGE operators for every dimension

restticted.

Range restriction can be achieved using an APPLY as foUonvs.

f implements the restriction condition. Pixel d u e s satisfying the restriction con-

dition are copied to the output unchanged by f; those failing the condition are

converted to the special value a by f.

To express those range restrictions involving two d-dimensional images -4 : X +

F and B : X + F, the follotving AML expression can be used.

APPLY(~ , MERGE&O, A, B) , (l , ~ , - - - 2), (1,l)) (3.5)

A and B are fkst cornbined in dimension d. Dj[dj' is 2 and f compares a pair of

pixel values (a, b) with a coming fIom A and b from B. If the pair (a, b) satisfies

the range-restriction condition, then f (a, b) = a; otherwise, f (a, b) = a. For the

pairs of the form (a, a) , f (a, a) = a.

3.2.6 Image Extension

The notion of image extension is symmetric to that of image restriction. Image

extension is used to embed images into larger images. Suppose that A : X + F
and B : Y + F are two d-dimensional images such that X E Z and Y C 2. An

image A Image B Extension of A to B

Figure 3.1: Image extension in Image Algebra.

image that is the extension of A to B has pixel d u e s coming from d for points in

X and has pixel values coming from B for points in Y - X. A simple version of

the image extension operation is depicted in Fig. 3.1.

The AML query for an image extension operation is

in which a is the special value and fir[4 is 2. f outputs the ---value if the A-value

is not equal to a; otherwise, it outputs the B-value.

3.2.7 Image-template Product

Image-template product is the rnost important operation in Image Algebra. It

models a common image processing operation called convolution. In convolution, a

s m d subarray (typicdy 3 x 3 , 4 x 4, or 5 x 5) called the kernel slides to d l possible

positions within a larger array. For each possible position of the kernel within

the larger array, kernel elements and array elements that fall within the kernel

participate in some computation. The results of such computations are gathered

to form the output array.

A template is an image whose pixel values are images. Templates wiU be denoted

CHAPTER 3- OX THE EXPRESSllrEfi-ESS OF

Figure 3.2: (a) 4 template; (b) an image; and (c) the result of the image-template
product .

by lower-case boldface letters such as t. Fomdy, a template is dehed as t : Y +-
(-Y -t F). Thus, the value of t at a point y E Y-denoted by t,-is an F-valued

image. These F-values are c d e d the template weighk For a point x E -Y, the

template pixel t,'s weight at x is denoted by t,(x). Thus, to reach a template

weight, two indices are necessary: y indexes a template pixel and x indexes a pixel

in the image t,. The support of a template pixel t,-denoted by S(t,)-is defined

to be the set of points x E X such that t,(x) is non-zero. (It is assumed that the

value set F is an algebraic structure with a "zeron element.)

Fig. 3.2(a) illustrates the idea of templates. The template t in Fig. 3.2(a) is

defined on 3 points: (0,0), (0,1), and (1,O). Each point in the template contains

an image whose point set contains 4 points: (O) (O) (O) d (1 1 As an

example of template indexing, notice that the template weight at t ((O, 1)) is 9.

Suppose that t : Y + (X + F) is a template and 1 : X + F is an image.

An image-template product between 1 and t produces an image G of the form

G : Y -+ F. The value of G at a point y E Y-denoted

follows.

G(Y) = ~ X E X (W O t u (+

by G(y)-is determined as

(3.10)

CHAPTER 3. ON THE E.PRESSA~'EAiESS OF -4ML

where I (x) are the image d u e s . ty(x) are the template weights. 0 is a binary op-

eration between I (x) and t,(x) and ï is a global reduction (aggregation) operation.

There is a one-to-one matching between the image values I (x) and the template

weights t,(x) because they both are defined on the same point set S. The 0 op-

eration combines these IXl pairs of matching values to form IXI values. The global

reduction operation then aggregates these [-CI d u e s and produces a single value.

This process is repeated for each point y E Y to generate the result image G with

I?-1 points.

A specific instance of Equation 3.10 is

in which the image values and the template weights are iîrst multiplied and then

the results are sdded. Thus, Equation 3.11 expresses a weighted sum operation.

In Fig. 3.2(b), an image with 4 points is shcwn. The point set of this image

is identical to the point sets of the images that are present as ternplate d u e s in

Fig. 3.2(a). The image-template product-defined as per Equation 3-11-produces

as image with 3 elements as shown in Fig. 3.2(c).

The following metaphor can be used to describe an image-template product.

(The metaphor also suggests how an image-template product can be expressed in

AML.) -4n image occupies all possible positions within a template. For each posi-

tion of the image within the template, the image values and the template weights

participate in a type of operation defhed by Equation 3.10 and a result value is

generated. The result image is formed by gathering such values.

-4n image-template product between an image I and a ternplate t can be es-

pressed in AML as follows- Suppose that the point sets of I and t obey the re-

strictions mentioned in Section 3.1 and that t is available as an un-nested image.

Suppose that an APPLY function f is dehed with Bt = and = (1.1). The

pixel values in 1 are hard-coded into f. The image-template product can be es-

pressed as:

TILEDAPPLY(~, t, f', (1,l)). (3-12)

f is applied to t in a tiled fashion. During each application of f, 17s pixel values and

the template weights participate in the computation of Equation 3.10 and produce

a single result value. (The result of combining hvo a values using 0 is an a value;

I' ignores cw values when aggregating.)

Translation Invariant Templates

In digital image processing, a special type of template c d e d a translation invariant

template is quite usefiil. A translation invariant template t is dehed by t : X +
(X -+ F). Such a template7s point set is identical to the points sets of the images

that it contains as d u e s . Futther, for each triple x, y, z E X yith y + z E X and

x + z E -Y7 t, (x) = tY+, (x + r) . In other words, in a translation invariant template,

the images that are present as template values are merely spatial translations of

each other. A template that is not translation invariant is called a variant template.

An example of a variant template was shown in Fig. 3.2 (a).

A translation inwiant template with finite support has the nice property that

it can be drawn concisely with a picture. For example, consider the picture of such

CHAPTER 3. OX THE EXTPRSSn/Efi-ESS

1 ; ;
x xtl

Figure 3.3: (a) The picture of a translation invariant template n-ith finite s i ip
port; (b) the template weights; (c) an image; and (d) the result of image-template
product .

a template-defined on the point set S2-shomn in Fig. 3.3(a). In that picture.

only 4 template weights are non-zero. Their spatial relationships to the reference

point (x, y)-cded the target point-are as depicted in Fig. 3.3(a). Suppose that

this template paxticipates in an image-template . product with the image shown

in Fig. 3.3(c). The image is also defined on the point set 2* but only 4 image

values are non-zero. When the image-template product , defined by Equation 3.11,

is calculated between this image and the template in Fig. 3.3(a), only some of

the template weights-shown in Fig. 3.3(b)-yield non-zero results. The result of

the image-template product is the image shown in Fig. 3.3(d). (Once again, only

non-zero pixel values are shown.)

The following metaphor cas be used to explain an image-template product when

the template is translation invariant with finite support and the image and the

template are defined on the same point set. The target point in the "picturen of

such a template occupies ail possible positions in the image. For each position of

the target point, image d u e s and template weights participate in the operation

defined by Equation 3.10 and a result value is generated. The result image is formed

by gathering such values.

The above metaphor suggests how an image-template product c m be eqressed

in AM L using APPLY when templates are translation invariant xit h h i t e support.

The restrictions on the point sets mentioned in Section 3.1 apply. Suppose that

the template is enclosed by a minimum-bounding rectangle (hypercube, in general)

wîth shape 6 and that an APPLY filliction f is defined mhose domain shape is fi
and whose range shape is (1,l). The weights in the template's picture are built

into f. (Any undefined values are assumed to be a.) An application of f performs

the computation defined by Equation 3.10 between the image values passed to f

ôs a.rguments and the template weights built into f. f knows how to handle the a

values: the 0 operation between two a values produces an a d u e ; the ï operation

ignores any a values when aggregating. Thus, the AML expression

is equivalent to Image Algebra7s image-template product .

Due to APPLY'S semantics, Equation 3.13 produces most of the resdt array,

but not al of it. In particulas, the boundary conditions are not handled if ID1 >

1 because APPLY'S domain shape does not slide outside the boundary of 1. To

handle boundary conditions properfy, the image 1 should be expanded using a-

values before using Equation 3.13. Dimension i of I is handled os follows. Suppose

that in dimension i, there are ri pixels to the "rightn of the target pixel in D and

there are 1; pixels to the "leftn of the target pixel in D. The image I is expanded-

using MERGE operators-by adding ri i-slabs to the right of I and 1; i-slabs to

the left of I. After all the dimensions of I are processed similarly, I is ready to

CH-4PT.R 3. ON THE EA-PRESSïbExESS OF -4ML

participate in the computation of Equation 3.13.

.4s a concrete example of the above-mentioned eqansion procedure. consider

the imagetemplate product depicted in Fig. 3.3. The non-zero d u e s of the image

shown in Fig. 3.3(c) form the shape of (2,2). That image-cd it I-gets espanded

as per the following AML expression.

If = U E R G E ~ (~ ~ ~ , M E R G E ~ (~ ~ O , I , NULL, a), NULL, a)

More General Forms of Templates

In Image Ngebra, the basic notion of a template-as desaibed thus far in this

chapter-is extended in two directions to yield parameterized templates and recur-

sive templates.

In a parameterized template, the weights are functions of a parameter rather

than constants. Thus, a parameterized template defines a family of templates,

rather than just one template. Individual templates are instantiated by choosing

a parameter value. Parameterized templates permit template weights to be varied

in unison. This functionality is usefd in the following scenario. Suppose that in a

discrete twedimensional convolution, the kernel shape is 3 x 3. The weight of the

kemel's center pixel is p. The weights of the center pixel's north, east, south, and

west neighbors âre also equal to p. The weights of the center pixel's north-east,

south-east, south-west, and north-west neighbors are the same and are equal to

2 - p. In this scenario, it is sensible to make the template weights a parameter of

p if the discrete 2-dimensional convolution is to be performed using different such

kernels .

CH-4PTER 3- 03 THE EXPRESSTVENESS OF AhiL 54

A'VIL can express image-template products defined on parameterized templates

when such templates are instantiated. -4 shortcoming of such AML espressions is

that for each template instance, a separate APPLY h c t i o n is needed.

Recursive templates are defmed because sometimes pixels of an image need to

be processed in certain order-for example, fom-ard raster scan order (row-major

order) or serpentine scan order. In recursive templates? the points in the template

point set Y are partially ordered according to a binary relation i. With each

template pixel d u e , two images are associated: a usual (non-recursive) image I of

the form I : X -t F, and a recursive image I' of the form I' : Y + F. (The details

can be found in [52].)

When an image-template product is defined using a recursive template, the

computation of Equation 3.10 can be perfonned for a pixel y only aftet ail its

predecessors (ordered by 4) have been computed. Thus, recursive templates enforce

an order in which the result pixels are generated and therefore-unlike a non-

recursive imagetemplate product-a recursive image-template product canno t be

computed in a globally paralle1 foshion. To express a recursive image-template

product in ,4ML, a singleton APPLY operator is needed.

Image-template Product Versus APPLY

-4 comparison between image-ternplate product and APPLY is interesting. Image-

template product offers a more generd way to handle boundary conditions but

restricts individual function applications to the form given in E.quation 3.10 so

that a function application can only generate a scalar value, not an array. APPLY

functions not only map subarrays to subarrays, but also have no other restrictions

placed on them.

In APPLY, a domain box is completely specified by just its shape n-hich means

that kernel weights need to be hard-coded into the body of a user-dehed function:

if weights change, a new user-defined function is needed. In contrast. in image-

template product, the function body remains unchanged-just the template weights

change,

Image-template product becomes a more useful and powerful operator due to

parameterized templates and recusive templates. APPLY can handle the templates

in the former class (albeit? not as elegantly as Image Algebra does) without using

singleton APPLY operators but can handle templates in the latter class ody by

using singleton AFP LY operators.

3.3 The Unsharp Masking Computation

Section 3.2 described those Image Algebra operators that AML can express without

uslng singleton APPLYS. It also translated such Image Algebra operators to .4ML

expressions. To illustrate how various Image Algebra operations are combined and

used in practice, this section describes a sample image processing application-the

unsharp musking operation [52, page 631-and shows how it can be expressed in

Image Algebra and AML.

The unsharp masking operation blends an image's high-frequency components

and low-frequency components to produce an enhanced image. The blending may

sharpen or blur the source image depending on the proportion of each component

in the ehanced image.

Suppose that -4 is an n x n source image. The lom--frequency component of the

source image is formed by replacing each pixel value with a n average of that value

and the values of the S neighboring pixels. (Boundary pixels have fewer than S

neighbors.) Suppose that the image B contains such a low-frequency component of

the image A. The value of the high-frequency component image C at a point (i, j)

is defined by

C[i, j] = A[i, j] - B[i, j]. (3.15)

The unsharp masking operation produces an image D dehed by

7 is a red number. A y value between O and 1 results in a smoothing of the source

image. A y value greater than 1 emphasizes the high-bequency components of

the source image, which s h q e n s detail. An illustration of the unsharp masking

operation on a mammogram image for several values of y appears in [52, page 641.

The unsharp masking operationcan be expressed in Image Algebra as foilows.

t is a template whose picture (which has the 3 x 3 shape) contains 9 elements, all

of which are 1. The center pixel in t 's picture is the target point. The images

CHAPTER 3. 0X T H E EXPRESSIVEhÏESS OF --lb,fL

a, b, c, and d correspond to the images nith the same names in Equation 3.15 and

Equation 3.16. The Image Algebra expression in Equatio~ 3-17 performs an image-

template product-indicated by a @ symbol-between a and t. The result image

of the image-template product then participates in a unary induced operation-

whereby the pixel values are divided by 9-that produces the low-f'requency com-

ponent image b. The Image Algebra expressions in Equation 3.1s and Equation 3.19

are self-explanatory both of them use binasy induced operations. Equation 3.19

uses a unaq induced operation also.

The u n s h q masking operation can be expressed in AML as follows. To handle

the boundary conditions properly-as explained in Section 3.2.7-the image A is

first expanded by adding two rom and two columns to it. Suppose that two all-zero

images Z o and Z1, with shapes of (2, n) and (n + 2,2), respectively, are available.

The expanded image A' has the shape (n + 2, n + 2) and is defined by

X = M E R G E ~ (~ ~ " ~ , Z l , M E R G E O (~ ~ " ~ , 20, A)) (3.20)

Suppose that the user-defined function avg9 , whkh cornputes the average of 9

values, is available. The low-frequency component image B can be defined by:

B = APPLY(~V@, A', (3,3), (1,l))

The image C is defined by:

C = ~ ~ ~ ~ ~ (r n i n u s , M E R G E & ~ , A, B), (1,1,2), (1,l))

CHAPTER 3. ON THE EXPRESSIkE&TESS OF ,+ML

In Equation 3.22, the APPLY h c t i o n minus subtracts a B-pixel d u e from from

the matching ,4-pixel d u e . Suppose that two APPLY functions timesy (which

multiplies a pixel value by y) and add (which adds two pixel values) are available.

The resuit image D can then be formed in two steps as follows.

Dr = ~ ~ ~ ~ ~ (t i m e s y , C, (1, l), (1,l))

D = A P P L Y (~ ~ ~ , MERGE&O, D', B), (1,1,S). (1,l))

The AML expressions in Equations 3.21, 3.22' and 3.24 correspond to the Image

Algebra expressions in Equations 3.17, 3.18, and 3-19, respectively.

3.4 Cornparison Summary

Image Algebra has a rich data model that permits image definitions on arbitrary

point sets. -4 wide range of operations have been defined on point sets, value sets,

and images. Image AJgebra has been found to be a usefd language for describing

cornputer vision dgorithms [52].

Their somewhat different design goals may explain some of the differences be-

tween Image Algebra and AML. In case of Image Algebra, the design goals seem to

have b een expr essiveness and generality. Accordingly, t here are many operators in

Image Algebra. The set-theoretic treatment of points and values permits powerful

and general operator definitions. However, optimizability is not of p r i m q concern.

Although implementations of Image Algebra exist, its primary goal is to serve as

CHAPTER 3. OhT THE EXPRESSD'EhiESS OF AkIL

a common descriptive language for image processing operations. For AML. the

design goals were optimizability and extensibility with an emphasis on the former

goal. It is accurate to Say that we included ody those operators in AML that we

knew we codd optimize. Other operations must be implemented using singleton

APPLYS.

3 ~ h i s is not to suggest that Image ALgebra expressions are not optimizable. Optimizations
that decompose a translation invariant template with finite support into two or more pieces and
recombine such pieces exist in Image Algebra.

Chapter 4

AML Query Processing

-4 user poses an AML query to ArrayDB and gets back a result array. AU of the

activities that occw during this interaction are called query processing. Section 4.1

gives an overview of AML query processing, which occurs at two levels: logicd

and physical. Logical que. processing-described in Section 4.2 and Section 4.3-

transforms an AML query E made up of SUB, MERGE, and APPLY operators to

an equivalent AML query Et which is usually more efficient to evaluate than E is.

Physical query processing-described in Section 4.4 and Section 4.5-trassforms

Et to a plan, which is a recipe for the ArrayDB7s query evaluator describing how

to evaluate the query Section 4.6 describes how the .4rroyDB7s query evaluator

executes such a plan. -4ML query processing was originally described in [42].

AM.L @ery E

Lu@cili
Q=Y
Processing

E in canonicai form

Phys id Genention

L 1 E in iteram form with annotations

ArrayDB's Query Evaluator

Figure 4.1: Overview of AML query processing.

4.1 AML Query Processing Overview

AML offers several opportunities for optimization. First, the structural regularity

of the AML operators makes it relatively easy to trace data lineage through an

AML expression. This d o w s AML expressions to be remitten to avoid the need

to calculate or retrieve values that are not required. Second, the AML operators do

not speciS the order in which the cells of their output arrays are generated. Order

can have a significant impact on the memory cost of a plan. Choosing a good order

can make the clifference between an evaluation plan that c m execute entirely in

memory and one that cannot.

As the block diagram of Fig. 4.1 shows, AML query processing occurs in four

phases: preprocessing, logical rewriting, plan generation, and plan refinement. Each

phase manipulates some form of an A-ML query. The first two phases of AML

query processing are called logical query processing because they manipulate AML

expressions made up of Zogical operators: SUB, MERGE, and APPLY. Phases 3

and 4 of -4ML query processing perform physical qvery processing because they

manipulate query expressions containing physical operators. Physical operators are

defined by Array DB to implement the logical operat ors.

During preprocessing, an AML query E is h s t tokenized by a scanner and then

converted into a parse tree by a paner. The preprocessing step consults system

catalogs that store information about arrays, user-defined functions, and data types.

Catalog information is used to convert non-constant patterns and shapes in E

into constants; to determine the types and shapes of different arrays (le& arrays.

intermediate arrays, and the result array) in the query; and to convert leaf arrays to

special types of APPLY operators whose user-defined fiinctions read array data from

disk. The preprocessing step dso converts E into merge-balanced form, formdy

defbed in Section 2.2.2. Merge-balancing is necessary because some of the logical

rewrite rules-applied to E in the second phase of query processing-hold only

when E is in merge-balanced form.

Logical rewriting converts a merge-balanced .4ML query E into an equivalent

form t hat is more efficient to evaluate. A variety of rewrites are performed, but the

primary goal of this phase is to push the SUB operations d o m to reduce unnecessary

data retrieval and processing. Logical rewriting converts E to a canonical form.

Evaluation of an expression in canonical form reduces the amount of data read

from Ssk, saving costly disk 110; it also reduces the number of applications of

user-defined functions, saving CPU time.

The plan generation phase converts a logical AML expression into a plan-a

directed graph of physical operators, where arcs represent data flow. Since the

-4ML optimizer currently does not detect common subespressions, the plans it

produces are always trees.

Each plan operator (except Zeaf operators) consumes one or more input arrays

and produces a single output may. Plan operators are iterators that produce and

consume arrays a piece at a time. Iterators Save b&er space by reusing the memory

used to store the array pieces. Every operator expects its inputs to consist of array

chunks of a particdar shape and produces array c h d s of a particular shape at

its output. Each operator produces its output c h d s in a particdar order (e.g.,

row-major or column-major) and expects input c h d s to appear in a particular

order. If two operators are connected by an arc in a plan, the producer's output

chunk shape and ch& order must match the input chu& shape and ch& order

expected by the consumer.

The plan generation phase produces plans in which chunk orders of the phys-

ical operators are left unspecified. The most important task of plan rehement

is to minimize the amount of memory required for plan evaluation by determin-

ing the order-for example, row-major order and column-major order-in which

each plan operator will geneate its output chunks. The order assignment to the

plan operators-the "annotations" mentioned in Fig. 4 .14s done using a dynamic

programming algorithm, which ensures that the memory requirement of a plan is

minimized.

There are numerous other possible optimizations that ArrayDB's AMI; opti-

mizer curtently does not perform. It does not select from among multiple access

paths for stored arrays, and it does not detect and exploit common AML subex-

GHAPTER 4. -&!ML Q UERE' PROCESSING

pressions. Çimilar op timizations are perforrned by relational op t imizers, and i t m a -

not be too difficult to adapt relational approaches to the AML array query opti-

mizer. The AML optimizer performs no optimizations that involve reordering or

combining AP P LY opeations. Doing so would require that the op timizer unders t and

something about the user-defined functions being applied. This issue is addressed

in Section 8.2.i as future work. Finally, the optimizer also does not attempt to par-

allelize query evaluation. Because AML plan operators are iterators, asynchronous

pipelining could be introduced through the use of a n "exchange" operator as was

done in Volcano [21]. 1U1 of the AML operators themselves are also well-suited to

data-pardel impiementation. Fragmentation of arrays can be accomplished easily

using the SUB operator. Pardel evaluation of AMVIL expressions is addressed in

Section 8.2.3 as future work.

ArrayDB7s AML query optimizer is by no means the last word in array query

op timization. Nevertheless, it does demonstrate that some underst anding of array

operations c m substantially improve the efficiency of useM array queries. It also

shows that AML, despite its simplicity, captures enough about array queries to

permit this.

4.2 Preprocessing

A scanner begins the preprocessing phase by converting an AML query E into a

sequence of tolcens. A parser then converts the sequence-of-tokens representation

of E into a parse tree T in which there is an interna1 node for each AML operator

and a leaf for each instance of a leaf array. In addition to the Sus, MERGE, and

APPLY operators, an AML query contains references to .maYs and to user-defined

functions. In addition, AML arrays have types (reflecting their domains) and thus

an AML query also implicitly refers to data types. Information about these three

entities is stored in three catalogs: an anay catalog, a type catalog. and a function

catalog. The ûnay catalog stores an array's name, its shape, the type of the array

elements, and the tile shape used to store the array on disk. ' The type cata-

log records a l l amay element types understood by ArrayDB. The function catalog

records information about user-defined iunctions used by the APPLY operator.

During preprocessing, the three catdogs are consulted to convert any non-

constant patterns and shapes in the query to constants and to infer the types

and shapes of the non-leaf arrays throughout the tree T. The type and shape in-

ference happens from the leaves of T to the root of T and is possible because AML

is sta.ticdy typed. ArrayDB treats AML leaf arrays as special types of APPLY op-

erators and during preprocessing, this treatment is made explicit by tuming leaves

into leaf APPLY operators. The user-defined function f of a leaf APPLY operator A

reads data from disk. f's domain and range shapes are identical to the tile shape

used to store A on disk. Such a function f is always applied to A in a tiled fashion.

(TILEDAPPLY is defined in Equation 2.1.)

'In the current implementation of ArrayDB, arrays are stored on disk using regular tiling
(described in Section 7.1.2). The tiles are stored on disk using UNIX flat files. Within a tile, the
elements are stored in row-major order. The tiles themselves are also stored in row-major order.

CHAPTER 4. -4ML Q UERY PROCESSING

Figure 4.2: Illustration of merge balancing.

Merge Balancing

After type and shape infercnce, merge balancing occurs. Merge balancing con-

verts an AML query into the merge-balanced fonn that was fonnally defined in

Section 2.2.2. Merge bdancing is necessary because in certain cases, some of the

AML logical rewrite d e s hold only for merge-bdanced AML queries.

ArrayDB performs merge balancing by adding b-dued constant arrays (called

DEFAULT arrays in ArrayDB) to the query. For example, the bottom unbalmced

MERGE in Fig. 2.3 is balanced as illustrated in Fig. 4.2.

Merge balancing adds MERGE operators and leaf arrays to an AML expression

E. The following lemma gives an upper bound on the number of additional nodes

that merge balancing can add to E.

2ArrayDB handles a DEFAULT leaf array differently from a non-DEFAULT leaf array. A
DEFAULT array requires constant amount of rnemory for storage-just enough to store one copy
of the 6-element-irrespective of the array's size,

Lemma 4.2.1 S u p ~ o s e that the maximum dimensionality of any array in an n-

operator AML exp~ession E is d. Merge balancing m a y add up t o (d - n) additional

MERGE operators and up to (d - n) additional k a f operators to E.

Proof. Let us f ist establish the upper bound on the number of additional MERCE

operators. If a MERGE cperator in E combines two d-dimensional arrays in dimen-

sion i, it may be necessary to expand the two argument arrays in a l l d dimensions.

In the ex3reme case, the array lengths may mismatch in a l l the dimensions but

dunension i, and expansion in dimension i occurs when, in dimension i, one May

runs out of slabs before the other does. One MERGE operator is needed pet di-

mension that gets expanded, so in the worst case, d additional MERGE operators

get added to the AML expression. E contains n nodes and in the worst case, E

may contain up to n unbalanced MERGE nodes. Therefore? in the worst case, merge

balancing may add (d - n) MERGE operators to E.

Each MERCE operator that gets added to E during merge balancing also causes

a leaf a.rray to be added to E. Therefore, merge balancing rnay add up to (d - n)

. leaf arrays to 'E-in the worst case. O

4.3 Logical Rewriting

During logical rewriting, an AML query is systematicdy transformed-using AML

logical rewrite des-into an equivalent form that is expected to be more efficient

to evaluate.

Rule Number
1
2
3

1 A I

1 II 1 pulls SUB out of APPLY 1 Theorem 2.14

Rule Description
SUB with '0' pattern

L

6
7
8
9
10

Figure 4.3: Summary of the AML logical rewrite d e s used by ArrayDB.

Theorem

Theorem 2-2
SUB with '1' pattern
MERGE wlth 'O' pattern

4.3.1 AML Logical Rewrite Rules

Theorem 2-3
Theorem 2-6

A

combines two SUB~'S

reorders SUB; and SUBj

pushes SUB; through MERGE;
pushes SUB; through MERGEj
~ushes SUB into APPLY

Chapter 2 described various rewrite d e s for AML expressions. The logical rewrit-

Theorem 2 -7 4

Theorem 2.4
Theorem 2.5
Theorem 2.10
Theorem 2.11
Theorem 2.13

ing phase uses 11 of those rewrite d e s to transform AML expressions into equiva-

MERGE with '1' pattern

lent forms. Fig. 4.3 summarizes the 11 rules. For convenience, the 11 d e s will be

5

referred to as Rule 1 through Rule 11. Theorem 2.14 (Rule 11) can only be applied

APPLY with a 'O7 ~ a t t e r n 1 Theorem 2.12

to a non-le& APPLY. As already mentioned in Chapter 2, proofs of the nontrivial

d e s (Rules 6, 8, 10, and 11) appear in Appendix A.

An application of a rewrite d e replaces the AML expression on the left with

the AML expression on the right. For the nontrivial d e s , the theorem statements

define the patterns on the right in terms of the patterns on the left. When imple-

menting a nontrivial rewrite rule, a result pattern should be generated up to the

length of the m a y on which the pattern operates. For example, if a SU%; operator's

input array is A, then A[i] bits of the SUB~'S pattern should be generated.

Rules 7 through 11 are used to push SUB operators as far d o m as possible in

AML operator trees using an algorithm described in Section 4.3.3. Rule 6 rnakes the

SUB pushdomn more efficient, so that it is not necessaq to push dowm the two SUB

operators separatel. Rules 1 through 5 simpw- trivial AML expressions. Although

a user is unlikely to mi te trivial AML expressions such as M E R G E ~ (O ~ -4. B). they

may be generated during rewrites. For example, consider a merge-balanced AML

expression

E = ~ ~ ~ ~ (1 0 0 0 1 0 , MERGE;(O~OO, -4, B)). (4.1)

Using Rule 8 (Theorem 2.10), the expression for E can be rewritten to

E = MERGE~(O, S U B ~ (O , A), SUB~(~OO~~OO~O, B)).

Rule 3 (Theorem 2.6) simplifies Equation 4.2 to ~ ~ ~ ~ (1 0 0 1 1 0 0 1 0 , B).

This example also illustrates the power of AML rewrite rules. From the original

expression in Equation 4.1, it is not immediately apparent that the whole of array

A gets subsampled out but the equivalent expression makes this obvious.

4.3.2 Rewrite Rules and Merge Balancing

The following two examples illustrate that some of the AML logical rewrite rules

may not hold when the expressions on which they operate are not merge-balanced.

Example 1

This example illustrates that Theorem 2.11 may not hold if the AML espression is

not in merge-balanced form. Consider the AML expression

+ -
with -4 = (3,3) and B = (2,2). It is easy to verify that Ë = (1,s). Notice that the

expression for E is not merge-balanced. If E is rewritten using Theorem 2.11, the

following expression results:

The shape of E' is (1,4), which is incorrect.

If merge-balancing is done on E before applying Theorem 2.11, the problem dis-

appears. The merge-balanced form of E, &,,, is given in the following espression.

(y is a DEFAULT array with 3 = (1,2).)

Emb = ~ ~ ~ ~ (0 0 1 1 , M E R G E ~ (O ~ ~ I O , -4, M E R G E ~ (I I ~ , B, Y))) (4.5)

Theorem 2.11, when applied to Gb, yields:

ELb = M ~ ~ ~ ~ i (0 1 1 1 0 , S U B ~ [O O ~ ~ , A), stJ~o(0011, M E R G E O (~ ~ ~ , B, y))) (4.6)

It can be verified that the arrays Emb and Emb are identical.

CK4PTER 4. -4ML Q U-ERY PRO CESSIA7G

Example 2

This example austrates that Theorem 2.10 may not hold if the -.bIL expression is

not in merge-balanced form. Consider the AML expression

-.
with A = (1 ; 2) and B = (2,2). P has the shape (3,2). The expression for F is not

merge-balitnced. Theorem 2.10, when applied to the expression for F , produces:

Ff has the shape (2,2) which is incorrect.

Again, the problem disappears if F is put in merge-balanced form before apply-

ing Theorem 2.10. If Y is a DEFAULT array with y = (1,2), the merge-balanced

form of F is given by:

Theorem 2.10, when applied to Fmb, yieldr:

Fmb = MERGE@~, SUB&, MERGEO(~~, Al y)), s u ~ ~ (1 0 , B))

It can be verified that the arrays Fmb and Fmb are identical.

4.3 -3 Logicd Rewrite Algorit hm

The logical rewrite d e s are systematically applied to an AML es~ression as per the

logical rewrite algorithm (LR4). The pseudo-code of the LRA appears in Fig. 4.4.

Suppose that the maximum dimensionality of the arrays in a merge-bdanced AhIL

expression E is dl with the dimension numbers ranging fiom O to (d - 1) . Suppose

that E is represented as a n operator tree T, with edges that indicate data flom, and

that T contains n nodes. The apply-reuinte procedure is called-with -Y pointing

to the current root node of T-once for each of the d dimensions. For simplicity's

sake, the calling order is set to be O, 1, - - - , (d - 1): although any other dimension

permutation would also be fine. In each dimension i, the L E 4 pushes the SUBi

nodes in T as far dom as possible. To achieve this goal of SUB-pushdonn, the

LRA traverses T in an order given by the apply-reunite procedure in Fig. 4.4 and

at each node tries to apply one of the rewrite d e s appearing in Section 4.3.1. When

a rewrite rule is applicable at a node X in T, the rule is applied and T is modified.

Due to the nature of the .4ML rewrite d e s , such modifications are local and hence

can be done in time constant in the number of nodes in T. After modifications, the

rewrite continues as indicated in Fig. 4-4.

Tirrie CompIexity of the LRA

Suppose that the LRA begins with a t-node tree T . Determihg the time com-

plexity of the LRA is nontrivial because t may change during logical rewrites. In

particular, t may increase as the LRA proceeds. The following theorem establishes

an irpper bound on t.

logicalrewrite(AML operator tree 7")
for i t O t o d - 1 // for each of the d dimensions

applyremite(root node of T, i)

applyrewrit e(node pointer ,ri, dimension i)
if (X is leaf node)

return // No rewrite rule is ever applicable at a leaf node.
if (a rewrite d e is applicable in dimension i at .rC)
// X refers to the root node of the AML expression on the left side of the
// rewrite d e . If more than one d e is applicable at X, then choose any
// one for application.

Figure 4.1: Pseudo-code of the logical rewrite algorithm.

Apply the rewrite rule a t X, m&g local modifications to the AML tree.
The rewrite coctinues at the nodes Yi and (possibly) Y; that are
determined as follows. In the following table, e refers to the -4ML
expression on the right side of the rewrite rule that fired.

Yz
-

-

second SUB; node in e

Rule Fired

else // no rewrite d e is applicable in dimension i at X
Let Yi and (possibly) Yz be the children of X.

applyxewrite(k;, i)
if (there is a node Y2)

Yi
1 , 2 , 3 , 4 , 5 , 6 , 8 , 1 0
7, 11
9

root node of e
SUB; node in e

first SUB; node in e

Theorem 4.1 Suppose that the LRA begins with a t-node AML tree T in vrhich

the rnazirnurn dimensionality of the arrays is d. During the ezec~tion of the LRA,

the number of nodrs in T i s at most ((d + 1) . t) .

Proof. The number of nodes in T increases by 1 when one of the d e s S. 9, or 11

gets applied. For all the other d e applications, the number of nodes in T either

remains the same or decreases.

Let us calculate the number of nodes niles S, 9, and 11 together can add to T.

Suppose that before the LE4 begins, the numbers of WB, MERGE, APPLY. and leaf

nodes in T are s, rn, a, and 1, respectively. Since s + m + a + Z = t , the number of

nodes of each type in T is at most t.

Consider the pushdown of the SU B; nodes that the L X 4 performs when rewriting

T in dimension i (O 5 i < d). Each application of one of the d e s 8, 9, and 11

adds one SUB; node to T but the important observation is that after the LR.4

has processed an APPLY node in dimension i, there can be at most one SUB; node

directly above the APPLY node. Therefore. when the LRA has processed T in

dimension i, the number of SUB; nodes in T is at most (a + 1). The L M began

processing dimension i with at most s SUB; nodes and therefore at a,ll times during

the rewriting process in dimension i, the number of SU B; nodes in T never increases

beyond (s + a + 1) which is at most t . Therefore, when the L M has considered all

d dimensions, the total number of SUB operators in T is at most (d t) .

3Consider an arbitrary pair of APPLY nodes such that al1 of the nodes in the chain connecting
them are of type SUB or MERGE. There could be several SUBi and MERGEi nodes in such a
c h a h Nevertheless, because of the way the LRA works, two SUB; nodes-whenever they become
adjacent-are first cornbined using Rule 6 and the resultant SUBi node is then pushed down. The
two S U B ~ nodes are never pushed d o m separately.

In conclusion, s ma- gron- up to (d - t) from its s tarting value of S. In the worst

case! the values of n, a, and Z will remain unchanged during the execution of the

LR4. Therefore, during the execution of the LRA, the number of nodes in T is at

most d - t + m + a + 2, which is at most d - t + t or ((d f 1) - t) . O

Theorem 4.2 Suppose that a n AML expression T which is not rnerge-balanced

contains n nodes. The combined run tirne of the merge balancing procedure and the

LRA is O(@ - n) .

Proof. As per Lemma 4-2.1, merge balancing may add up to (den) MERGE nodes and

up to (d - n) le& APPLY nodes to T. Adding each additional MERGE operator (and

the associated leaf APPLY operator) takes time constant in terms of the number

of nodes in T because only local modifications to T are involved. Thus, merge

balancing takes O(d - n) time.

Because of the additional MERGE and leaf APPLY operators added during merge

balancing, t in the statement of Theorern 4.1 can be as large as (2dn +n.) . Therefore,

during the execution of the LR-4, the number of nodes in T can be as large as

(d + 1)(2dn + n) = 2872 + 3dn + n which is O (8 . n).

Testing each of the II logical rewrite rules at a node in T t&es time constant

in terms of the number of nodes in T. Rewrites thernselves also take time constant

in terms of the number of nodes in T because only local modifications to T are

involved. When considering a dimension i, the LRA never revisits a node and

therefore, logical rewriting in a dimension i takes time proportional to the nurnber

of nodes in T which has the O(@ - n) upper bound. Thus, logical rewriting in a

dimension takes O(@ - n) time. Since there are d dimensions, the LRA runs in

CHAPTER 4. AML Q LiERE' PROCESSIAÏG

O(@ - n) tirne. The combined nin time of merge baiancing and the LRA is also

O(@ - n) because merge balancing can be performed in only O(d - n) time. 0

A Canonical Form for AML 'Ikees

In this section, a canonical form for AML trees is defined. Canonical trees are

defined for two reasons. First, it will be shonm that the L R 4 produces canonical

trees. Second, it will be shown that a canonical tree minimizes the number of func-

tion applications-user-defined function applications for non-leaf APPLY operators

and disk reading functions for leaf APPLY operators-in an -4ML tree T.

Definition 4.3.1 (Canonical node) Let d be the maximum dimenîionality of

any node in a n AML tree T. A node X in T iS a n i-canonical node if no AML

rewrite rules appearing in Section 4.3.1 are applicable at X in the tree T' obtained

from T by deleting al2 the SUBj nodes foi. al1 j # i. X is a canonical node if it is

an i-canonical node for all i such that O < i < d.

Definition 4.3.2 (Canonical form of an AML tree) Let d be the mazimum di-

mensionality of any node in an AML tree T. T is in i-canonical fonn if al1 of its

nodes are i-canonical. T is in canonical form i f it is in i-canonical form for al1 i

such that O < i < d.

Due to Rule 7, it is necessary to define an i-canonicd node in terms of T' rather

than in terms of T: once Rule 7 can be applied to a pair of nodes SUBi and S U B j

(i # j) in T, it can be applied to them repeatedly. In a canonical tree, a l l the SUB

operators have b e n pushed as far d o m as possible (other than such rearrangements

of SUBi and SUBj nodes possible due to Rule 7).

CHAPTER 4. AML Q UERY PROCESSIXG

Theorem 4.3 Let d be the rnazirnwn dimens-ïonality of any node i n an AML tree

T. Suppose that the LRA és performing rewrites on T in dimension i (O 5 i < d) .

Suppose that during the traversa1 of T , the LRA is at a node -Y about to examine

whether any rewrite rule ïs applicable in dimension i at X . Suppose also that the

set V (for "visited3) includes the nodes of T that the LRA has vkzted in dimension i

so far prior to the wkit t o the node X . The LRA maintains the following invariant:

(1) for al1 the dimensions k where O 5 k < i, T is in k-canonical f o m : and (2)

every node v f V és an i-canonical node-

Proof. There are two major cases to consider depending on whether or not a rewrite

rule is applicable in dimension i at X.

Case 1. Suppose that no rewrite rule is applicable in dimension i at X. The fkst

part of the invariant holds trivially after the LRA finishes visiting X because T

does not change.

Now let us verify the second part of the invariant. After processing the node

X, the new value of V , Say V', is given by V U { X I .

The following reasoning shows that X is i-canonical. As per the assumption for

this case, no d e f ied in dimension i at X. Suppose that the tree T' is derived

from T as per Definition 4.3.1. If X is a leaf node, it is i-canonical because X has

no children and thus, no rewrite rule can fire between X and its child in the Tt.

If X is a non-leaf node, and a rewrite r d e becomes applicable between and one

of its children Z in T', the d e that becomes applicable must be one of RuIe 6 ,

8, 9, or 10 and thus X must be a SUB; node. But then, Rule 7 would have been.

applicable in dimension i between and its child node in T. This contradicts the

assumption that no rule fked in dimension i at ,Y. If Z is one of the children of ,Y

in both T and T', then also the assumption that no rule frred in dimension i at S

is contradicted,

That the second part of the iniariant holds can be shoivn by contradiction. For

the sake of contradiction, let us assume that a rewrite d e becomes applicable in

dimension i at a node Y in Y'. Y must be different from -X because ,ri' is i-canonical

(as per the reasonilig in the previous paragraph). The rewrite d e that became

applicable must involve the node X because otherwise, the rewrite d e would have

been applicable in dimension i at Y, which would violate the second part of the

invariant that held before the LRA7s visit to the node X. It can be verified that no

matter which rewrite rule became eligible at node Y, the invariant before the L M ' S

visit to the node X would not boldo thereby giving the necessary contradiction.

As an example verification, suppose that Rule 8 became eligible at Y in the tree

obtained by deleting a l l of the S U B j (j # i) nodes from T. Thus, Y is a SUB; node

and ,Y is a MERGE; node. Now the node Y is not an i-canonical node because Rule

S is applicable at Y. Therefore, the second part of the invariant did not hold before

the LRA visited the node X, which is a contradiction.

Case 2. For the rest of the proof, we assume that a rewrite rule &es in dimension i

at X. Since no d e can f i e at a leaf node, X must be a non-leaf node. The proof

involves a case analysis checlcing ail the 11 rewrites rules and showing that the loop

inva.riant holds no matter which rule fies (in dimension i). We will only show the

andysis for Rule 8; the analyses for the other rules are similar.

Figure 4.5: S tnrcture of an AML tree before and after a rewrite.

To verify the &st part of the invariant, it is necessary to ascertain that after

rewrite using Rule 8, the tree T remains in k-canonical form for O 5 k < i. The

schematic diagram in Fig. 4.5 shows the structure of T before and after the rewrite

using Rule 8. In a test for "k-canonicaln-ness, the SUB; nodes play no part. Without

the SUB; nodes, the structures of the trees T and T' in Fig. 4.5 are identical.

Therefore, since the tree T is assurned to be in k-canonical form for O _< k < i, the

tree T' will also be in k-canonical form and the &st part of the invariant holds.

Now let us veri@ the second part of the invaxiant. Due to the application of

Rule S, the set V does not change. Let Y be the MERGE; node that results from

applying Rule 8 at X (a SUB; node). It is necessary to show that all the nodes

z: E V f (which is the same as V) continue to be i-canonical. The proof of this

claim is by contradiction. For the salie of contradiction, let us assume that a rewrite

rule-becomes applicable in dimension i a t a node Z E V'. The rewrite d e that

became applicable must involve the M ERG ~i node because ot herwise, the rewrite

41n general, Y'-the new value of V-is rule dependent. For example, for Rule 11, V' = VU(X),
where X is the APPLY node that results from applying Rule 11. The values of YI and Yz given in
Fig. 4.4 can be used to determine the Y' sets.

When V' = V U (X), i t is necessary to show that the node X is i-canonical and that-despite
the addition of the node X-the other nodes in V' continue to be i-canonical, To show these
results, arguments similar to the ones used in Case 1 for proving the second part of the invariant
can be used.

rule would have been applicable in dimension i at 2. which would have violated

the second part of the invariant that held before the LR-4's visit to the node -Y.

m e 8-n-hich pushes a SUBj belon. a MERGE;-is the only r d e that satisfies the

constraints of this scenario and accordingly, Z is a SUB; node- In that case. however.

Rule 6, which combines two SUB; nodes, would have b e n applicable between Z and

X . Therefore, the second part of the invariant did not hold before the LRX visited

the node X, wbich is a contradiction.

Thus, the invariant mentioned in the theorem statement is maintained. O

R e c d from Fig. 4.4 that the L M performs logical rewrites in each of the

dimensions O through (d - I), in that order. When the LRA finishes visiting the

last node In T in a dimension i (O 5 i < d), the set of visited nodes V includes all of

the nodes in T and therefore, T becomes i-canonical. After the L R 4 has processed

dimension (d - l), the invariant of Theorem 4.3 still holds and the resulting tree is

in canonical form. Thus, we can conclude:

Theorem 4.4 The logical rewrite algorithm generat e s canonical AML trees.

Proof. This follows jmmediately from the invariant of Theorem 4.3 at the conclusion

of the L X 4 . CI

In this section, it will be shona that the canonical trees produced by the LRA

rninimize the number of applications of user-defined functions. The number of

applications of user-dehed functions is a good cost Leasure because user-dehed

functions are potentidy costly. Further, ArrayDB treats disk reads as special types

CHAPTER 1. AML Q UERY PRO CESSIRTG S 1

of APPLY fûnctions and therefore. minimizing the number of function applications

minimizes costly disk I/O. (The numbers of applications of user-defined functions

are minimal subject to the fact that -4rrayDB currently does not detect and elimi-

nate common sube,upressions.)

Definition 4.3.3 (Cost of an 4 M L tree) Suppose that an AML tree T contai=

k APPLY operators (inchding leaf arrays that are treated By AML Iike APPLYS) and

that these APPLY operators are numbered 1 through k where k 2 1- Suppose that.

t o produce the result array of T , the i-th APPLY function (1 < i 5 k) gets evahated

n; t imes (ni 2 O) . The cost of T, ' w ~ z ~ t t e n cost(T)? is defined t o be CF=, ni.

Theorem 4.5 For a canonical AML tree T produced by the LRA, cost(T) is min-

imal.

Proof. It will be shown that c o s t (T) is minimal in the sense that if any function

application in T were to be removed, the result of T would change. This claim is

proved by contradiction. For the sake of contradiction, suppose that it is possible to

remove a function application in the canonical tree T without changing the result

of T*

As an aid to the proof a tagging mechanism is introduced as follows. Suppose

that each cell in the output a.rra.y of an operator in T is "taggedn with all of the

function applications that contributed to it. The tags "pas through" the WB

and MERGE operations (which do not change ceIl values). suppose that an APPLY

operator's user-defined fünction f gets evaluated j times and that the individual

function applications are arbi trarily numbered f, t hrough fi. Concept udy, when

Input Array

Figure 4.6: Illustration of the tagging mechanism.

f's function application number i (1 5 i 5 j) takes place, all of the cells in the

resulting range box get tagged with the union of all of the tags of the ceus in the

domain box, plus the new tag fj-

Fig. 4.6 illustrates how APPLY perfonns tagging. In that figure, the APPLY

operator7s user-defined function is d; dd = (2,Z); and & = (1,2). d is evaluated

four times to generate the output array and accordingly, d's tags are named dl

through d4. Each of the four cells of the input array that fall under the domain-box

shape have their own set of tags that indicate their data lineage. Two of the ceUs

in the output array of the APPLY operator in Fig. 4.6 have six tags each: the d4 tag

. is due to the function d; each of the other five tags is present in a t least one cell of

the input array that falis under the domain-box shape.

For concreteness, suppose that fj is the particular hinction application of a

user-defined function f that could be removed fiom T without changing T ' s output

M a y . This implies that none of the cells of T7s output array are tagged with fj:

al1 of the cells with the tag fj got filtered out. Now one c m start in T from the

APPLY node that applied f and move up the tree towards the root until one gets

to the h s t intennedîate array that has no fj tags. Suppose that the intermediate

array was generated by the operator ..Y. -Y is either a SUB node (mhich iîltered out

the fj tags) or an APPLV node (whose patterns did the filtering). Let us consider

the tm;o cases separately.

Suppose that X is an APPLV node m-hich applies a user-defined h c t i o n g. One

or more cells in X's input array contain the f, tag. Choose an arbitrary ce11 fsom

among such cells and c d it t. When -Y applies g to the input amas none of the

domain box positions within the input array include the cell t (or othernrise the fj

tag would not get deleted). Therefore, there must exist at least one APPLY pattern

Pi that eiiminates all of the potential domain boxes that overlap t. In other words,

there must exist a pattern Pi such that P;[k] = O for (t[i] - dl[ij + 1 < k < t[i]).
But then, using Rule 11 that pulls a SUB out of an APPLY, a SUB; node can be

pulled out of X. Thus, T would not be in canonical fom-a contradiction.

Suppose that X is a SUBi node and that T' is the tree that is obtained from T by

deleting d of the SUBj nodes (j # i). (The tree T' is used because i-canonical-ness

of X is going to be tested.) Suppose that X's child in Tt is called Y. If Y is a

MERGEj node (for any j) , X c m always be pushed below Y using either Rule 8 or

Rule 9. If Y is a SUBi node then X and Y could be combined using Rule 6 . Finally,

suppose that Y is an APPLY node which applies a user-defined function g. (g may

be equal to f .) Y's output array is an ordered collection of range boxes and because

of the way tagging is performed, X must delete at least one complete range box if

61f an AML expression contains more than one APPLY operators that apply f, then distinct
aliases can be created for the name 'f'. Alternately, function application numbers for f can be
chosen in such a way that a function application number uniquely identifies the instance off that
caused the function application,

it is to delete the fi tags. Therefore, S ' s pattern rnust be of the form -a000 - - - Obu.
where a. b E (O + 1)' and there are %[il 0's sandwiched between a and b. But then.

such a SUB; pattern pennits the application of Rule 10 that pushes a SUB into an

APPLY. Thus, in all the three cases, a rewrite rule would be applicable at -Y and T

would not be in canonical fom-a contradiction.

An Example of the Logical Rewrites Using LRA

Let us demonstrate how the LRA works on a variant of the TV1 queqr introduced

in Chapter 1. Suppose that the shape of the 7-band thematic mapper array A is

(1024,1024,7). The TV1 array will then be of shape (1022,1022,l). Suppose that

A has been laid out on disk in band-major order and that a function fA is used to

read A one band at a t h e . Suppose that a new query, fTVI, is posed on the TV1

array. !TVI extracts one-fourth of the TVI array fiom the middle. The clipping is

achieved using two W B operators in Equatioa 4.11. (The tile shape F is equal to

(1024,1024, l).)

When the :TV1 query in Equation 4.11 is rewritten using the LRA, the ex-

pression in Equation 4.12 results. In Equation 4.12, the two SUBZ operators have

been pushed into the leaf nodes as reflected b - the Pz patterns in the leaf nodes.

The and S U B ~ nodes have been pushed as far d o m as possible. The original

clipping window of shape (51 1,511) has gronn slightly to (513.313): the additional

elements are required to noise reduce the pixels on the boundaq of the window.

The rewritten AML expression in Equation 4.12 shows that. to generate a haction

of the TVI array, it is sufficient to process only portions of bands 3 and 4.

4.4 Plan Generation

The plan generation phase takes as input a tree containing logical AML operators

and produces as output a plan tree containing physical operators. ArrayDB uses the

physical operators to implement -4ML's logical operators. The physical operators

are implemented using the iterator paradigm. Iterat or-based plms generate the

arrays in pieces rather than in full and reuse the memory used to store the array

pieces. Therefore, iterator-based plans usually run in less buffer space than the

equivalent plms that generate intermediate arrays in their entirety. In a database

management system, buffer space is usually at a premium. and therefore plans

requiring less bufEer space are preferable.

4.4.1 ArrayDB Physical Operators

-4n:ayDB has six physical operators (iterators): A P P L Y S , REPLICATEJ, REGROUP-P.

COMBINEP, LEAF-P, and R E O R D E R P . (The suffi-^ "2" emphasizes that these are

physical operators.) Together, APPLY-P and REPLICATEJ irnplement APPLY; COM-

B I N E ~ implements an ,4ML subtree containing only SUB and MERGE nodes; and

LEAF-P implements AML's leaf arrays. REGROUPP and RE OR DER^ ensure that

the data stream tbat flows through the pipeline formed by connecting the physical

operators has certain properties.

Each of _4rrayDB7s physical operators has a specific number of input streams

associated with it: L E A F P has no input stream; A P P L Y P , REPLICATE-P, RE-

G R O U P S , and RE0RDER-P have one input stream each; and C O M B I N E 2 has k

input streams (b > O). Each physical operator has exactly one output stream.

.4rrayDB7s physical operators are implemented using the iterator paradigm.

Specifically, each phy-sicd operator is a chu& iterator in that it produces and con-

sumes array chunks. (Chunks of an array are non-overlapping subarrays contained

within it.) Each iterator can answer three calls: I d () , GetNezt(), and Close().

The Init() c d initializes an iterator so that the iterator is ready to provide data

upon request. In answer to a GetNext () call, an iterator produces the "next" array

ch& and puts the chu& in the iterator's unique output stream. The Close()

causes a n iterator to perform some final housekeeping and the iterator closes itself

dom. T-pically? an iterator receives one Init() c d 7 followed by several GetKext()

c d s , and then a Close() c d . Each iterator makes just one pass over its input ana!-.

(Notice that iterators cannot answer Reset() calls.)

Iterator-based implement ation of ArrayDE3's physical operators offers several

benefits. First, compatible iterators can be connected to one another to form a

pipeline through mhich data travels and gets processed; no cornples control routines

axe necessary. Second, it becomes unnecessary to store intermediate arrays on disk

during query evaluation: array data produced by an iterator is passed directly to

the iterator that needs it. Third, the three interface routines Init(), GetNext(), and

Close() provide a nice design abstraction: iterators can be designed independently
-

of one another as long as their interfaces are well-understood. '

Each physical operator expects its input chunks to appear in a particular order

and produces its output chunks in a particular order. For all the physical operators

except the REORDERP operator, these two iteration orders are the same.

Definition 4.4.1 (Chunk iteration order) Suppose that d is the maximum di-

mensionality of any amay appearing in a n AML plan. Chu& iteration order i

(i-order for short), where O 5 i < d , for array A rneans that the chunks of A are

sorted vsing their position in dimension i as the primary sort key, and that the re-

rnaining dimensions are seconda7 sort keys, taken in order of increasing dimension

values, starting from O .

For example, when d = 4, Zorder means the c h d s axe sorted in dimension 2,

'Graefe [22] gives many other advantageç of iterators and gives several examples of iterator
functions. Iterators are frequently used during query evaluation in RDBMSs. Garcia-Molina et
al. [19, Chapter 61 describe iterators for several SQL physical plan operators-

CHAPTER 4. -4ML Q Il-ERkr PRO CESSIxG

then dimension O, then dimension l1 then dimension 3: 1-order sorts b - dimension

1, then O, then 2, then 3; and O-order sorts by dimension 0. then 1. then 2. then

3. For d = 2, if dimension O is the row dimension and dimension 1 is the col-

dimension, O-order is the row-major order and 1-order is the column-major order.

ArrayDB 's physical operators are summarized in Fig. 4.7. For each operator.

the following parameters are given: input chu& shape, output chu& shape. b d e r

space requirement assuming that the operator generates its output chunks in i-

order, and any pammeters specXc to an operator. In Fig. 4.7 and in the physical

operator descriptions that follow, the generic names A and B refer to a physical

operator7s input and output array, respectively; 6 and 2 refer to a physical o p

erator's input and output ch& shapes, respectively; and dl and Rf refer to an

APPLY node's domain and range box shapes, respectively. For REGROUPP and

REPLICATEP operators, the b&er space requirement is given p a d y in terms of

number of i-slabs. When docating i-slabs, ArrayDB7s unit of memory allocation

is a chunk slab of height d[il of the operator's input array -4, assuming that the

operator is producing its output array in the i-order. The size of such a c h d slab

is (#) . d[i] arrôy elements.

- ~ P P L Y P and REPLKATET

APPLYP and REPLIC.4TE-P implement the logicd APPLY operator. A user-defhed

h c t i o n that maps a subarray of the shape of a domain box to a subarray of the

shape of a range box is associated with each APPLYP operator. Each GetNextO

c d to A P P L Y S resdts in one application of such a function. The REPLICATES

keeps track of an APPLY'S patterns and forwards from its own bdFer (possibly

CHAPTER -1. AML Q VERY PROCESSZNG

Operator
Name

A P P L Y P

C O M B I N E S

Input
Chunk
Shape

Output
Chunk

Iff(ti1e shape)

Buffer Space
Required (for
i-order)

-.
1 Rf 1 elements

-
Df F I i-slabs

eiement s

slabs of -4 + lETl
elements
1 element

lRll elements (1
for a DEFAULT
leaf)
1 B 1 elements

Special
Paramet ers

function refer-
ence
APPLY patterns

8 has shape
(1.1)

k maps, one fiom
each child
leaf APPLY pat-
terns; array ref-
erence
the only iterator
with 2 orders

Figure 4.7: Properties of ArrayDB's physical operators.

Figure 4.8: REP L ICATES operat or's b d e r space requirement .

overlapping) domain boxes on demand to its parent APPLYP node. Froïn APPLY

patterns, a REPLICATE-P node knows which of the resdt chunks (of shape al) are

to be generated, and supplies the parent APPLY_P with only the necessary domain

boxes -

-4n APPLYP requires enough b a e r space to store one range box. AR i-order

REPLKATE* requires b&er space equal to Dl[i] i-slabs of B plus the size of

one domain box (for output). Fig. 4.8 illustates how the fif[i] i-slabs are used.

Fig. 4.S(a) shows the b d e r of a O-order REPLICATEP operator. All the array

elements that are totally contained within the window are bufFered and the d u e of

Br [il is 3. After the parent APPLY-P node has performed the function applications

that require the array elements in the bottom row of the buffer in Fig. 4.8(a), the

REPLICATEJ node "slides d o m n (ar[i] - 1)-which is 2-i-slabs and refills the

"topmost" i-slab using the necessary GetNext() c d s to its child. (Recall from

Fig. 4.7 that a REPLKATE* node's input chu& shape is (1, l).) The new position

of the window is as shown in Fig. 4.8(b). The shaded portion in Fig. 4.8(b) shows

the "topmost" O-slab. The two bottom O-slabs in Fig. 4.S(b) are obtained from the

two top O-slabs in Fig. 4.8(a) as suggested by the dashed arrows.

The COMBINEP operator implements ari AML subtree consisting of o d y SUB and

MERGE operators. If the subtree has k leaf nodes (k > O) , then the COhIBISE-P

operator has k input streams, each one coming fiom a leaf. Such a tree can be

thought of as implementing a function that maps the cells of the leaf arrays to the

cells of the root array. The function is one-teone and onto, and is, in general.

partial.

A data structure called a rnap is associated with each input stream of a COM-

B I N E ~ operator. A rnap encodes the mapping functioa from input cells (of a

subtree leaf array) to output ceus (of the subtree root array). SUB and MERGE o p

erations are defined such that the mapping function can be expressed as a mapping

of input slabs (in each dimension) to output slabs. That is, in every dimension, if

two ceus are located in the same slab in the input, then both cells will be mapped

to a common slab in the output if they are mapped at all. The nuinber of slabs of

dim(A)-1 ' dimiA)-1 an array A is Ci=, A[i], whereas the number of cells is ni=, A[i]. Since

the former is usually much smaller than the latter, a map has a compact encoding.

The encoding can be computed-as described in Section.4.4.3-from the patterns

used by the SUB and MERGE operations that the C O M B I N E S implements.

The COMBINE* operator's input and output chunlc shapes are (1,l) and its

buffer space requirement is just one array element.

LEAFP provides access to arrays stored on disk and is the only physicd opera-

tor with no child. .4.rrayDB treats AML's leaf arrays Iike APPLY operators and

therefore, LEAFT operations look much like APPLYP operations.

ArrayDB assumes that leaf arrays are stored on disk using regular tiling [5S. lS].

A GetNext cal l to a LEAFP operator reads one tile of shape from disli into the

LEAFS~S buf3er. Thexfore, a L E A F S operator's b&er space requirement is [gf 1

a a y elements. DEFAULT LEAFP nodes have a constant value stored in all the

array ceus. They require 1 element of b d e r space-just enough to store 1 copy of

the constant value,

-4 LEAFP node has APPLY patterns associated with it. LEAF-P uses these

patterns to read only those tiles that are needed for AML expression evaluation,

avoiding unnecessary disk 110. In the curent implementation of ArrayDB, arrays

are stored on disk using UNIX flat files. A tile is read using one read system c d .

The REGROUPP operator is used to change the chu& shapes. It takes a stream of

c h d s of one shape as input, and produces a stream of c h d s of another shape

as output. This requires that the REGRoUP? operator buffer a certain amount of

data-a topic which will be treated in detail in Section 4.5.

It is complicated to define the behavior of a general REGROUPJ operator that

translates an arbitrary input chunk shape to an arbitrary output chu& shape be-

cause the c h d length in some dimension may not divide evenly into the array

length in that &mension. To avoid this dBiculty, ArrayDB7s REGROUPT operator

has output chu& shape equal to (1,l). ArrayDB's physicd operators do not pro-

duce partial output chunks and therefore, the length division problem never occurs

in a REGROUPP operator's input stream. -4 REGROUP-P operator's buffer space

requirement is (to hold one output c h d) plus ([a] - 6[i]) i-slabs of -4 (to
D[tl

change chu& shapes). A R E G R O U P ~ aode with both d and Rt equal to (1.1) is a

neop.

Like REGROUPS, the REORDERP operator is used to ensure that a stream of

c h d s has a p a r t i d a property that is expected by domstream operators. .As its

name suggests, the R E O R D E R P operator changes the order in which c h d s appear

in a stream. -Ml other operators produce output chunks in the same order in which

they consume input chunks. If a ch& producer wishes to use one chunk order

and the c h d consumer wishes to use another, a REORDERP operator must be

inserted between them to re-order the chunks.

For changing the chunk order, a REORDER* node must materialize its entire

output array B and so it needs (BI elements of buffer space. The motivation for

having REORDER-P operators in an Ah/IL plan is that by materializing some arrays,

it may be possible to generate some other downstream arrays in favorable orders-

orders that require less b d e r space. The topic of whether to insert R E O R D E R 2

operators in a plan and where to insert them is treated in detail in Section 4.5.

4.4.2 Plan Generation Algorithm

The iterator plan tree is generated by a recursive, top-down trasslation of an AML

expression tree T. The action taken by the translater depends on the type of node

CHAPTER 4. -4ML QUERYPROCESSING

it encounters in T:

If the root node of the expression tree is a non-leaf XPPLY node with d e

main box fif and range box zf, an A P P L Y P node. a REPLICATES. and a

REGROUPP node are added to the plan as shown in Fig- 4-9. The APPLYP

node's input c h d shape is fif and its output chu& shape is Rf. The REPLI-

CATEP node7s input chu& shape is (1,l) and its output chunk shape is 6,.

The REPLIC.4TE-P also gets the APPLY'S patterns so that it c m fonvard ap-

propriate domain boxes to the parent APPLYT node. The REGROUPP node's

output chu& shape is (1,l) and its input chunk shape matches the output

ch& shape of its chitd iterator-

If the root node of the expression tree is a s U B or a MERGE, the translater

h d s the maximal tree of SUE3 and MERGE operations rooted at that node.

The tree is translated into a k-ary COb1BINE-P operator and k R E G R O U P P

operators, where k is the number of leaves of the tree. This translation is

shown in Fig. 4.10. The output ch& shapes of ail the REGROUPT nodes

are (1, l), which match the input chu& shape of the parent COMBINES node.

Each REGROUPT node's input chu& shape is the same as the output chunli

shape of its child iterator. The COMBINE^ node dso gets k maps-one for

each input stream-that are derived from the SUB and MERGE patterns. The

map derivation is described in Section 4.4.3.

If the root node of the expression tree is a leaf APPLY, a L E A F S operator is

generated. The LEAFJ operator gets its leaf APPLY patterns from the APPLY

operator.

APPLY + APPLY-P
I I

Figure 4.9: Plan for an APPLY node.

MERGE + COMBINE P
/ \

SU8 / \ Y
1 REGROUFJ EGROUPJ

I I

Figure 4-10: Plan for a subtree made up of SUB and MERGE nodes.

The plan generation algorithm converts the AML expression given in Equa-

tion 4.12 for the optimized +TV1 query to the iterator plan shown in Fig. 4.11(a).

In Fig. 4.11(a), a shape shown next to an edge indicates the shape of the chunks

in the data stream represented by that edge. Some of the physical operators that

appear in such an iterator plan tree may be winecessary. Such operators-indicated

by arrows in Fig. 4. Il (a)-are eliminated during plan refinement.

4.4.3 Map Spreading

This section describes an algorithm called Mapspread that shows how to replace

an AML subtree containing ody SUB and MERGE operators with a COMBINE2

operator. The deleted SUB and MERGE operators ieave their footprints behind

as maps that are associated with the COMBINEJ operator. Map spreading helps

1cl.b
APPLY-P - tvi

[<l.l>

REPLICATEP
icl.1, ,/

REGROUP-P
JCI.I>

COMB I h i P
\ ,-&> \cl.l> /

REGROUPJ REGROUP-P
I d . 1 ~ i4.b

APPLY-P -" APPLY-P -"
1c33.b 143.1>

REPLKATE-P REPLICATE-P
p.1> J \ ~<l*lw

REGROUPJ REGROUEP
1<1.1> 1<1.1>

COMBINE-P COMB IN€-P

iCl.I>
B: APPLY-P - wi

jci,~>

C: REPLKATE-P
jC1.b

E: APPLY-P - J: APPLY-P -
j<33.1> (<33.1>

F: REPLICATE-P Kr REPLICATEJ
1<1.1> 1 <lJ>

G: COMBINEJ L: COMB I E P
[cl.l> I<I.I>

H: REGROUF-P M: REGROUP-P
[<1024.1014.1> ~cl0~3.10~.1>

Fiowe 4.11: lllustrating plan generation and plan r e h e m e n t .

because it achieves data filtering (SUB'S effect) and data combining (M ERGE'S effect)

without generat ing a.ny intermediate arrays.

Definition 4.4.2 (SUB-MERGE-only tree) A SUB-MERGE-only tree G i.s a subtree

of a n AML tree T such that al1 t h e nodes in G are of type SUB o r MERGE; the parent

of the root node of G is a n APPLY node '; and al2 t h e chitd~en of G 's Ieaf nodes are

a b o APPLY nodes (leaf APPLY o r non-leaf APPLY).

Definition 4.4.3 (Exterior nodes and exterior edges) For a SUB-MERGE-only

tree G , the APPLY nodes identi f ied in Definit ion 4.4.2 are exterior t o G. The APPLY

node thut is the parent o f t h e root node o f G is called t h e t o p ex ter ior node of G; the
- -- -- -

81f the root node of G is also the root node of T, then such an APPLY node does not exist.
Nevertheless, for uniformity and to simplify the presentation, such a root node will be assurned
to have as parent a neop APPLV node. This no-op A ~ P L Y node performs simple data copy.

CH'4PTER 4. A-ML QUERY PROCESSUVG

B: APPLY (tvi)

C: MERGE , (10) L- -i
D: APPLY (nr) G: APPLY (nr)

1

Figure 4.12: SUB-MERGE-ody trees.

edge that connects the root node of G t o the APPLY node is called the top exterior

edge of G . The APPLY nodes that are the chddren of G ' s leaf nodes are called the

bottom exterior nodes of G; the edges that connect G's leu.. nodes to these APPLY

nodes are called the bottom exterior edges of G.

Notice that a SUB-MERGE-only tree G has one top exterior node but can have

one or more bottom exterior nodes- 4- A-ML tree T with at least one SUB or

MERGE node contains one or more SUB-MERGE-ody trees within it. (If T contains

only APPLY nodes, it has no SUB-MERGE-ody trees in it .) MapSpread replaces each

SUB-MERGE-ody tree with a COMBINE2 operator.

For examples of SUB-MERGE-ody trees, consider the AML expression for the

rewritten form of the $TV1 query given in Equation 4.12. The most important

parts of Equation 4.12 have been reproduced in the form of a tree in Fig. 4.12.

(Ai and Az are alïases for the base array A.) The tree in Fig. 4.12 containç three

SUB-MERGE-only trees as shown. The SU B-MERGE-ody tree containing the MERGE

operator has three exterior nodes: one of them is top exterior and the other two

are bot tom exterior.

Definition 4.4.4 (Map) Suppose that t he maximum dimensionality of a n y a m a y

appearing in a n AML tree T is cl. A map C is a p a k (3. W) . where 3 denotes

a set of filter patterns and W denotes a se t of \\-rite patterns. T h e set o f f i l t e r

patterns F 6 vrrzvrrztten (fO, f 1 , . . , fd-L) , where fi is the filter pattern fo r dimelbsion

i. The set of -te p a t t e r n W is similarly wri t ten (wO, wl, - - -, u ; ~ - I) -

MapSpread associates a map with each edge of a SUB-MERGE-only tree G and

with the top exterior and bottom exterior edges of G. Each such edge connects a

child node to its parent node. The child node7s output array is c d e d the input

array o f the map associated with the edge. Thus, each map has a unique input

may. The target amay o f a map is the output array of the SUB-MERGE-ody tree

in which the map occurs. Thus, all the maps in a SUB-MERGE-only tree share the

same target array.

Definition 4.4.5 (Effect of filter and write patterns) Suppose that the input

and the target arrays for a m a p X are Y and 2, respectively. For euery dimension

i (O 5 i < d) and for j > 0 , the i-slab of Y at the index i n d e x (f ; , j + 1) is mapped

t o the i-slab o f Z at the index i n d e x (w i , j + 1).

Fig. 4.13 illustrates the effect of filter and write patterns. In that figure, 3 is

{ f ~ = oolo, fi = 10) and W is {tuo = 00100, wl = 0011). The four elements fÎom

Y get selected and written to the four selected positions in 2.

A superscript to F, W, and C denotes an edge, or equivdently, the array associ-

ated with that edge. For example, .FX refers t o the set of filter patterns associated

with the edge (or the array) X. Individual patterns in F and W default to "1"s if

they are not written explicitly. A set of filter patterns is called an ident i ty if ail o f

input array Y

Figure 4.13: Effect of filter and write patterns.

the patterns are Y i " s . Identity W sets are dehed similarly An identity rnap has

an identity 3 and an identity W.

Here is a high-level overview of how MapSpread works on a SUB-WERGE-ody

tree G. ..in identity rnap is associated with the top exterior edge of G. This rnap

spreads downwards to d the bottom exterior edges of G. For each and MERCE

node along the way, the rnap is modified so that the eEect of that SWB or MERGE

node is absorbed in the map.

After a rnap reaches an edge X, the following inmriant holds: the filter and

write patterns in describe how to rnap the selected array elements from the

input array of C" to the selected array elements of the target array of (as

per Definition 4.4.5). Because of this invariant, the maps that reach G's bottom

exterior edges map the selected elements from the leaf arrays of G to the output

array of G. Therefore, d of the Sus and MERGE nodes in G c m be replaced by a

single COMBINEP node. If G had k leaves, then the COMBINEP node wiLl have k

maps associated with i t - une f ~ r each leaf.

The MapSpread algorithm appearing in Fig. 4.14 traverses a SUB-MERGE-ody

tree G (which is contained in an AML tree T) in preorder so that the maps can

be spread from edge to edge in a topdovm fahion, The tree-traversal code is not

explicitly mentioned in the algorithm steps. Suppose that for a node -4 in G. the

edge connecting A to its parent node (possibly the top ex$erior edge) is called the

parent edge and that the edges comecting -4 to its (one or two) children (possibly

bottom exterior edges) axe calied the child edges. Throughout MapSpread, it is

assumed that when a map spreads from a parent edge to a child edge, the child

edge gets a copy of the parent edge's map, but some patterns in this copy get

modified according to the computations of MapÇpread. In the algorithm steps

shown in Fig. 4.14, only such map-mod%ing computations are mentioned.

Proof of Correctness of the MapSpread Algorithm

MapSpread replaces a SUB-MERGE-ody tree G with k (k > O) leaves w-ith a COM-

BINE> operator that has k maps associated with it- MapSpread is correct if G's

output array is identical to the COMBINEJ operator's output array. Before proving

MapSpread's correctness? it is necessary to define the C O M B I N E S operation. Since

COMBINEJ'S effect is a combination of the effects of the SUB and MERGE oper-

ations, the following definition is less formal than those for the s ü B and hlERGE

operations (Definition 2.2.4 and Definition 2.2.5, respectively) .

Definition 4.4.6 (COMBINEP) Suppose tha t a C 0 M B I N E - P operator hm k (X- > 0)

i npu t arrays and t ha t a m a p CJ is ussociated with the inpu t amay j (1 5 j 5 k).

The C O M B I N E 3 opera to r3 output array Zs t h e target array for al2 of the k maps.

COMBINE-P m a p s the elements of i npu t array j t o elements of the target array

vs ing m a p Ci as described in Definition 4.4.5. T h a t is, the filter pattern fi E Fj

CHAPTER 4. AML Q UERY PRO CESSIKG

1. .4ssociate an identity map with the top exterior edge of G.

2. MapSpread7s action depends on the type of node that it encounters while
traversing G in preorder.

Suppose that MapSpread visits a SUB; node whose pattern is P. Suppose
that the WB node's parent edge is Y and that its (only) child edge is
X . Let 3y = {foi fi, - , fi, - - 0) . FX wilI be { fo7 fi, - - - ,fi, - -); where,
for all j 2 O7 f: is defined by: f;>[j] = P[j] A fi[counf(P,j) - 11.
(For notational convenience, the definition of fi is extended such that
fi[-l] = O-)
If X is a bottom exterior edge, then assign the n a p CX to the COMBINEP
node.

Suppose that MapSpread visits a WERGEi node whose pattern is P.
Suppose that the MERGE node's paxent edge is Y, that its left-
child edge is XL, and that its right-child edge is -6- Let FY =
{fol fi3 - - , fi, - - -) and let wY = {WC), wl, - - - , wi, . -1. C ~ L consist s of

. . -)- \non- FX" = Ifo7 f i 7 - - - , f i , - -*} and WXL = {w~,w17--- ,wi7
sists of FXR = { fO, fi, - - - f;, - a) and W X ~ = {wO, w17 - , wY7 - - .). f:,
w:; fy, and w; are defined as follows.

(a) For all j 2 O, f;>b] = fi[index(P, j + l)]. For all j 1 O, w : [j] =
wi[j] P[indez(f i , count(wi, j))].

(b) For all j 2 O, fy[j] = fi[index(P, j + l)]. For all j 2 0, wyb] =
wib] A P[index(f i , count(w;, j))].

If XL (or XR) is a bottom exterior edge, then assign the map C"L (or
CXR) to the COMBINET node.

Figure 4.14: The MapSpread algorithm.

CHAPTER 4. AhIL Q UERY PROCESSING

determines which slabs of the input array appear in the target. and the urrite pattern

w; E W j de temines where in the target they appear.

Notice that, like SUB and MERGE ope ration^^ COMBINES operation does not

reorder the i-slabs that it processes. It also does not permute the array elements

within an i-slab. More precisely, consider two arbitrary i-slabs numbered ji and

(ji 2 O, jî 2 O) in the target array such that ji and j2 came from the same input

array A. Suppose that the i-slabs and j2 are numbered j; and j;, respectively,

in A. Then, 5 < j2 implies j; < j;. This observation is useful when proving

MapSpread7s correctness. In particular, it tells us that when proving the correctness

of the steps that fold a WB; or a MERGE; operator into a map, it is suficient to

consider mappings among the i-slabs only.

Theorem 4.6 Suppose that ikf is the output array generated by a WB-MERGE-only

tree G vi-th k leaves (k > O) . Suppose that MapSpread replaces G with a COMBINES

operator vith k maps and that the C O M B I N E 3 node's output array is N . The arrays

M and JV are identical.

Proof. Some of the notation used in this proof cornes from Fig. 4.14. In each

step, MapSpread folds in a S U B ; or a MERGE; operation into a map. The proof is

by induction on the number of such foldings (that is, on the number of SUBi and

MERGE; operators in G). We s h d only prove the correctness of an arbitrary folding

step. There are two cases to consider based on whether the operator to be folded

in is a SUB operator or a.MERGE operator.

Case 1 (Folding a SUB; operator): Suppose that, before a SUB; operator is folded

into the map c', the output ôrray of the operator tree is Y, and that after folding

CII4PTER 4. AML QUERY PROCESSING

Figure 4.15: Folding a WB; operation into a map.

the suei operator into CY, the output array of the operator tree is Y'. The aim is

to show that Y and Y' are identical.

Suppose that the SWB; node's input array is and that its output array is Ul.

The map CY maps elements in Ut to those in Y. That mapping-fomdy defined in

Definition 4.4.5-cm be thought of as occurring in two steps. First, Fy filters out

the unnecessaxy elements in Ul and produces an intermediate array U2. Second,

wy maps the elements of Ci2 to those in Ir. The new map cX (conceptually)

performs similu operations on the input array X and produces an intermediate

array before mapping it to Y'. The arrangement is os shown in Fig. 4.15.

Since wY = W X , it is sufhcient to show that the intermediate arrays U2 and

V2 are identical. This will be shown by proving that the i-slab j (j 2 0) of X is in

U2 iff it is in K. A proof of this daim follows.

The i-slab j (j 2 O) of X is equal to the i-slab (count (P, j) - 1) of Ul iff Pb] = 1.

The i-slab (count(P, j) - 1) of Ul is in U2 iff fi[count(P, j) - l] = 1. Therefore, the

'Recall that MapSpread explicitly mentions computations of only those filter and write patterns
that change.

Figure 4.16: Folding a MERGE; operation into a map.

i-slab j (j / O) of X is in U2 iff (Pb] = 1) A (fi[c<nrnt(P, j) - l] = 1).

The i-slab j (j 2 O) of is in V2 iff f:lj] = 1. According to the definition of f;',

the i-slab j (j 2 O) of X is in 1/2 iff (Pb] = 1) A (f,-[count(P, j) - 11 = 1).

Case 2 (Folding a MERGEi operator): suppose that, before a MERGEi operator is

folded into the map CY, the output array of the operator tree is Y, and that after

folding the MERGEi operator into CY, the output array of the operator tree is Y'.

The aim is to show that Y and Y' are identical.

Suppose that the MERGE; operator's left input array is ..YL, that its right in-

put array is XR, and that its output array is Ul. After folding, two new maps

are generated: C X L = { .FX~, W X ~) , and CXR = (FXR, w ~ R) . Suppose that the

intermediate mays U2 and Vz are defhed sirnilady to th& definitions in Case 1.

The arrangement is as shown in Fig. 4.16. We s h d ody prove that the map C X L

is formed correctly. A sy-etnc proof can be used to prove that the map cXR is
formed correctly.

That CXr is formed correctly will be shown by proving the following three

statements: (1) the i-slab j (j 2 O) of XL is in Y iff it is in Y'; (2) the i-slab j

(j 2 O) of Y comes from XL iff the i-slab j (j > O) of Y'' comes from *YL: and (3)

for all j 2 O: wi[j] = 1 wib] = O. The third statement ensures that the i-slabs

that are contributed to Y by C ~ L are not ovenvritten by those contributed by C"R.

(It is unnecessary to prove wll j] = 1 + w:l j] = O because this statement is just the

contrapositive of the third statement.) It is also unnecessary to consider the wi te

patterns of the other maps (shom using the arronrs attached to the C O M B I N E 2

operator in Fig. 4.16) because they do not interfere with one another because of the

induction hypotheçis and because they do no t change during t his MERG E-folding

step.

The first statement can be proved as follows. The i-slab j (j > 0) of XL is

equal to the i-slab index(P, j + 1) of Ul. The i-slab indez(P, j + 1) of U; is in Y

iff fi[index(P, j + l)] = 1.

The i-slab j (j 2 O) of XL is in Y' iff fi[j] = 1. From the definition of f:, the

i-slab j (j 2 O) of XL is in Y' iff fi[index(P, j + l)] = 1.

The second statement can be proved as follows. The 2-slab j (j 2 0) of Y comes

from XL iff (wi[j] = 1) and the 2-slab (count(w;, j) - 1) of U2 comes from XL. The

i-slab (c<runt(wi, j) - 1) of U2 comes from XL ifE the i-slab (index(f;, count(wi, j)))

of Ul comes kom XL. The i-slab (index(fi, count(wi, j))) of Ul comes from XL iff

P[index(f i , count(wi, j))] = 1. Therefore, the i-slab j (j 3 O) of Y cornes from XL

iff (wib] = 1) A (P[index(fi, count(w;, j))] = 1).

The i-siab j (j 2 O) of Y' comes from XL iff wfb] = 1. According to the

definition of wj, the i-slab j (j 3 O) of Y' comes from XL iff (w;[j] = 1) A

(P[index(f;, count(w;, j))] = 1).

Figure 4.17: Illustration of MapSpread.

identity
{ W, = 10)

identitv

1

F
.A1
G
H
I

-42

The third statement can be proved as folIows. Consider the definition of w:. If

C
D

= 1, then (wib] = 1) and (P[index(f ; ,count(w; , j))] = 1). In other words,

identity
identity

{ fo = 02s515i3025~
{ fo = 02551513Q254 , fl = 02551513025")

if w:L] = 1, then (w ib] = 1) and (P[index (f , , count(wi, j))] = O) . From that

E I identitv "

identity
identity

conclusion and the definition of wy, wylj] = O follows immediately. O

An Example Illustrating the MapSpread Algorithm

identity
identity

{ fo = 025515~302~4 1
255 513 254 { fo = 0255151302M, fi = O 1 O }

When map spreading is performed on the three SUB-MERGE-ody trees in Fig. 4.12,

{ w , = O l }
identity
identity
identity

the maps s h o k in Fig. 4.17 result. In Fig. 4.17, the map associated with an edge

connecting a child node to a parent node is shown as belonging to the child node.

4.5 Plan Refinement

The plan refbernent phase begins by deleting no-op REGROUPJ nodes and n e

op C O M B I N E S nodes fiom an iterator plan tree. A R E G R O U P T is a neop if its

input chu& shape and output chunk shape are the same. A COMBINE* node is

a n w p if the following two conditions hold: (1) the COMBIXE-P node has only

one child; and (2) the map in the COMB~NEP node for its only child is an identity

map. Eliminating neop REGR0UP-P and C0MBiNE-P nodes avoids unnecessary

data copying.

The plan shown in Fig. 4.11(a) contains 5 neop R E G R O U P S nodes (indicated

by arrows). They are deleted in this step of plan refinement and the plan shown in

Fig- 4.11(b) results.

The most important task of the plan refinement phase is to determine the chu&

ordering to be used by each operator in an iterator plan tree. Chunb: reordering

operators (REORDERS) are added to the plan if necessary to ensure that each

operator can consume chunks in the expected order.

Chu& iteration order is important because it affects the amount of data that

must be buffered by physical operators. The amount of buffering required depends

on severd factors: the input and output chu& shapes, the shape of the whole

array, and the order in which c h d s are processed. Fig. 4-18 illustrates this in

two dimensions. The left hand side of the figure shows an array with shape (8,8)

being regrouped in O-order (row-at-a-time) from chunks of shape (1,4) to c h d s

of shape (2,2). Clearly, the REGROUP-P operator must buffer 2 rows of ceus, or a

total of 1 input chunks. The right haad side of the figure shows the same regrouping

operation, but this time in 1-order (column-at-a-time). The REGROUPP operator

must now buffer 4 columns of the array, or a total of 8 input chunks, twice as much

as was required in O-order. Mod*ing the shape of the array would change this

cornparison. For example, if the array were twice as wide, the memory requirement

* --- \ CI,~> chunks consumcd - - 1 -. --- -_ - Q,2> chunks proàuceci A

O-order 1 -order
chunk production/consurnption chu& production/consumption

Figure 4.18: Regrouping in O-order and in 1-order.

for O-order would double, but the requirement for 1-order would remain unchanged.

The optimizer attempts to minimize the total memory requirements of a plan

by considering a large space of possible evaluation orders for the operators in an

AML i terator plan tree. Minirnizing the memory requirement is important because

it can make the difference between a plan that can execute entirely in memory and

one that cannot. In the latter case, it is necessary to split the plan by materiolizing

partial results on secondaxy storage, with a corresponding increase in execution

cost.

If a physical operator consumes a total of k c h d s , there are k! ways those

chunks could be ordered. The optimizer does not consider all such orderings. In-

stead, it considers d possible iteration orders for each operator, where d is the

maximum dimensionality of ony array appearing in the AML plan. These d orders

are the i-orders defhed in Definition 4.4.1 for O 5 i < d. Other orders, such as

CErlPTER 4. AML QUERY PROCESSING

the Zcurve or the Hilbert curve described in Section 7-12?, are also possible and

possibly even usefd, especially if chu& in the base mays have been laid out in

such an order on secondaxy storage. For sirnplicity's sake, the optimizer does not

consider them.

Because an array consumer's c h d ordering must match that of the ana- pr*

L ever- ducer, the ordering decisions for the various operators are not independent. \i

theless, a producer and a consumer can use different ch& orders if a REORDERP

operator is inserted between them in the plan. A REORDERT operator itself has

a memory cost, since the entire array must be buffered to change the chunk or-

dering. '' In considering a change in ch& order, the optimizer must balance the

additional cost of reordering with the potential downstream benefits it may bring.

In an n-operator plan, dn possible assigpments of iteration orders to operators

exist . A dynamic programming algorithm is used to find a minimum memory cost

assignment of iteration orders to plan operators in time O(nk) . For each operator

x and order i, the algorithm determines Ci(x), the minimum cost of the plan subtree

rooted at x assuming that x's output is in i-order. Let K be the set of children of

x in the plan. The minimum subtree cost can be expressed recursively as:

where ~ (x) is the memory cost of operator x itself in i-order, and c,i(reord(y)) is

the cost of a j-order to i-order REORDER-P operator inserted between y and x in

1°~rrayDB uses random access to read chunks (tiles) of an array stored on disk. Therefore, a
LEAFS operator does not materialize its entire input array in memory.

CHAPTER 4. -4ML Q UERY PROCESSING

the plan. In other words, to produce x's result in i-order, each child of x either

produces its resdt in i-order or it produces its result in some other order and a

REORDERP is inserted after that child to convert its output to i-order before it

reaches x. If x is a L E A F T operator, then Ci(x) = c;(x).

The dynamic programming algorithm proceeds bottom up through a plan tree.

generating the costs C i (x) for a node x once dl the costs C';(y) are linowu for all

the children y of the node x. To each plan tree node x with k children, the dy-

namic programming algorithm associates a cost table containing d rom of the form

(Ci(x), choicei, choice2, - - - , cha'cec), where O 5 i < d and &&cej is the iteration

order for the j-th child (1 5 j 5 k) to achieve the subtree cost C ; (x) . When

the dynamic programming algonthm finishes, d plans are available to evaluate the

AML expression, each one generating the result array in a certain order. Out of

these d plans, the cheapest plan is chosen for evaluation. The iteration orders of

the operators in the cheapest plan are determined using a topdown traversal of the

plan tree to select the appropriate Uchoicen entries from the cost tables.

4.5.1 Physical Operator Memory Cost Estimation

Optimization depends on memory cost estimates c i (x) for each operator x in a

plan. The cost of a particular operator depends on details of its implementation-

for example, in what size units it allocates space. ui general, each operator has an

associated costing method which can be invoked by the optimizer to obtain a cost

estimate for eduation of that operator in a particular order. The cost estimates

that are currently being used in ArrayDB are based on the simplifying assumption

that the unit of buffer space allocation when i-order is being used is a slab of

input c h d s in dimension i. The size of such a slab depends on the length of the

chu& in dimension i and on the lengths of the entire input array in the remaining

dimensions. Under this assumption, the cost estimate for each type of physical

operator is given in Fig. 4.7 under the column heading "Buffer Space Required (for

i-order)". In general, the cost vector for a L E A F ~ operator can be mrtintained

in system catalogs, and it would depend on the access method implemented by

the leaf. Currently, L E A F ~ operators take input fiom flat fdes ancl have costs as

described in Fig. 4.7.

4.5.2 An Example Illustrating the Dynamic Programming

Algorit hm

When the dynamic programming algorithm is applied to the plan in Fig. 4.11(b),

the cost tables shom in Fig. 4.19 result. The node names in Fig. 4.19 refer to

those in Fig. 4.U(b). The costs in Fig. 4.19 are calculated based on the following

assumptions. The array element size for the leaf arrays is 1 byte. For the noise

reduce function, both the input element size and the output elements size are 1

byte each. For the TV1 function, the input element size is 1 byte and the output

element size is 8 bytes.

From Fig. 4.19, we leam that there are two cheapest plans for evaluating the

'TV1 query: all the iterators can iterate in O-order or al1 can iterate in 1-order. 4

Figure 4.19: The result of the dynamic programming algorithm.

Node

B

4.6 Query Evaluation

M e r plan refinement, the plan is ready for evaluation. Suppose that root is the

root node of such a plan. From the output chu& shape and the output array shape

Dimension O

of roof it is easy to determine n, the number of GetNext() calls to be made to

cost in KB
4195

root, by dividing the size of the latter by the size of the former. The ~seudecode

Dimension 2
cost in IiB 1 choice

4721 1 O
choice

O

Dimension l

in Fig. 4.20 describes how the output array of root can be generated one chu&

cost in KB
4195

at a time. " The chunb-s arrive in a particular order (such as row-major order or

choice
1

column-major order) and can be processed immediately by the application or they

can be stored in a buffer for later use.

"Other methods are possible. For exarnple, by adding as the root node of the plan tree a
REGROUPJJ operator whose input chunk shape is the output chu& shape of mot and whose output
chunk shape is the output array shape, the output array can be generated by one GetNextO cal1
to the new REGROUPP operator.

CE4PTER 4. -4ML Q UERY PROCESSING

Determine n, the number of GetNext() calls to the root iterator;
Init(root); // initiaIize the root iterator
for i t l to n

GetNext (root) ;
Process this c h d of the result array or store it for later use:

end for // for loop ends
Close(root); // close the root iterator

Figure 4.20: Pseud-code to generate the result array of aa ,4ML eqression.

The simplicity and generality of the pseud-code in Fig. 4.20 are due to the

iterator paradigm used to implement the physical operators. First, the I d () c d s

spread in an iterator pian tree from the root to the leaves. Then, the GetNext()

c d s cause the result array to be generated ch& by chunb; and bal ly , the Close()

c d s spread from the root to the leaves. The simple for loop in Fig. 4.20 hides a

cornplex sequence of Init 0, GetNext (), and Close() c d s that get made to generate

the result array.

Chapter 5

The Query Suite

One way to evaluate performance ofa DBiMS is to run it on a benchmark. For exam-

ple, the 007 benchmark [7] is intended to measure the performance of an object-

oriented DBMS. The Transaction Processing Performance Council offers several

benchmarks for transaction systems and decision support systems [14]. However,

it appears that no benchmark for an array DBMS exists. Therefore, a suite of

array queries was created to measure ArrayDBys performance. The queries in the

suite are described in this chapter. The empirical results obtained by measuring

ArrayDB's performance on the queries in the suite are presented in Chapter 6.

Three queries in the SEQUOI.4 2000 storage benchmark [65] deal with rasters,

and they can be considered array queries. However, AML can express only ar-

ray manipulating portions of those queries. Further, when measuring ArrayDB's

performance in Chapter 6, the effect of image clipping-the common operation per-

formed by all the three raster queries-will be considered. The three raster queries

also perform things such as selecting a band from a multi-band satellite image,

conputing an arithmetic function of several wavelength band values. and lon-ering

the image tesolution by a constant factor. The queries described in this chapter

perform similas image manipulations.

The suite contains five queries from the digital image processing domain. For

easy reference, the queries in the suite are given the following names: TVI. NDVI,

DESTRIPE, MASK, and w.4VTLET. TVI, NDVI, and DESTRIPE are based on

common image processing operations descnbed in [3î]. MASK was inspired by

a query described in a paper by Lohman and colleagues [3S]. W.4VELET uses

wavelet reconstmction os a method of constructing a high-resolution image from

four low-resolution images [63].

The following five sections describe the query suite. For simplicity and unifor-

mity, all the queries except WAVELET are constructed such that they manipulate

one or more bands of a multi-band satellite image such as the image A shown in

Fig. 1.1. For brevity, bands 1 through 7 of that image will be denoted by the names

Al through AT-

5.1 DESTRIPE

The destriping procedure [37, page 4831-a noise r e m o d operation-is an exam-

ple of an image rectification and restoration operation. Such operations correct

distorted or degraded image data to create a more faitMd representation of the

origind scene.

Some multispectral scanners aboard satellites sweep

taneously. To do that, they have multiple detectors in

multiple scan lines sirnul-

each band. The multiple

detectors-for example, six-are careWy calibrated and mat ched prior to the satel-

Lite launch. However, their radiometric response tends to drift over time, resulting

in relatively higher or lower values along every sixth line in the image data (for

example). Valid data is present in the defective lines but it must be normalized

with respect to their neighboring observations. The normalization is performed by

subtracting a value 6 from every sixth Line in the original image. The value d is

determined by computing a histogram for scan lines 1, 7, 13 and so on; a second

one for lines 2, 8, 14, and so on; and so forth. These histograms are compared in

terms of their mean and median values to arrive at the value of 6. Lillesand and

Kiefer show an illustration of the destriping procedure [37, page 4841.

For concreteness, let S = 25. Suppose that the APPLY function deduct25 with

unit-sized domain and range boxes performs the noise r e m 0 4 for one pixel d u e .

The APPLY pattern in dimension O can be used to apply deduct25 selectively to

the scan lines 1, 7, 13, and so on. The corrected lines can then be merged with

a subsampled version of the original image where the problem lines have been

eliminated. In the AML expression below, it is assumed that destriping is performed

on band five. The AML expression for As is ~ ~ ~ ~ (0 0 0 0 1 0 0 , A); the other bands can

dso be extracted from A similady.

CHAPTER 5- THE Q UERY SUITE

Computing vegetation indices using between-band differeoces and ratios is a com-

mody used image enhancement method. Image enhancement aims to create en-

hanced images from the original image data to increase the amount of information

that can be visudy interpreted from the data. As the name suggests. vegetation

indices indicate presence and condition of green vegetation.

Chapter 1 described the computation of the TVI array shown in Fig. 1.1 in

detail. The AML expressions for the TV1 array and for the intermediate arrays

used to compute it appeared in Section 2.2.5. Therefore, only the AML expression

for the final TV1 array appears here.

5.3 NDVI

Like TVI, NDVI (Normalized Difference Vegetation Index) is also a vegetation

index. NDVI is computed from data in AViHRR (Advanced Very High Resolution

Radiometer) sensor's bands 1 and 2 using the formula

CHAPSER 5. THE QUERI' SUITE 11s

where bi and & represent data fiom bands 1 and 2? respectively [3 f . page 4481.

Vegetated areas have positive XDVT values: areas with clouds. water. and snow

have negative NDVI values; rock and bare soi1 give NDVI values near O. It is

preferable that the data values bi and b2 be in tems of radiance or reflectance [37,

page 4481, ' rather than in u n i t s of pixel intensities.

Suppose that the pixel intensities in bands -41 and A2 are in the range O to 255.

Pixel intensity and absolute radiance are related to each other by the following

formula [37, page 4811:

Here, bout is the absolute spectral radiance d u e , b;, is the pixel intensity, L M I N

is the spectral radiance corresponding to the pixel intensity of 0, and L M A X is

the spectral radiance required to generate the maximum pixel intensity of 255. The

constants LikfIN ând L M A X are sensor-specific.

Suppose that the APP LY function dn2ar performs the conversion described by

Equation 5.4 and that the A P P L ~ function ndvi cornputes the NDVI as per Equa-

tion 5.3. dn2ar has unit-sized domain and range boxes. The AML query for the

NDVI computation can now be given as follows.

'Radiance is a measure of the "brightness" of a point on the ground, whereas reflectance is a
measure of the amount of light reflected by a surface. Radiance and reflectance are related [37,
page 22 1.

5.4 MASK

W4SK is an example of an image classification operation. Image classification

categorizes d the pixels in a digital image into one of several classes. 1LASE;'s

computation is described as follows [3S]: In an image, retrieve ail the pixels whose

intensities, when averaged with all the neighboring pixels. are betnreen two constant

values, Say 10 and 100.

The result pixels of the MASK query might not form an -4ML m a y and there-

fore, M.4SK7s result is a binary image containing a '1' in each position where the

pixel satisfis the criterion and a 'O' in ail the other positions-these are the two

classification classes.

Suppose that band 1 contains the original n x n image and that the function -
avg9 with Da,@ = (3,3) and = (1,l) calculates the average of the 9 pixels

(a central pixel and its 8 neighbors), compares it to the two constants 10 and 100,

and returns either O or 1. The AML expression for MASK is as follows.

A P P L Y (~ V ~ ~ , Ai, (3,3), (1,1)) (5.6)

Due to APPLY'S semantics, the output array of MASK has the shape (n-2, n-2).

If necessary, such a ma& can be expanded-using MERGE operators-by adding

îmo rows and two columns to it. The boundary pixels can be arbitrarily assigned

to the class '0'. (Other ways of handling the boundary condition are also possible.)

CHAPTER 5. THE QUERY SUITE

h;\ @
high-frequency

C components of

Figue 5.1: Wavelet decomposition.

5.5 WAVELET

WAVELET's computation is an example of multi-resolution image processing. In

multi-resolution image processing, images need to be viewed at multiple resolut ions.

For example, in remote sensing, the spatial resolution requù-ed to study an urban

ârea is usudy much different than that needed to study an agricdtural area or

the open ocean [3?, page 5991. The wavelet transfonn is one nTay to decompose a n

image into many components so that the image can be reconstructed at multiple

resolutions as needed. To understand how wavelet reconstruction morks, it is first

necessary to describe the wavelet-based image decomposition.

Fig. 5.1 shows an n x n image A on the left. Wavelet decomposition transforrns

each row of A as follows. -4 row is logically divided into 5 groups of 2 adjacent

pixels each. (n is even.) Suppose that the pixel values in a group are b and c. As

per the wavelet transform with the H m b a i s [63], two functions hi and h2, defined

by the following equations, are applied to b and c.

CHAPTER 5. THE Q UERE' SUITE

IOW EH/

Figure 5

dim. 1

h

k -
high resolution
image

-2: Wavelet reconstruction.

In Fig. 5.1, image B gathers the results of ali the hl function applications and

image C gathers the results of all the h2 function applications. Images B and C

have shapes n x 5. Next, the decomposition just described is applied to a,ll the

columns in images B and C. As a result, the column lengths shrink by half and a

set of four 5 x 5 images D, E, F, and G is generated. D contains the low-frequency

compooents of A, whereas G contains the high-frequency components of A. The

decomposition may then proceed recursively on the image D. (n is conveniently

chosen to be a power of two.) The decomposition ends when a set of usmaUn-for

example, 32 x 32-images is generated.

Wavelet reconstruction combines four low-resolution images to fom a high-

resolution image. Fig. 5.2 illustrates wavelet reconstruction. Image names have

been retained from Fig. 5.1. Suppose that D, E, F, and G are 5 x 5 images.

Wavelet reconstruction begins by combining D and E by putting one atop the

other in dimension 2 to generate the image H. Likewise, F and G combine to form

1. Suppose that (d, e) is a pair of matching pisels in H with d coming from D

and e from E. According to the Haar wavelet transfom. two functions and h;

are applied to the pair (d, e) thus:

In Fig. 5.2, the function ?r performs the tasks of KI and h2 by producing a 2 x 1

array with values (d + e, d - e) as output for each pair of pixels (d, e). Therefore,

the result of applying h to H (image B) is hvice as high as H. Similady, applied

to I produces the image C. The images B and C of shapes n x 5 are put one atop

the other to form the image J . The function & is similar to L except that one

application of IZ- produces a 1 x 2 may. Therefore, applying & to J produces an

n x n high-resolution image -4. Wavelet reconstruction can continue on the image

-4 by combining it with three other n x n images.

Both wavelet decomposition and wavelet reconstruction can be expressed using

AM L queries; the following description only shows how wavelet reconstruction is

achieved using AML. SpecificaUy, it is shown how AML can express one step of

wavelet reconstruction whereby the four low-resolutions images D, E, F, and G

in Fig. 5.2 combine to form the high-resolution image A. The four low-resoiution
-- - - -

*These tmo steps are unnecesary; they are included only because later on in this section, AML
will be used to express the wavelet reconstruction computation. Having these steps facilitates a
simple translation of wavelet reconstruction to AML.

30nce again, this step is perforrned only because it facilitates a simple translation of wavelet
reconstruction to AML.

CHH4PTER 5. THE Q UERY SUITE 123

images are typically stored together in one array Suppose that the array ..Y stores

D, E, F, and G concatenated in dimension O. D can be estracted from -Y a s

follows; the other three images can be extracted fiom S simiiarly

The AML eupressions for the images B, C, and A are as follows.

It is an interesting fact that al l the wavelet decomposition and reconstruction

transforms (and not just the ones with the Haar ba is functions that we have

chosen) have recursive structures simila to the ones s h o w in Fig. 5.1 and Fig. 5.2.

Therefore, AML cari express all such transforms.

WaveIet decomposition and reconstruction can also be used to obtain a lossy

image compression algorithm. During wavelet decomposition shom in Fig. 5.1, the

image G containhg the high-fiequency components of A is not stored. Due to the

nature of wavelet decomposition, mmy of the coefficients in G are zero (or close to

it). In addition, the human eye is less sensitive to high-frequency componeats than

it is to low-frequency components and therefore, discarding G does not introduce

noticeable degradation in image quality. For higher compression ratios, images

such as E and F in Fig. 5.1 can also be disczded at the expense of drops in image

CH-M'TER 5. THE Q uERY SUITE

quality

The image decompression proceeds as per the wavelet reconstruction shown in

Fig. 5.2. W l e n one or more of images E, F, and G are absent (because they were

discarded during image compression), d-zero images are used in their places.

Chapter 6

Experimental Results

ArrayDB's performance was measured using many experiments. This chapter de-

scribes the results of some of the more informative experiments.

Section 6.1 describes the workload, which consists of the five queries from the

query suite described in Chapter 5. Section 6.2 describes the experimental setup.

The remainder of the chapter presents the experimental results and makes three

points. First, Section 6.3 shows that the w a y query optimization techniques are

effective. Second, Section 6.4 shows that the query optimization techniques are not

too costly. Third, Section 6.5 shows that ArrayDB's iterator-based evaluation plans

are usually able to evaluate array queries efficiently. In particda, ArrayDB 's query

evaluation performance scales up. Moreover, for three out of the five queries in the

query suite, k a y D B 1 s query evaluation performance comes relatively close to that

of custom C++ programs. The experimental results also suggest some possible

enhancements to ArrayDB that could lead to performance improvements.

Figure 6.1: Characteristics of queries in the suite.

6.1 The Workload

XML expression
Equation 5.2
Equation 5-5
Equation 5-1

The empirical results reported in this chapter were obtained using a workload con-

sisting of the five queries described in Chapter 5 . Fig. 6.1 stimmarizes the query

suite. (For WAVELET, n in Equation 5-11 is 1024.) The ikst four queries are posed

on a 7 MB base array A. -4 contains a 7-band Landsat Thematic Mapper image

of the Washington, D.C. area. WAVELETys base array contains four 512 x 512

images that are concatenated in dimension 0, as would have been produced by the

wavelet decomposition procedure described in Section 5 .S. Thus, for WAVELET,

is (2048,512) with [Al = 1 MB. The output arrays of TVI and MASK have &es

slightly less than 1 MB; the other three queries produce exactly 1 MB output data.

The suite in Fig. 6.1 will be referred to as the "7 MB" suite. For the experiments

described in Section 6.5.1, the suite size is scaled up by increasing the sizes of the

two spatial dimensions of the base arrays appropriately. Queries in the scded up

suites generate scaled-up output arrays.

Output Array Shape

(1022.1022.1)
(1024.1024,l)
(1024,1024,l)

Query (Shapes of Input Arrays

MASK 1 x (1024,1024,7)

TV1
NDW

DESTRIPE
(1022~ 1022.1) Equation 5-6

\Vv4VELET

2 x (1024,1024.7)
2 x (1024: 1024.7)
2 x (1024,1024,î)

(1024,1024,l) 1 x (2043,512) Equation 5.14

6.2 Experimental Setup

The performance e'rperiments were run on a computer cded Mattawa. Mattan-a is

a Sun Ultra-10 computer running the Solaris 2.6 operating system and has 12s MB

of main memory. During the experiments reported in this chapter for d i c h running

times were measured, Mattawa's buffer cache was disabled using the "direct I/O"

feature available in Solaris 2.6. This avoids the problem of caching of the input

arrây during one experimental run affecting the running times of successive runs.

Unless stated otherwise, measured ninning times are wall-clock times, which

include CPU time and 1/0 time. To obtain the timings reported in this chapter,

Mattawa mas nui in single-user mode to ensure that wall-clock times were not af-

fected by other usexs7 processes. For timing experiments? each query was run 21

times and confidence intervals were calculated for the mean Nnning time. The

t-distribution with 20 degrees of freedom was used to establish the confidence in-

tervals. The confidence level was set at 0.99 or 99%. In the graphs of query ninning

times that appeu in this chapter, confidence intervals are not plotted unless their

widths are greater than &5% of the mean ritnning times. (This was done to reduce

clutter in graphs.)

Unless stated otherwise, the experiments were run on the "7 MB" suite in

which the input arrays were laid out on disk using tiles of shape (64,64). Each

m a y element is one byte, so the total tile size is 4 KB. The output chu& shapes

of the LEAFP operators (which implement AML7s leaf arrays) were made to match

the tile shapes. Accordingly, each tile was read using one 110 operation.

In the descriptions of empiricd resul ts, the phrase "optimization onn means

that all the .4ML query optimizations discussed in this thesis were enabled: the

phrase '-optimization off" means that the logical rewriting step and the step in

the plan refinement phase that deletes no-op physical operators from an -1'1 L plan

were disabled.

6.3 Effectiveness of Optimization

This thesis describes Mo important array query optimization techniques. The

f i s t one saves di& 1/0 and CPU time by reducing the reading and processing of

unnecessaq array data. The experiments reported in Section 6.3.1 demonstrate

the effectiveness of this technique. The second technique reduces the buffer space

requirement of a n array query plan by choosing iteration orders of iterators intel-

ligently. The experiments reported in Section 6.3.2 show the effectiveness of this

technique.

6.3.1 Effect of Optimization on Query Evaluation Time

To show that SUB-pushdown reduces unnecessary dislc 1/0 and CPU processing, it

is necessary to introduce some unnecessary computation in the queries. This was

achieved by placing square clipping windows that were located at the centers of the

result mays of the queries. Fig. 6.2 shows a clipping window (shown shaded) that

is situated within an output array. The clipping fraction is defined as the size of the

dipping window divided by the size of the output array. For example, in Fig. 6.2,

the clipping fraction is 5 assuming that both the clipping window and the output

m a y are squore. The clipping fraction was m i e d from i (no clipping) to &.

1 l-> clipping window

Figure 6.2: Clipping widow-

For each of the queries in the suite, clipping windows were placed by prefkxing

the query with two SUB operators. For example, the fTVI query is given by

S U B ~ (o ~ ~ ~ ~ ~ " o ~ ~ ~ , SUBO(O 2551511~256, TVIQWERY)),

where T VIQUERY is the TV1 query defined by Equation 5.2.

Fig. 6.3 plots the query running times as a function of the clipping fraction,

with optimization on. As Fig. 6.3 shows, the Nnning times of queries decrease

as more data is clipped. Ideally, the ninning times should decrease by a factor

of 4 as we move almg successive points on a curve because the amount of data

produced by the query also decreases by a factor of 4 for successive points. In

practice, as the speedup -es in Fig. 6.4 demonstrate, gains reduce as the result

mays get smaller. The falloff of the speedup curves c k be attributed to at least

two reasons. First, there are some data-size-independent overheads in AML query

evaluation. Two examples of such overheads are the time to generate and optimize

a plan and the time to open asd close files that contain base arrays. Such times do

not depend on the amount of data processed by a plan, and therefore, for smoller

result arrays (leadhg to smaller evaluation times), they contribute (relatively) more

to the total ninning times. Second, a shrinliing clipping window may cause a

Ni -
NDVl --

DESTRIPE --a----
MASK -

WAVELET -&--

1 /1 1 /4 1 C
clipping fraction

Figure 6.3: Running times of -4rrayDB with optimization on.

higher percentage of overhead in I/O. The number of tiles touching the boundary

of a clipping window is proportional to the perimeter of the window, whereas the

number of tiles enclosed within the clipping window is proportional to the area of

the window. As a clipping window starts to shrinbr, the former quantity starts to

dominate the latter. Therefore, smaller clipping windows cause a higher percentage

1/0 overhead. Further, array data from tiles in the former class needs to be filtered

and this filtering adds a higher percentage of CPU overhead.

Fig. 6.5 shows the performance of ArrayDB with optimization off. The graphs

are flat because the clipping ÇUBs are not pushed down in AML trees. Each query

generates its fidl result array and then performs the necessary clipping. The Nnning

times show a siight drop between the and a points because by default, physical

operators doing clipping are put on top of each AML plan tree. For f queries, these

operators do data copy-a degenerate form of clipping. ui queries, such operators

TV1 -
NDVI -

DESTRIPE --a---
MASK -*-

1 14 1/16 1 164
clipping fraction

Figure 6.4: Speedup c w e s for ArrayDB with optimization on.

Figure

NI -
NDVI -

DESTRIPE --0----

MASK -
WAVELET ---

6 ! I I

1 /1 1 /4 1/16 1 64 1 /
clipping fraction

6.5: Running times of ArrayDB with optimization off.

do clipping and therefore copy less data.

A cornparison of the f points of the curves from Fig. 6.3 and Fig. 6.5 shows

that eialuation is faster with optimization on even at f points (when there are no

clipping SUB operators to push down). This is because the plans generated with

optimization off may contain neop physical operators that introduce additional

data copying cost S. ArrayDB's query op timizer eliminates such neops.

6.3.2 ~ # e c t of Optimization on Buffer Space Requirement

The experiments in this section show that the dq~amic-programming-based buiffer

space optimization is effective in that it intelligently pi& iteration orders for plan

iterators. For brevity, the memory costs of only the TV1 plans are presented.

However, the observations made are also valid for other queries in the suite.

ArrayDB stores AML leaf arrays on disk using regular tiling, and tile shapes

affect memory costs of AML plans. In the first experiment, the tile size is fixed

at 4 KB and the tile shapes are wied. TVI's base array is three-dimensional and

therefore the dynamic programming algorithm produces the cheapest plan that

generates TVI's result w a y in corder, in 1-order, and in 2-order. Fig. 6.6 shows

the costs of the plans generated by ArrayDB for the TV1 query, with and without

optimization. On each line, the best (cheapest) plan costs are printed in italics.

Fig. 6.7 reports the results of the same experiment but with the tile size varied.

The results contained in Fig. 6.6 and Fig. 6.7 demonstrate the importance of

proper assignment of evaluation order to plan iterators. Several important points

c m be made fiom the results. First, the choice of evaluation order is important:

bad orders are much mrorse than good orders, Second. best choice of eduation

order depends on data layout (tile shape). Unless layout is fked for a l l data (which

is not a good idea because different workloads might ben&t fkom dXerent layouts).

evaluation order should be chosen dynamïcally to reflect layout of data used by a

particular query The dynamic programming algorithm is flesible enough to adapt

to different array layouts: notice how the optimal plans generate the result arrays

in different orders as the tile shape changes. ' Third, the combination of evaluation-

order optimization and logical rewrite optimization produces substantial memory

cost reductions: plan costs without rewrite optimization are much higher than the

ones with rewrite optimization. It should be noted, however, that evaluation order

optimization by itself is also valuable: optimal plan costs continue to be lower thân

non-optimal ones when rewrite optimization is turned off.

Fig. 6.7 shows that plans with larger tiles (112 KB and 1 MB) cost more than

plans with smaller tiles do because luger tiles result in larger (partial) intermediate

arrays .

In Fig. 6.6, notice that when the optimization is on, the cheapest plans (33 KB)

cost only 1.5% of the costliest plan (2236 KB). Thus, tile shape has a tremendous

impact on a plan's memory cost. Therefore, if one knows the types of queries that

will be posed often on a given set of anays, the dynamic progritmraing algorithm

can be used to suggest good array layout (tiling) schemes. This can be achieved by

Nnning the dynamic programming algorithm on the anticipated queries assuming

'In Fig. 6.6, the winning orders for non-square tileshapes correspond to dimensions in which tile
lengths are shorter. This follows from the operator cost assumptions given in Section 4.4.1 for the
two costly operators REPLICATES and REGROUPP and from obsewing that TVI's intermediate
arrays have square shapes in the spatial dimensions.

Tile Shape

Figure 6.8: Costs of the $TV1 plans using two algorithms.

Costs of $TV1 (in IiB)
O~tiniization On 1 O~timization Off * 1 1 Dyn. Prog. LU1 Zero 1 Dm. Prog. -AU Zero

different tile shapes for the base arrays and then by choosing one (or a few) tiling

methods that yield low que- costs. The dynamic programming algonthm can also

be used to choose an access path if more than one is available; that is, if an array

is stored using more than one tiling method. ArrayDB does not currently do this,

but there would be a substantial payoff in practice if this optimization \vas added.

The dynamic progra.mming algorithm can generate plans in which different o p

erators use different evaluation orders. UOrder On in Fig. 6.6 means that the final

operator uses O-order; other operators may use other orders. To determine whether

this flexibility is important, an experiment mraç designed that compared the dynamic

- programming algori thm to another algorithm that performed simpler evaluation or-

der selection. The simpler algorithm dways assigns the same iteration order to al1

the iterators in an AML plan. For concreteness, suppose that this 'AU Zero' algo-

rithm assigns O-orders to all the iterators and therefore can only generate the result

arrays row-by-row. For a fair cornparison, the dynamic progr;Imming algorithm

was also required to generate the result =ays in O-order.

Fig. 6.8 shows the "order-On plan costs produced by the tmo algorithms (dy-

* ~ n application that draws a digital image on a CRT screen may dernand that a result array
be generated in row-major order.

14101 '
944
35

(1024,1,1) 1 530
(64: 64,l)
(1.1024.1)

1037 / 2124
86
8

86
8

9%
35

namic programming and Zero') for the $Tt? q u e - The tile shape is ~a r i ed

and the optimizations are selectively turned on and off. As can be seen. the d -

namic programming algorithm adapts to different tile shapes and for the tile shape

(1024,1, l), produces cheaper plans than the 'Ali Zero' algorithm does. In particu-

l a , for the tile shape (1024,1, l), the dpamic programming algorithm produces a

plan that generates the noise-reduced versions of bands 3 and 4 in 1-order and then

uses an order-changing REORDER3 operator so that the result TV1 array can be

generated in O-order. The 'AU Zero' algorithm lacks this flexibility and therefore,

the cost of its plan is higher.

6.4 Cost of ArrayDB Query Optimization

The e-xperiments in this section show that the query optimization times are s m d

compared to the query evaluation times .

Fig. 6.9 shows CPU time required for query optimization for the 7 MB suite.

For larger clipping fractions, the op timization times are insignificant compared to

the running times of the same queries shown in Fig. 6.3. The optimization time

increases as clipping is introduced because the clipping ~ U B S are pushed down in

AML parse trees and this pushdown takes time.

AML query optimization t h e is a complex function of parameters such as

pattern lengths and the number of lys in patterns. As logical rewrites occm

during query optimization, the patterns associated with AML logical operators

change. Pattern manipulations performed during query rewriting are quicker for

shorter patterns than for longer patterns. For instance, the aNDVI query with

1 L I

1 /1 t 14 1 116 1 /64 11256
clipping fraction

Figure 6.9: Query optimization t h e of ArrayDB.

the clipping pattern 0 ~ ~ ~ 1 ~ ~ ~ 0 ~ ~ ~ for both the dimensions O and 1 is optimized

in about 0.09 seconds as per Fig. 6.9. If the clipping is achieved with a much

shorter pattern " O l n 7 the optimization time drops to 0.02 seconds. As a second

example, the optimization times of the &NDW query with the clipping patterns

~ O ~ ~ O ~ ~ ~ ~ ~ ~ O ~ Ï O ~ W ~ Z O Z S O ~ ~ ~ O ~ W ~ ~ ~ O and 0151 are 0.61 seconds and 0.03 seconds,

respectively.

The query optimization time also depends on the number of l y s in patterns

because the execution time of a rule such as Rule 11 (which pulls a SUB out of an

APPLY) depends on the number of 1's in a pattern and because, in the bitmap rep-

resentation of patterns that ArrayDB uses, the bitmap set up time is proportional

to the number of 1's in the bitmap. Prirnarily due to this dependency, the query

optimization times in Fig. 6.9 drop a little as queries generate s m d e r arrays: as

the size of the clipping window decreases, so do the number of 1's in the clipping

eval. tirne w/o opt. -
eval- time w/ opt. -

op:. time --O----

O
a
cn

111 1 /4 1/16 1/64 1 /256
clipping fraction

Figure 6.10: Query optimization and evaluation times of TVI.

patterns. (The lengths of the cfipping patterns are constant.)

Fig. 6.10 shows query optimization and evaluation tirnes for TVI. The topmost

line in Fig. 6.10 shows TVI's evaluation times without optimization. As can be

seen, benefit of optimization far outweighs the cost. The time required to generate

the full TV1 array is more when the optimization is off than when it is on because

of two reasons. First, by default, two physical operators (of types R E G R O U ~ P and

COMBINEP) doing regrouping and filtering get put on top of each AML plan in

anticipation of clipping. When no clipping is needed, these operators do data copy-

a degenerate form of regrouping and filtering. Second, without query optimization,

the plan for TV1 contains 4 other no-op operators-two of them of type REGRO U P S

and two of them of type COMBINES-that perform unnecessary data copy. During

the plan rehement phase, such no-op physical operators are identified and removed.

6.5 Quality of ArrayDB's Query Evaluation Plans

This section describes two experirnents used to ewduate the query evduation mech-

anism of ArrayDB. The first experiment tests the scalability of Ana-DB by running

queries on larger base arrays. The second experiment compares ArrayDB's running

times with those of the special-purpose C++ programs for queries in the suite.

Severd lessons can be leamt fiom the latter experiment.

6-5.1 Scale-up of Array Sizes

Fig. 6.11 shows the nuining times of the queries when the base m a y size is varied.

Five base array sizes are chosen: 7 MB, 13.75 MB, 2s MB, 63 MB, and 112 MB.

Queries compute full result arrays. The graphs in Fig. 6.11 are plotted on a log-log

scale. Nearly straight lines in Fig. 6.11 indicate good scale-ups of &ng times

for varying array sizes. The ninning time for WDVI shows a jump between 28 MB

and 63 MB because of paging activity: the total memory requirement of the plan is

larger than available memory. ArrayDB currently does not include plan operators

to materialize intermediate results on disk in the event that the plan is too large.

However, such operators would be relatively straightforward to add.

6.5.2 Cornparison wit h C++ Programs

Previous sections showed the effectiveness of ArrayDB7s query optimisations by

comparing optimized and unoptimized query plans. Here, we attempt a more ab-

solute evaluation of the quality of ArrayDB plans by comparing them to custom,

query-specific C ++ programs.

. - 4
4 8 16 32 64 128

base anay size in MB

Figure 6.11: Scale-up of ArrayDB with optimization on.

-4 custom Cf + program was written for each of the five queries in the suite.

ArrayDB cannot match the running times of the custom progrnms, and the objec-

tive of this experiment is to determine the performance penalty incurred by using

ArrayDB. In exchange for this performmce penalty, ArrayDB offers benefits such as

a declarative query language, query optimization, and physical data independence.

The base array tile shape is set to (1024,1024) so that the arrays are laid out in

band-major order. All of the queries generate full result arrays. Fig. 6.12 shows the

comparison between ArrayDB and C++. For all of the queries except DESTRIPE,

both ArrayDB and C++ programs do the same n u b e r of 1/0 operations for e d -

uating the same query and therefore, a comparison between their CPU times shows

3~ similar observation was made by Musick and Critchlow (451 when they compared perfor-
mance of relational DBMSs and OR-DBMSs executing point, multi-point, and range queries wit h
that of native Unix fwrite and fread system calls.

Figure 6.12: Comparison of ArrayDB versus Cf+ programs.

Quew

TV1
NDVI

DESTRIPE
M -4SK

WAV'E LET

the performance penalty of using ArrayDB. The performance penalty is shonm in

the last column of Fig. 6.12 as the factor by which -4rrayDB was slower than the

C++ program in each experirnent.

For TVT, NDVI, and MASK, ArrayDB cornes relatively close to the custom

programs. For DESTRIPE and WAVELET, ArrayDB is much slower. This is

mainly because ArrayDB7s plan involves much more copying and reorganization of

data in memory than what the custom programs do. When arrays are large, such

copying and reorganization is costly. A second- reason is that ArrayDB fails to

detect cornmon subexpressions.

The data copying overhead occurs in WAVELET and DESTRIPE for the fol-

lowing reasons. The AML query for WAVELET contains three MERGE operators

because APPLY is a unary operator and the inverse Haar basis functions are binary

operations. To apply the inverse Haar transformations, AML must first combine

the two input axrays (using MERGE) into a single array. In the resulting plan, the

MERGE is implemented by a COMBINES operator. At present, the implementation

of the COMBINE^ operator requires explicit data movement. The C++ program

for WAVELET avoids data movement by stepping through the elements of the two

-4rrayDB
CPU time (sec)

12.53
S.05
5.44
3.6'1
9.36

Cf+
CPU time (sec)

2.32
1.41
0.03
0.34
0.18

-krrayDB slower
by a factor of

5.64
5.4s

1S1.33
10.79
52.00

arrays in lodc step, performing calculations on-the-fly (and thus avoiding function

c d overhead also). For DESTRIPEI the Cf+ program reads the desired band

and simply corrects every sixth row in it, making updates in place. ArrayDB first

computes the corrected rows, then computes the uncorrected ron-s, and then merges

the arrays formed in the previous two steps.

ArrayDB 's failure to detect common subexpressions furthei affects DES TRIPE.

Li the plan for DESTRIPE, -4rrayDB reads the base array twice from disk, once

to compute the corrected rows and once to extract the uncorrected rows. "Vith

common subexpression detect ion, one reading would have been avoided.

Probably the most important lesson that c m be leamt from this "-4rrayDB

versus C++" experiment is t his: efficient query evaluation requires bot h language

and optimization support. For example, an APPLY operator which applies a user-

defined function place" would have sped up DESTRIPE; a binary APPLY would

have sped up WAVELET. Alternately, one can argue that in both of these cases, a

more sophisticated query optimizer might have been able to generate better execu-

tion plans (at least , in theory). Of course, there is an interplay between laquage

design and query optimization. For example, index-based AML operators make

SUB-pushdown possible but do not help in reordering or combing two APPLY oper-

ators.

--

4This is the reason why ArrayDB and the C++ program for DESTFüPE do not perform the
same number of 1 / 0 operations.

Chapter 7

Related Work

This chapter is a survey of array-related research. The survey is not restricted to the

database field, since m a y s occur naturally as a data type in several domains and

array research exists in fields outside the database area. It covers three major array-

related issues: anay operation implementation, languages for array manipulation,

and array support in database management systems.

Section 7.1 covers two methods for implementing array operations. The meth-

ods map an n-dimensional array to lower-level abstractions (relations and byte se-

quences) before implementing array operations on the lower level abstractions. The

languages for speciSing array manipulations are surveyed in Section 7.2. The Izn-

guages are divided into two categories based on whether or not they have operators

that operate on entire arrays. Array query optimizations-and their relationships

with the optimizations considered in this thesis-are also studied in Section 7.2.

Section 7.3 summarizes how commercial and research DBMSs support array data.

Two DBMS categories are considered: general purpose relational DBMSs and spe-

cial purpose array DBMSs.

7.1 Array Operation Implementation

This section surveys differeot met hods for irnplement ing array operat ions. (The lan-

guages and interfaces through tt-hich the array operations are specified are described

in Section 7.2.) Array operations are implemented by mapping n-dimensional ar-

rays to sorne lower-level- abstraction. Then, operations on n-dimensional arrays are

mapped to operations on the lower-level abstraction. Two lower-level abstractions

considered in this section are: relation and byte sequence.

7.1.1 Relat ional Mapping

Since a relation is a set, no order exists among relational tuples. Therefore, when

arrays are modeled as relations, array element values are stored together with their

indices in relational tuples. For example, a ttvo-dimensional array can be repre-

sented as a relation with tuples of the fonn (i: j, val), where i and j are indices and

val is the array value at that index.

The biggest advantage of relational mapping is that it can be easily supported

through a relational DBMS. The SQL query language can be used for array ma-

nipulations and al1 of the benefits of database systems, such as physical data in-

dependence, transactions, concurrency control, recovery, and query optimization

are readily amilable. Complex array manipulations can be specified by embedding

SQL within a programming language such as C.

The relational mapping has several shortcomings dso. Storing array elements

as t uples introduces storage overhead for indices. More important Il-, the space

required to store an array element is dependent on the array's dimensionalit- For

efficient array element access, auxi1ia.q- index structures may be required. For

example, for a relation with tuples of the form (i, j, val) mentioned above. indices

on i and j may be necessary. Such index structures also add to the storage overhead.

Array manipulations themselves may be nonintuitive to specie and inefficient to

evaluate. For eiuample, it is possible to mite as SQL query that performs discrete

convolution-an APPLY-like operation-on a twcdimensional image (where image

shape and kernel shape ore fixed). If the kernel contains k elements, the query

invalves a k-way self-join of the relation that stores the image. Such a query is

probably inefficient to evaluate. When manipulating arrays using SQL, the result

relation (if it is an array) may have to be translated to a multidirnensional form

before it c m be used.

Modeling arrays as relations may be a good strategy for domains where sparse

arrays are often used, such as in on-line analytical processing (OL.4P) applications

and in some scientific computations [74, 201. Relational OLAP (ROLAP) systems,

for example, use s tar schernas or snowrflake schernas to represent multidimensional

views of data [12]. In a star schema, tuples of the form (i, j, val) are stored in a

relation called the fact table and are interpreted as follows. i and j are foreign

keys that index separate d imens ion tables and val stores the array element value

(called measure in OLAP terminology). The fact table is at the center of the star

and one or more dimension tables form its branches. The fact table stores most of

the multidimensional data; dimension tables are much smaller. Dimension tables

are needed because in OLAP applications, dimensions can also have attributes.

For example, a "productn dimension can have attributes such as product number.

product description, and unit price.

7.1.2 Byte Sequence Mapping

In this approach, an n-dimensional array is represented as a one-dimensional ar-

ray of bytes. Files and binary large objects (BLOBs) support such byte sequence

mapping of n-dimensional arrays. Byte sequence mapping is also relevant for array

storage because many storage devices such as disk and tape present memory as a

linear anay of "slots" of fixed capacity.

The Linearization Problem

A key issue when mapping an n-dimensional array to a one-dimensional array is

how the n-dimensional m a y is linearized; that is, the order in which the elements

of the n-dimensional array are traversed. This is the linearization problem.

Rosenberg [55, 56, 541 identified several useful properties of a good linearization

technique: proximity-presenation, efficient indexing capability, storage utilization,

and extendibility.

-4 proximity-preserving linearization scheme supports clustering; t hat is, posi-

tions close to one another in the 11-dimensianal array are stored close to one another

in the one-dimensional array. Worliload description is necessary to determine which

elements are used together in the one-dimensional array. If an explicit workload

description is unavailable, t hen a common assumption is t hat workload will ex-

hibit spatial loca l i . That is, elements close to each other in the n-dimensional

array wiU tend to be used together. (For example, consider an n-dimensional range

query in a spatial database.) Under the assumption that the workload wili es-

hibit spatial locality, a proximity-preserving linearization scheme leads to bet t er

performance of array operat ions especially since many one-dimensional arrays have

blodc-structured implementations. For example, a group of array elements that are

stored close to one another in a one-dimensional array CM be read from disk using

one (or a few) disk read operations.

4 lineasization scheme supports efficient indexing if, given the index of an n-

dimensional array element, it can efficiently determine the element's index in the

one-dimensional array. Efficient indexing is important because element access is a

common array operation.

A linearization scheme utilizes storage efficiently if it does not leave large gaps

in the one-dimensional array.

Extendibility refers to the ability to change the linearization incrementally if

the n-dimensional array grows, shrinks, or changes its shape.

Not al l the four properties of linearization schemes are mutually compatible.

The intuition that extendible allocation schemes must inevit ably leave gaps when

storing arrays turns out to be accurate [55]. Rosenberg [56] studied whether ex-

tendible schemes can preserve proximity. He showed that finite arrays and arrays

infinite in only one dimension can preserve proximity globally. However, arrays

infinite in all the dimensions cannot preserve proximity globdy.

Linearization Schemes

A description of various linearization schemes follows. For each scheme. n-e note

which of the four desirable properties mentioned in the previous section it has.

Linear Order

Lineâr ordering (such as row-major ordering and columa-major ordering) stores

successive slabs of an n-dimensional array consecutively in the one-dimensional

array and is the most cornmon ty-pe of array linearization scheme. Row-major order

for an n-dimensional array refers to a scheme in d i c h elements of the n-dimensional

array are traversed such that the rightmost index (the index for dimension n - 1)

varies the fastest and the leftmost index (the one for dimension O) varies the slowest.

Row-major order is shomn in Fig. ?.l(a). Programming languages C and C++

define a row-major layout for their a,rrays, whereas Fortran defines a column-major

layout for its arrays. BLISS permits both row-major and column-major layouts

and lets users choose between them [Xi].

Linear orders offer clustering that is dependent on the dimension. The best

clustering occurs in a dimension whose index varies the fastest when traversing

an n-dimensional array. The worst clustering occurs in a dimension whose index

varies the slowest when traversing an n-dimensional array. Linear orders permit

fast indexing and efficient storage utilization, but are easily extendible in only one

dimension. For example, in row-major order, adding a new row to an n-dimensional

array is easy but adding a new column involves a lot of data movement.

Linear orders are easy to implement but the performance of an array query

Figure 7.1: Arrôy lineacization in a linear order and in a tiled order.

requiring access to an arbitrary subarray may be poor.

Tiling

Tiling generalizes the linear order. A tile is a multidimensional subarray of an n-

dimensional array. Tiles partition an may. The array elements within a tiIe are

lineârized in some order. The tiles themselves are also linearized in some order.

In the simplest form of tiling, cded regular tiling, all the tiles of an array have

the same shape and size. A three-dimensional array tiled using regular tiling is

shown in Fig. I.l(b). DeWitt et al. [15] used regular tiling to store raster images

in the Paradise DBMS for geographic information systems. ArrayDB uses regular

tiles and stores them in a UNI?(flat file. Both tiles and elements within tiles are

stored in row-major order.

A naturd extension of regular tiling uses tiles of various shapes and sizes. For

example, the T2 m a y database system stores images using tiles of possibly differ-

ent sizes [9]. Furtado and Baumann [lS] proposed three tile categories more gen-

erd than regular t iling : irregular, par tially aligned, and t o t d y nonaligned. Two-

dimensional irregular, partially aligned, and totally nonaligned tilings are shown in

(a) (b) (cl

Figure 7.2: Irregular, partially aligned, and totally nonaligned tilings.

Fig. 7.2, parts (a), (b), and (c), respectively. In irregular tiling, the hyperplanes

that cut the array dong a dimension are not equidistant for at least one dimension.

In nonaligned tiling, some tiles exist whose vertices do not correspond to those of

the neighboring tiles. Parti* aligned tiling is a End of nonaligned tiling where at

least along one dimension, tiles are aligned (the column dimension in Fig. 7.2(b)).

In totally nonaligned tiling, no such dimension exists.

Tiling offers good clustering for elements within a tile if the tile size is small. For

large tiles, good clustering depends on the method used to linearize the tile elements.

Good clustering among tiles also depends on the method used to linearize the tiles.

Regular tiling provides efficie~t indexing; for more general types of tilings however,

an a~uiliary index structure is necessary. Spatial access methods such as Quad

tree [16], K-D-B-Tree [53], PK-tree [72], R-tree [24], and R*-tree [5]-designed to

handle multidimensiond points, lines, rectangles, and other geometrical bodies-

can serve as access methods for irregularly-tiled arrays. For example, an R-tree can

be built on top of such an array, permitting efficient access to the necessary tiles.

(a) (b) (cl

Figure 7.3: Z curve, Hilbert m e , and Gray code rnapping.

Space FUing Curves

Space filling curves such as the Z curve, the Hilbert N v e , and the Gray code

mapping can be used to linearize arrays. The Z curve, the Hilbert curve, and the

Gray code mapping for a two-dimensional m a y are shown in Fig. 7.3: parts (a),

(b), and (c), respectively. These c w e s are dehed recursively and they also allow

encodings of non-rect angular arrays [31].

These curves have good clustering properties. Aiya e t al. [2] found that the

Hilbert cuve has better clustering properties than the Z c w e when they used them

to encode mdtidimensiond arrays and their spatial extents in the implementation

of a prototype DBMS c d e d QBISM. Jagadish [31] also advocates the Hilbert curve

when mapping a multidimensional-space to a one-dimensional space. Space W n g

curves permit eEcient indexing. They utilize space well if array lengths are powers

of two and c m be extended easily if the extended arrays also have lengths that are

poa-ers of two.

Some Other Linearization Schemes

This section describes some linearization techniques that Rosenberg [55, 56, 541

studied to illustrate the interplay among various criteria such as efficient indexing

Figure 7.4: Linearization scheme for a tnrdimensional a n a -

Figure 7.5:

(a)

Two linearization schernes studied by Rosen

and storage utilization.

Suppose that in a linearization scheme of a tw~dirnensional array, an element

with index [i, j] is stored at the location with address 2' - 3' - 1. (This example

is adapted from [55, page 2911.) Suppose that the memory addresses start at O.

The layout of an array with shape (3,4) under this linearization scheme is shown in

Fig. 7.4. In that figure, a number in an array ceU denotes the cell's position in the

linearization order. This scheme needs 108 memory locations to store 12 elements

and so it utilizes storage poorly. In addition, the luiearization order computation

requires exponentiation-an expensive operation. Despite these shortcomi~igs, it

is easy to see that an array stored using this scheme can be extended in both the

dimensions easily.

Although the notions of extendibility and storage utilization a e mutudy in-

compatible, better storage utilization is possible for arrays of fked shape-for ex-

ample, square arrays. Fig. 7.5 shows two storage schemes for t~v~dimensiond

extendible a a y s (figures adapted from [54, page 6641). The scheme in Fig. 7.5(a)

stores array elements using a diagonal front and is usefd for storing triangular ar-

rays, whereas that in Fig. 7 4 b) stores elements using a square front and achieves

extendibility in both the dimensions with no storage overhead for square arrays.

Rosenberg [55] gave a general result that efficient storage schemes can be designed

for w a y s of any f ied shape.

Linearization and ArrayDB

-4rray linearization schemes can be used for array storage on disk because disk

cas b e thought of as a long linear array of fied-capacity %lotsn. ArrayDB treats

AML7s leaf arrays like APPLYS whose function applications read array data fiom

disk. Each c d to such an APPLY function reads an array chunh- (a regular tile)

fiom disk. Thus, ArrayDB supports regular tiling. ' A regularly-tiled array's tile

shape can be specified in ,4rrayDB's array catalog. If array lengths are powers of

two, space filling curves such as Z curve, Hilbert curve, and Gray code mapping can

be viewed as regular tiling methods (where tile lengths are powers of two) and can

be supported in ArrayDB. Using the AML query optimization techniques proposed

in this thesis, ArrayDB avoids retrieving tiles that are unnecessary to compute a

query result . Further, ArrayDB chooses tile retrieval order intelligently so that

memory use of an AML plan is minimized.

'The current version of ArrayDB supports file-based regular tiling.

7.1.3 Redundancy and Partitionhg

.4rrays are potentiay large and an array collection may not fit entirely on a single

device and therefore may need to be stored across many devices. In some cases.

an array might be replicated and copies might be organized differentiy so that

more than one access path to the m a y is available. The issues of partitioning and

redundancy aise no matter which mapping (relationai or byte sequence) is used to

implement array operations.

Redwidancy involves storing multiple copies of arrays, typically on different d e

vices. K byte sequence mapping is being used, different copies can be linearized the

same way or differently. In both cases, higher 1/0 throughput can be achieved be-

cause more than one device can be kept busy simultaneously while evaluating array

queries. In the latter case, many access paths to stored arrays are available and

thus workloads that vary in their data access patterns c m be supported efficiently.

Redundancy also provides data protection in the event of device failure.

In partitioning, a logical array is stored not on one device but across several

devices. The goal of partitioning is to improve 1/0 bandwidth: an array stored

across n devices (each with its own driver and channeel) can be read and written

in parallel, cutting the access time by a factor of i/n (idedy). The partitioning

method just described c m be called inter-device partitioning because several devices

are involved in partitioning. Intra-device partationing occws when an array is stored

across multiple platters of the same disk (for example). In this case, parallelism

in data reading and writing c m be achieved because multiple read/write heads are

available for I/ O.

Sarawagi and S tonebraker [SI studied redundant and parti tioned array s torage.

Their motivation for array partitioning was different. They used a robot arm con-

troUed tertiary device containhg disks and tapes for inter-device array partitioning.

For disks, the time for the robot arm to switch media was luge compared to the

average se& tirne for disks. Therefore, to reduce media switches, they partitioned

their arrays such that parts of arrays accessed together were stored on the same

media. In Titan [IO], intra-device partitioning of %band satellite images is done

by storing data blocks of bands 1 and 2 contiguously and by storing data blocks of

bands 3, 4, and 5 contiguously. Such parrtitioning was motivated by the observa-

tion that most satellite data processing progrâms processed one of the two groups

mentioned,

Replication and partitioning problems for arrays do not appear much harder

than the corresponding problems for other data types such as relations and there-

fore, general data partitioning and redundancy schemes such as disk striping [57]

and Redundant Arrays of Inexpensive Disks (lL4ID) [49] can be used with axrays.

7.2 Manipulation of Array Data

This section is a survey of various programming languages, query languages, and

algebras in which arrays can be defined and manipulated. It is convenient to clas-

si% these languages in two broad categories: collection-on'enfed languages and

scalar-o~ented languages. According to Sipelstein and Blelloch [62], a language

is collection-oriented if collection types and operations for manipulating them "as

a whole" are primitive in the language. (Sets, sequences, arrays, vectors, and lists

are some examples of collection types.) In contrast, in a scalar-oriented language.

collections have to be masipulated element-wise by the programmer. For esample,

to add tivo arrays of the same shape, a scalar-oriented language may require explicit

loops iterating over the elements of the two arrays, adding the matching elements

in each loop iteration. For the same task, a collection-oriented language permits a

statement Iike C = A + B-

Section 7.2.1 describes collection-orient ed array languages; Section 7.2.2 de-

scribes scalar-oriented array languages. In both cases, a major emphasis is on the

types of optimizations that the languages support and on the relationships of those

optimizations with the array query optimizations studied in this thesis.

7.2.1 Collection-oriented Array Languages

APL, Image Algebra, FORTRAN 90, and -4ML are examples of collection-oriented

array languages. In such languages, at least some (if not all) operators operate

on arrays as a whole. Due to high-level data abstractions and operations provided

by -collection-oriented array languages, the resulting programs are clearer, easier to

m i te, and more concise t han programs mit ten in scalar-orient ed array languages.

Collection-oriented array languages differ from one another in whether they

permit nested arrays or not. APL and AiML do not permit nested arrays, whereas

More's array theory [43] and Vandenberg and DeWitt's algebra [Tl] do. Collection-

oriented array languages differ in whether they permit only one-dimensional arrays

or multidimensional arrays. APL, .4ML, RasQL, Image Algebra, and many other

languages permit multidimensional mays. The SEQUIN language of the SEQ

sequence database system permits only one-dimensional arrays [60]. Collection-

oriented array Ianguages and algebras are either heterogeneous or homogeneous.

Homogeneous languages such as AML and SEQULN [60] map arrays to arrays.

Heterogeneous algebras-for example Image Algebra and Vandenberg and DeWitt 's

algebra [Ti]-may map arrays to non-array types.

Operators in collection-oriented array languages are diverse. Nevertheless, as

Sipelstein and Blelloch [62] observed, some generic operators are common among

them. (Sipelstein and BleUoch7s survey inciuded languages that manipulate col-

lections such as sets and Lists, not just arrays.) -4 given collection-oriented array

language typicdy implements specific forms of sorne of the generic operators. Sipel-

stein and Blelloch's append combines two arrays. AML7s MERGE is its more general

implementation. Pack is like SUB: it filters data from an array according to a

booleân rnask. Apply-to-each forms apply a function to every element of an array-

a functionality similar to APPLY'S. Some operators in each of Vandenberg and

DeWitt's algebra ['il], RasQL [4, 731, More's array theory [43], Image Algebra [52],

the image processing toolbox of Matlab * [29], and algebras for multi-dimensional

database systems [l, 251 are similar to the above generic operators.

As aLeady mentioned in Section 2.3, AML is a framework for array manipu-

lation in that it only specifies how user-defined functions are applied to arrays in

a structured fashion. Many collection-oriented array languages do not completely

specify some of their array manipulating operators and are thus also frameworks

for array manipulations to varying degrees. For example, in Image Algebra [52],

'Matlab is a registered trademark of The MathWorks, Inc.

3Such algebras can serve as query Ianguages in on-line analytical processing (OLAP) systems.

value sets (which are parts of images) and operations on them are not restricted to

a fixed set. Image Algebra's global reduce operator only specifks that it produces

a value from an image. In RasQL [4, 731, induced operators generate nen- values

but RasQL does not dehne a set of such operators. The framework approach malies

an array language extensible in that by fine-tuning some operators or by provid-

ing some user-defmed code, the language can be customized for an application.

AML is unique in that it takes the framework approach to the extreme: it provides

no operators that can produce "newn values (domain elements not found in their

operands) .

Query Optimization in Collection-oriented Array Languages

Collec tion-oriented array languages and systems that implement t hem support va.r-

ious types of query optimizations. The main aims of array query optimizations

are to reduce the CPU t h e , the 1/0 cost, and the memory requirements of array

query plans. Two major classes of array query optimizations can be identified:

logical qzlery optimizations and physical query optimizations. Logical query opti-

mizations manipulate logical query expressions; physical query optimizations are

designed to improve the plans for array queries.

Logical query optimizations. Logical query optimizations are rewrite opti-

mizations. They systematically transform an array manipulating expression using

rewrite rules (or th& equivalents) and generate a collection of one or more expres-

sions equivalent to the original one, out of which one is chosen for eduat ion or

for further manipulation. M a q array-related rewrite optimizations promote early

data filtering: the idea is to eliminate reading and processing unnecessary data.

For example, AML7s logical rewrite op timization-which causes SUS-pushdon-n-

promotes early data filtering.

The ease with which SUB-pushdown c m be performed is greatly Sected by

the bnds of domain and raage box shapes that an array language's equivalent

of the APPLY operator permits. In particular, SUB-pushdown can be perfomied

easily in a language in which domain and range boxes are forced to be of unit

size. Vandenberg and DeWitt 's algebra ['il], RasQL [4, 731, the trasformation and

mapping functions of T2 191, and Guibas and Wyatt's scalar operators 1231 permit

only unit-sized domain and range boxes. Wë s h d describe two of the SUB-pushdown

approaches in detail: RasQL's approach and Guibas and Wyatt's approach.

In RasQL? trimming operations and projections (operators similar to SU B) can

always be pushed into and out of function application operators- Therefore, all

RasQL queries can be converted to a cmonical form in which ail the trimmings

and projections are done before al1 of the function applications are. Further, all of

the adjacent function applications can be combined using functional composition

because of the matdiing domain and range box shapes of adjacent functions. There-

fore, a RasQL expression in the canonical form has only one composite function.

,4n advantage of such a composite function is that its resdtant array elements can

be generated on the fly without materialking intermediate results.

In Guibas and Wyatt's approach, SUB-pushdown is performed only in effect, not

literally. They describe a technique to compile a subset of APL containing scalar

operators (operators that work on scalnr operands, as opposed to anay operands)

and grid selectors (index-based operators). Addition and multiplication are exam-

pks of scalar operat ors; transpose and reversal are example grid selectors, SU B and

MERGE resemble grid selectors, whereas APPLY is a more generd form of a scalar

operator,

Guibas and Wyatt designed a universal selector operator n-hich can absorb any

number of grid selectors into it. After absorption, the universal selector has the

same effect on data that a combination of grid selectors would have on the same

data. The data structure representing a universal selector is called the stepper.

During a step called the "pushn pass, steppers are pushed down in an APL expres-

sion tree. A stepper is modified when i t encounters a grid selector node dong the

way, and the rnodified stepper is passed on to the grid selector node's children. -4

scalar operator passes on the incoming stepper to its children unchanged. m e n

the steppers reach the leaf nodes, all the grid selectors c m be elirninated from the

APL expression tree. Compiled code is generated for the modified tree.

RasQL operators and the subset of APL operators that Guibas and Wyatt chose

have limited power: they c m only express m a y operations in which an output m a y

element is computed using a single input array element. They cônnot express block-

based or region-based array processing operations such as a discrete convolution on

a two-dimensional image. In one respect the "pushn p a s is more g e n d than

AML's SU%-pushdom: it can handle the transpose operator. Extending AML

with a dimension-reordering operator and generalizing S~B-pushdown so that it

can handle the new operator should not be very diEcult.

The T2 array database system (91-designed for remote-sensing applications-

4The "push" p a s is similar to the map spreading process described in Section 4.4.3-

permits hypercubical domain boxes and unit-sized range boxes in its equident

of the APPLY operator. The query language of T2 is very specialized. A T2

query chooses a dataset(s) of interest and a clipping region of interest within the

dataset (s) . Each pixel in the clipping region is pre-processed using a tramfonnction

function. 4 transformation function corrects things such as instrument drift. atmo-

spheric distortions, and topography. Shen a mapping finction maps a transformed

pixel to an output pixel. Multiple input pixels may map to an output pixel. An

aggregation finction sekcts the "bestn corrected pixel that maps to an output pixel.

T2 treats the transformation, mapping, and aggregation functions as black boxes!

lilce the way AML treats APPLY functions. Transformation and rnapping functions

have unit-sized domain and range boxes. Aggregation functions have hypercubical

domain boxes and unit-sized range boxes. T2 achieves the effect of SUB-pushdown

by reading only pixels that f d within the clipping region. Exactly how T2 achieves

early data filtering is not explained in [9].

AML seems to be unique in providing built-in language support for domain

and.range boxes of hypercubical shapes. This allows AML to implement a Nider

claçs of array operations directly. Further, such queries can also be optimized

using the AML query optimization techniques proposed in this thesis. Because of

hypercubical domain and range boxes, SUBS cannot always be pushed in and out

of APPLYS. Further, in the presence of mismatches of the domain and range box

5Some operators in Matlab's image processing toolbox support arbitrary-shaped (but fixed)
domain boxes. Matlab can be interfaced with programming languages such as C, Cf+, and
Fortran using its MEX-file feature. Using MEX-files, Matlab arrays can be manipulated using
user-defined functions that can have general domain box and range box shapes. To achieve this
generality, however, external interfacing to a programming language is necessary.

shapes, adjacent APP LY operators cannot be composed in generd. Therefore, the

result arrays cannot be generated on the fly (the way they can be in RasQL uid

in the subset of APL that Guibas and M-yatt chose): intermediate arrays between

some function applications may need to be materialized, at least partially.

Permit ting arbi trary-shaped (not necessarily hypercubical) domain and range

boxes wodd appear to be a logical generalization of AML's choice of hypercubical

domain and range box shapes. (Image .Ugebra7s image-tempiate product [52] per-

mits such arbitrary-shaped domain boxes but unit-sized range boxes.) However,

performing early data filtering might become quite dï6cult in such a generd sce-

nario for the following reason. The amount of information that needs to be stored

for tracking heage of data items in the clipping window increases. This, in turn,

makes the lineage tracking problem harder. (Information about a k-dimensional do-

main or range box whose side lengths are O(n) can be succinctly represented using

O(k - n) data itemssomething which seems impossible to do for an arbitrary-

shaped domain or range box.)

Common sub-expression elinination can be considered a type of rewrite opti-

mization. It avoids generating arrays more than once when one copy suaices. In the

SEQ database system, common sub-expressions are eliminated [60]; in the current

implementation of ArrayDB , they aze not . Adding common sub-expression elimi-

nation optimization to ArrayDB is a non-trivial task. The dpamic programming-

based chu& order optimization requires the "optimality of subproblemsn property.

That is, an AML plan with a minimal memory cost contains within it sub-plans

whose memory costs are also minimal. With common sub-expressions present, it

may be necess- to generate a non-optimal sub-plan so that the memory cost of the

entire AML plan can be minimized. Logical rewrites should continue to work when

common sub-expressions are present , The plan i terators. hoxever . become more

complicated: some iterators might need to keep track of more "state" information

because they have to feed array c h d i s into more than one output stream.

A major class of rewrite optimizations involves APPLY-like user-defined function

application operators. These optimizations c m be divided into many sub-classes:

(1) those that reorder two function applications; (2) those that split a function

application into two or more parts; (3) those that combine two or more function

applications; and (4) those that exploit the dependency of a function application

on some of the "previous" function applications on the same array.

This claçs of optimizations are difficult to perform because the query optimizer

needs to be aware of the semantics of the user-defined functions. (In contrast, a

SUB-pushdown type of optimization can often be performed using relatively simple

data lineage calculations that involve only array index manipulations.) The topic

. of how to perform such optimizations in ArrayDB is addressed in Section 8.2.1 as

Euture work.

Simple forms of some of these optimizations have been proposed. For example,

in h a g e Algebra, templates can be split and combined [51], and thus the function

applications defined by image-template product can be split and combined. The

moving window optimization perfomed by the sequence database system SEQ [60]

falls into the fourth category. Consider the sequence 1,2,3,4,5,6,7,8,9,10. S u p

pose that a moving window of width 5 slides everywhere in this sequence s d n g

CH-4PTER T: REL-ATED WORK 164

up the 5 elements that f d under it at any time. The resultant output sequence is

15.20,25,30,35,40. Once the sum 1 + 2 + 3 + 4 + 5 has been computed to yield 15.

the next element of the output sequence can be computed using 15 + 6 - 1. instead

of using the naive method 2 + 3 + 4 + 5 + 6. A benefit of the optimized computation

is that it uses fewer arithmetic operations. More important, the time required for

aggregation is independent of the window size. Image dlgebra's recursive templates

also offer potential for optimizations that belong to the fourth category.

P hysical query O ptimizations . Physical query op timizations are designed to

improve the plans for array queries. ArrayDB generates execution plans composed

of chu&-based iterators. This allovvs pipelined execution, and gives the optimizer

the chance to choose iteration orders. Plans that manipulate array chunlis and plans

that evaluate anay quexies in a pipelined fashion have been proposed in the past,

but ArrayDB1s method of intelligently choosing iteration orders for plan iterators

so that the rnemory costs of plans are minimized has been studied for the fust time

in this thesis.

Let us Iook at how some array manipulating systems generate their plans. In

the RasDaMan system, leaf arrays are stored on disk in a tiled fashion and the

system generates tile-based plans. In such plans, alternative evaluation orders for

plan operators are not considered: all intermediate arrays are generated in row-

major order [73]. Execution plans in T2 are also chunk-based. Since T2 is a

parallel database, the plans take into account things such as dependencies among

chunks and memory available at each processor. The plans themselves consist of

lists of chunk-processing operations separated by synchronization markers. Chunk-

processing operations in a list can be performed in ary order: however. all such

operations must be completed before any chudi-processing operation in a subse-

quent list c m be staded. Parde l evaluation of AML queries is considered as

future worlc in Section 5.2.3. Execution plans in the sequence database system

SEQ [60] are iterator-based, and thus they permit operator pipelining. SEQ phys-

ical operators b d e s sequence elements just like ArrayDB7s physical operators do.

However, SEQ processes one-dimensional arrays and therefore, has no concept of

operator evaluation order. SEQ plans can handle common sub-expressions in such

a way that a cornmon-subexpression is neither evaluated multiple times, nor ma-

terialized. Handling common sub-expressions in ArrayDB is a non-trivial ta&, as

already mentioned earlier in this section.

The optimization potential of many array languages has not been fully utilized.

APL [30, 351, Nia1 (Nested Interactive Array Language) [34], Matlab, and Image

Algebra are examples of such languages. In case of Nial, More's array theory [43]

c m offer many expression optimization ideas because Nid is based on the array

theory. The array theory-based on APL and set theory-contains many axioms

and theorems that can be used as rewrite rules for array expressions. For example,

Axiom 32 of the array theory provides the following "rewrite rule": Suppose that A

and B are non-empty arrays and that a replacement operator is one that replaces

each array element x by its image f (2) under a un= function f . Then, it does not

matter whether the replacement operator is applied before or after the reshaping of

B to the shape of A. At present, Nid's portable C interpreter Q'Nial [32] does not

do expression optimization [33]. Matlab also does not perform rewrite optimizations

on expressions formed using functional compositions of its array operators [39]. The

Image Algebra proposal contains some expression optimization ideas [52]. but there

is scope for more. APL prograsls are typically interpreted. not compiled. Although

some expression optimization ideas have been proposed in c o ~ e c t i o n with APL

compilation 123, 69, 61, there is potentid for more.

7.2.2 Scalar-oriented Array Languages

Scalar-oriented array laquages require evplicit element-wise array manipulations.

Many general purpose progamming languages dowing array defkition-for exam-

ple, C and Pascal-are scalar-oriented. In such languages, as indexing operation

applied to an amay yields an array eiement of some type to which ail the availabie

operations for that data type can be applied.

In scalar-oriented programming languages, complex m a y operations can be

defined using indexing, operations on base data types, and control structures such

as loops and conditional statements. In some of these languages, arrays can be

defbed as an abstract data type (ADT). Complex array operations cm then be

provided as methods of the array ADT. The ability to name and d e h e array ADT

met hods results in concise array manipulation code. Nevert heless, the definitions

of ADT methods still use primitive m a y operations.

Query Optimizations in Scalar-oriented Array Languages

In scalar-oriented programming languages, loops are commonly used to traverse and

process array element S. Programs (anay-manipulating and general) spend much

of their running t h e in loops and compilers for scalar-oriented languages perfonn

several looprelated opt imizations. The following looprelated op timizations are

especidy r e l e ~ s t for acray manipulations.

1. Strength reduction [44, page 4261 replaces an e-pensive operation such as

multiplication by a cheaper operation such as addition,

2. Loop unrolling [44, page 5591 replaces the body of a loop with many copies

of the body and adjusts the loopcontrol code accordingIyY The unrolled loop

may execute faster because it evoluates the loop-closing test and branch fewer

times than the original loop does. On the other hand, the unrolled loop takes

more memory and therefore may impact the effectiveness of the instruction

cache.

3. Loop iAnversion [M, page 5871 transfonns a loop such that the loop-closing

test before the loop body is moved after the loop body. Loop inversion helps

because only one branch instruction need be executed to close the loop, rather

than one to get from the end badc to the beginning and another at the be-

ginning to perforrn the test.

4. Scalar replacement [M, page 6831 replaces an array variable such as C[i, j] by

scalar temporaries, thereby making them available for register allocation.

5. Loop-invariant code motion [M, page 3971 recognizes computations in loops

that produce the same value on every iteration of the loop and rnoves them

out of the loop.

Figure 7.6: Iteration-space traversal of a tiled loop nest.

The looprelated optimizations mentioned above can improve the efficiency of

array-manipulating loops. It is doubtfid, however, whet her such op timizations (in

conjunction with some other optimizations) can achieve effects similar to those of

SUB-pushdown-Iike optimizations. In particular, it seems UILLike1y that sophisticated

data-flow analysis cari be performed on the code that follows a loop so that it can

be determined that only a portion of the array manipulated by the loop is actually

needed.

Other loop transformations aim to mabe bettes use of the memory hierarchy,

to make a loop7s iterations executable in pardel by several processon, to make

a loop's iterations vectorizable, or to achieve a combination of these benefits [44,

page 6901. They adiieve such gains by interchanging two nested loops, by reversing

the order in which a loop's iterations are performed, by fusing two loop bodies

together into one, by doing the opposite of fusion (cded b o p distribution) and

so on. Such transfonns also improve the data cache utilization of numerical and

scientific progroms manipulating large amays.

CKAPTER 7. RELATED WORK 169

Tang [u, page 6941 modifies a loop nest so that the original loop's iteration-

space traversal is modified and is replaced by a series of s m d polyhedra esecuted

one after the other. (The word '%hgn here is used differently than in Section 7-12.)

Fig. 7.6-adapted from [44, page 6951-suggests a tiled loop's traversal pattern.

The onginal loop was a doubly-nested loop traversing row-wise or column-wise.

The tiled loop in Fig. 7.6 increases the depth of bop nest from two to four. If the

tile shape is chosen properly, tiling c m reduce data cache conflicts by requiring

fewer elements of each array to be present in the data cache at once to perform the

given comput at ion.

The tiles shown in Fig. 7.6 are U e c h d s used by ArrayDB plans in that

array elements in a tile are processed in temporal proximity. However, the tiling

optimization chooses tile shapes, whereas ArrayDB chooses chunk order (and not

ch& shape). Despite this difference, ArrayDB7s memory optimization also results

in better utiGzation of the memory hierarchy. ArrayDB minimizes the amount of

memory used by AML plans by generating intexmediate and result arrays in pieces

rather than in full, by reusing the buffer space used to store the pieces, and by

considering different evalrration orders (such as row-major order and coliimn-major

order). These techniques result in better memory utilization because pieces of

several arrays can be fit into smaller and faster mernories such as cache, improving

their hit rates.

Compilers and optimizers for scalar-oriented M a y languages and collection-

oriented array languages face different problems when producing efficient array

manipulation code. In a collection-oriented array language, the optimizer can per-

form s UB-pushdown-like optimizations relatively easil. Once such optimizations

are performed, however, the optimizer has to produce (and optimize if possible) low-

level code that implements the rewritten high-level expression. In a scalar-oriented

language, the low-level code-frequently containing loops-is written by the user

and looprelated transformations cas be applied to such code. Howevero the com-

piler may not be able to infer high-level transformations such as the ~ ~ ~ - p u s h d o w n

transformation from such complev code.

It may be possible to achieve middle ground in case of a language such as AQL-

a scdar-oriented query language with low-level array manipulation primitives [36].

In APL, high-level array operations can be defined using four array-related primi-

tives plus such things as conditionals and arithmetic operations. Two of the array

primitives create arrays; one performs subscripting (extracting a value from an ar-

ray); and one determines the shape of an array. Optimization of AQL expressions

is performed at the level of the primitive operations after replacing higher-level

operations with their definitions. It is possible to perform SUB-pushdonm-like op-

timizations on AQL expressions composed of low-level operators. In fact, it is

possible to determine exactly which input array elements generate a given out-

put anay element. That is, data lineage car be computed at the may-element

level rather than just at the array-chd level. Nevertheless, because of arbitrary

functional dependencies between the output array elements and the input array

elements that produce them, it is not obvious how to generate chunk-iterator plans

in which iterators read their input arrays only once. A potential advantage of AQL

is that if new high-level operators are added to AQt, it is unnecessary to generate

CH-M'TER 7. RELATED WORK

remi te niles involving those high-level operators. Instead. the A QL optimizer tries

to achieve the same effect with low-Ievel rewrites. Whether such an AQL optimizer

is feasible, how exactly it would work, and how efficient it would be rernain open

questions.

7.2.3 Summary of Array Languages

It should be evident from the survey of m a y languages in this section that AML is

not the first language to support array manipulations. Why was -4ML defined then?

Why not use one of the previousl-defined languages for array manipulations? Why

not provide query optimization support for one of the previously-dehed languages

rather than defining AML and optimizing 4ML expressions? Collection-oriented

array languages such as Nia1 and Matlab provide no optimization support; others

such as RasQL provide limited query optimization and cannot express region-based

or block-based array processing. Image Algebra is very expressive but its power

makes query optimization difficult. Scalar-oriented programming languages are also

very expressive but it is cioubtfd whether compilers for such languages cas perform

complex data-flow nnalysis so that early data filtering can be performed. In princi-

ple, AQL can offer a programming language's e4qressiveness and a query language's

optimizability but the feasibility of its query optimizer remains unproven. AML

attempts to strike a bdance between expressiveness and optimizability. It pennits

arbi trary user-defined funct ions that map subarsays t O subarrays-some thing which

no previous language permits. At the same time, it applies user-defined b c t i o n s

to arrays in a structured manner so that array query optimization remains feasible.

IlrrayDB minimizes memory use of AML plans by considering alternate evaluation

orders for chu& iterators-something which is a &st among array que- eduators.

One reason not to optimize programs in one of the exïsting collection-oriented

array languages such as PIPL, Matlab, or Nd is that it may be difficult to recognize

in such Imguages opportunities for the kinds of optimizations that AML permits.

Further, not ail of the operators in these languages are index-based and are thus

amenable to index-based optimizations. Therefore, only parts of these languages

will be optimizable. (As an example, Guibas and Wyatt showed how lineage de-

termination cas be performed on a small subset of APL operators. [23].) AML, by

design, includes o d y optimizable operators and therefore, optimization opport uni-

ties are easily recognizable in AML. By identifying index-based manipulations in

an APL program (for instance) and by translating them to equivalent AML expres-

sions, it might be possible to extend the benefits of AML query optimizations to

selected portions of APL prograrns. Moreover, it might be possible to abstract the

rest of the APL program as a sequence of user-defined functions. After converting

an APL program to an AML expression thus, AML query optimizations would be

able to push data filtering operations through user-defined functions, if such an

opportunity exists. It would be an interesting research question to determine the

feasibility and effectiveness of such an approach to array query optimization.

7.3 Supporting Arrays in Database Management

Systems

This section sunreys methods by which commercial and research DBMSs support

array data. Section 7.3.1 covers how relational database systems provide support

for array storage and manipulation. Section 7.3.2 describes some special purpose

database systems built specihcally for arrays.

7.3.1 Relational Database Systems

Relational database systems provide array support using four rnethods: binary large

objects (BLOBs), relations, abstract data types (ADTs), and optimized 4DTs. The

first three of these methods are commonly amilable in commercial DBMSs; the last

one is anilable in o d y one research prototype a t present.

BLOBs

An array stored in a BLOB is treated by a DBMS like o large ch& of uninterpreted

data, with no semantics attached to it. Severe restrictions are placed on relational

attributes of BLOB type. For instance, indexes cannot be created on them and

they cannot be used in SQL clauses such as SELECT DISTINCT, COUNT (DISTINCT),

CROUP BY, ORDER BY, PRIMARY KEY, and FOREIGN KEY [S, page 2901. m e n using

BLOBs, anay manipulations are performed by application programs outside of a

DBMS. Although portions of a BLOBs c m be selected and retrieved by an applica-

tion program, the DBMS provides neither the query language to manipulate B LOBS

nor the optimizations (m e SUB-pushdown) that can automatically perform early

data filtering. Thesefore, worliing with BLOBs leads to idexible and inefficient

array processing.

Relations

Arrays can also be stored as relational tuples made up of array indices and ar-

ray values. Array manipulations can then be performed using SQL. As aLready

mentioned ia Section 7.1.1 however, SQL queries for typical array manipulations

such as convolution are unnatural and probably inefficient. In domains such as

online analytical processing and some scientific computations where sparse arrays

are ffequently used, modehg arrays as relations might offer adequate performance.

ADTs

Database systems that support user-defined data types and user-ciefined functions

are called object-reiational DBMSs (OR-DBMSs) if the framework of a relational

DB-MS is retained or ob ject-oriented DBMSs (00-DBMSs) if an object-oriented

framework is adopted. To support arrays in an OR-DBMS or in an 00-DBMS,

an array ADT dong with a set of functions (methods) to operate on arrays should

be provided [66, 671. In some cases, such an array abstraction is provided by

the DBMS . For example, the Informix Universal Server provides various modules

(cdled DataBlades) to support complex data [48]. An Image DataBlade module

is available that supports an image datatype, a wide voriety of image formats, and

"Oracle supports a similar capability through cartridges.

image-specific functions. Illustra [28], Postgres [6S], and Paradise [15] also support

ADT extensions. S tandardkation initiatives are undenvay for an image datatype:

part five of the upcoming SQL standard for multi media (SQL/MM) is devoted to

still images [64].

In a . OR-DBMS supporting ADTs, SQL queries have relational and non-

relational parts. Non-relational parts are made up of user-defmed functions and ex-
*

pressions involving user-defined types-for example, AML expressions. OR-DBMSs

may perform a vrtriety of optimizations on such queries. For example, they may o p

timize the placement of expensive user-defined predicates (the non-relational parts)
"

within a relational plan [27]. ' Nevertheless, optimization of the embedded non-

relational portion of the query itself is very limited. User-defmed functions are

black boxes. Without some knowledge of the behavior of such functions, many

optimizations, such as reordering of operations, are not possible. In particular,

SUB-pushdown-like optimizations are not performed. Even pipelined evaluation-

which enables producer-consumer relationships using memory buffers-for such

non-relational expressions might not be available. In Illustra, for example, results

of every ADT method are wntten to disk, and no inter-method optimizations are

considered [û9].

' ~ u c h work has b e n done in optimizing queries with user-defined predicates; two examples
are 1131 and [26]. In [26], the results of user-defined methods are cached to avoid unnecessary
rnethod invocations. Interestingly, expensive conditions can also occur in a purely relational SQL
query when the query involves a subquery and the subquery cannot be converted into a join.

Optimized ADTs

User-defined functions can be expensive to etduate. In fact. the non-relational

parts might dominate the total evaluation time of an SQL que- in an OR-DBMS.

Hence treat ing user-dehed functions as black-boxes with fked cos t s is inadequa te.

Optimizing non-relational expressions poses several challenges to an SQL optimizer.

1. Most SQL optimizers perform cost based optimization and so cost measures

need to be assigned to non-relational operators and to eqxessions made up

of such operators.

2. Type-specific optimizers are needed because different data types have different

operators with distinct semantics.

3. These optimizers need to be integrated with the SQL optimizer. SQL's phys-

i d operators and a user-dehed data type's physical operators might be

difIerent. Some way of bridging this gap is required.

PREDATOR is a framework in which several type-specific optimizers can be

plugged into the system's edua to r [61]. PREDATOR supports enhunced abstract

data types (EADTs). An E A D T is an ADT with a type-specific optimizer that can

optimize expressions made up of that ADT's operators. Together, the array data

model, AML query language, AML optimizer, and AML evaluator can be treated as

an array E A D T which can be plugged into PREDATOR. In PREDATOR, object-

relational queries are decomposed into relational and non-relational parts, and the

latter are handed to type-specific optimizers for optimization. Vaxious EADTs

may have distinct query languages, and E-ADT optimizers rnay have different query

evahation techniques. Various ty-pe-specific optimizers may share the same file sys-

tem interface, storage manager, and record and schema utilities. The PRED.4TOR

proposal suggests m i o u types of optimizations for EADTs-for esample, rewrite

optimization, algorithmic optimization, and constraint op timization-and suggests

pipelined evaluation for E A D T expressions. (Some of these optimizations for array

expressions are studied in this thesis.)

7.3.2 Array Database Systems

In contrast to the general-purpose relational DBMSs, array database systems are

specifically designed for arrays and other multidimensional data. Building a ded-

icated array DBMS allows its designers maximum flexibility to explore design al-

ternatives in diRerent system components. Such a DBMS is likely to offer best

performance for array queries.

Array database systems are typically designed for specific application domoins.

For example, in scientific computing, three file-based array storage abstractions are

widely used: netCDF [50], CDF [46], and HDF [70]. These packages-which con be

thought of as 110 librories, and thus are array database systems in o d y a limited

sense-filled a data-management vacuum that existed because of the inability of

DBMSs to handle bulbry array data.

NetCDF provides an API that is callable fiom high-level languages such as For-

tran, C, and C++. It stores data in self-describing, machine-independent files.

Array- is the primary data type in a netCDF file. In netCDF version 2.4, it is possi-

ble to read parts of an array rather thôn the full array (a functionality provided by

AML's SUB). In addition, mapped array accesses are possible. For instance, a two-

dimensional array in memory could be the transpose of that on disk. Net CDF per-

m i t ~ only one iinlimited dimension per dataset. KetCDF provides no optirnizer for

optimizing array manipulations and thus early data filtering cannot be performed

aut~matically~ No plans are generated for array manipulations and therefore, no

physical query optimizations are performed.

Array database systems such as T2 [9] and Titan (101 have specialized query

languages t argeted for remote-sensing applications. (The query language of T2 was

described in Section 7.2.1.) The RasDaMan array DBMS [3]-designed to handle

raster data, not just satellite images-is more sophisticated than either T2 or Titan.

It has an array data model, the RasQL query language (mentioned in Section ï.2.1),

a storage system that stores arrays in tiled form (described in Section 1.1.2), and

a query optimizer (described in Section 7.2.1).

ArrayDB is sirnilar to the database systems such as RasDaMan and T2 in that

user-dehed functions are applied to arrays. ArrayDB is more flexible than these

. database systems because AML, on which it is based, dows user-defined functions

to be applied to subarrays, not just to individual array elementç. This allows

ArrayDB to directly implernent and optimize a \vider class of array operations.

Multidimensional OLAP (MOLAP) systems such as Essbase are special-purpose

array DBMSs for decision-support systems that store data cubes as multidimen-

sional arrays [19]. Array operations in MOLAP systems (dso called data cube

s yst e m s) are libre spreadsheet operat ions: for example, reducing the dimensionalit y

of the cube by aggregating one or more dimensions, reducing the cube's length in a

dimension by aggregation possibly followed by slab selection. ranking (sorting) and

so on. In OLAP parlance, such operators are given catchy names such as pzvotzng,

rollup, dri l l -dom and dice-and-dice. Since OLAP queries are highly specialized.

the most important type of query optimization in OLAP systems attempts to an-

swer a query by matching it against a set of pre-computed queries (materialized

views), and by perforrning some aggregations on a chosen materialized view. Such

queries can benefit from SUB-pushdown-like optimizations. Dimensions of data

cubes have complex hierarchies and to perforrn aggregations on such dimensions,

APPLY-~&~ aggregation fimctions with variable-shaped domain boxes are needed.

SUB-pushdown-like optimizations in the presence of such aggregation fimctions are

more difficult to perform than when the domain and range boxes have fixed shapes.

Image information systems [Il] are large image repositories with image in-

put /output and processing capabilities. Image database systems fonn a component

of image information systems. An image database system can be considered an ar-

ray database system in a limited sense because although an image database system

permits image storage and retrieval, its image manipulation capabilities are very

limited. Image database systems focus on the problem of choosing images fiom a

set, not on the problem of rnaeipulating the images themselves. Thus, they are

cornplementary to a system such as ArrayDB. A typical retrieval query in an image

database system selects certain images from a large set of images. Such queries give

some textual information to identifjr the images to be retrieved, plus information

about color, size, and type of features or provide a sample image and request the

image database systems to retrieve ail the images that look like the sample image.

To help answer such queries, image database systems store metadata about images.

The metadata is mainly of tnro forms: text-based (a short description of the images

and/or a set of keywords related to images) and content-based (feature data). After

an image information system has selected a set of images based on their content. a

language such as AML can be used to manipulate those images.

Chapter 8

Conclusions and Future Work

This chapter summarizes the research reported in this thesis and points out some

directions for future research.

8- 1 Conclusions

The research reported in this thesis addresses the general problem of how to ma-

nipulate a given collection of arrâys. The array manipulation problem is viewed in

a database context and accordingly, issues such as a query language for array ma-

nipulations, optimizations of array manipulations, and promotion of physical data

independence are addressed.

AML is proposed as an array query and manipulation language. Array manip

dations are diverse and domain-specific and therefore, extensibility is a desirable

property of an m a y manipulation laquage. AML is extensible because it is defined

to be a framework for array manipulations: the operators (user-defined functions)

producing new array values are extemal to AML. XML queries merely specifj- how

user-defineci functions are applied to arrays to be manipulated- AML's fimction ap-

plication operator is unique among simi1a.r existing operators in that it maps subar-

rays of arbitrary shape to other arbitrarily-shaped subarrays, rather than mapping

just an array element (or a subarray) to a single array element. The arrays on which

user-defined functions are applied can be formed by combining two or more arrays

or Ey taking selected parts from some other a.rrays. For doing such array filterings

and combinations, two other AML operators are provided. AML's framework ap-

proach to defming m a y manipulations is very powedbl. Any array manipulation

can be defined in AML by assuming the existence of powerfiil user-dehed func-

tions. However, AML is designed to detect and exploit structural regulaxities in

cornplex-looking array manipulations automaticdy if such regularities exist .

AML expressions can be treated declaratively and subjected to rewrite opti-

mizations. The logical rewrites are done using the AML logical rewrite d e s . The

rules are used to systematically transform an AML expression tree so that the data

filtering SUB operators are pushed as far do-wn as possible. This SUB-pushdown

heuris tic-which achieves early data filtering-has three effects. First , it reduces

the number of applications of the (potentially costly) user-defined functions. Sec-

ond, it reduces disk 1/0 because AML permits disk data read functions to be treated

like user-defined functions. Third, it reduces memory costs of AML plans because

smaller intermediate m a y s are generated. The idea of WB-pushdown is not new,

but its application in the presence of a general function application operator such

as APPLY is shown for the first time in this thesis.

AML plans are optirnized for memory use by considering alternate evaluation

orders (such as row-major order and column-major order) for the plan operators.

A dpamic programming algorithm minimizes the memory requirement of -AML

plans. This approach is unique to AML.

The thesis shows AML1s usefdness as an array query and manipulation lan-

guage by compazing it to Image Algeba. To show the feasibility of -\ML query

optimization techniques, an AMGbased m a y database system called ArrayDB was

b d t . ArrayDB7s performance was tested on a suite of satellite image processing

queries. The empirical results show that AML query optimization techniques are

effective and are not too costly. AML operators capture enough information about

array manipulations so that usefid array queries can be op timizeù.

8.2 Future Work

The research reported in this thesis can be extended in m q ways. The three direc-

tions identiiied in this section are: (1) language extensions and more general query

optimization techniques; (2) integration of arrays with relations; and (3) parallel

eduat ion of AML queries. The following sections elaborate on these extensions.

8 -2.1 Language and Query Optimization Extensions

AML operators can be divided into two classes. SUB and MERGE form one class.

Their effect is to filter and rename the anay elements appearing in their operands.

In contrat, APPLY can generate new values using user-defined functions. AML can

be extended by adding new operators to either of these two classes. For example, a

transpose operator (or its more general form: a dimension reordering operator) can

be added to the first class. APPLY can be made more versatile in several n-ays: by

associating weights with the elements in its domain box; by parameterizing these

weights; by making the domain box shape variable; by making function applications

dependent on some of the previous function applicatioas; and so on.

Adding new operators to the fkst class has relatively less impact on query

optimization techniques. New operators in the f is t class should still permit the

determination of lineage information: given an array element in the result array

of an AML expression, it should be possible to determine the elements in the

base arrays that participated in its computation. With such lineage information, it

should not be too difficult to produce AML plans that avoid reading and processing

those elements of base arrays that have no bearing on any of the result array

element S.

Extending AMI; by permitting more general forms of APPLY operator may make

the query optimization considerably more difficult. For example, it is not obvious

how to optimize an AML expression in which APP LY operators have variable-shaped

domain boxes-especially if the shapes of the domain boxes are data dependent and

are not known at query compile time. Variable-shaped domain boxes are needed

in application domains such as sequence query processing and OLAP. Expression

optimization containhg operators that f d l into neither of the two classes {SUB,

MERGE) and {APPLY) is also likely to be chdenging.

One reason for effectiveness of AML query optimizations is that SUB, MERGE,

and APPLY work well together and yield usefid logical rewrite d e s . In fact, how

CE4 PTER 8- CONCL USIOXS AND FUTURE WORK IS5

well a new operator interacts with existing ..ML operators and whether it fields

useful rewrite d e s could be criteria when judging the new operator's candidacy

for inclusion in AML-

It is possible to consider some new query optimization techniques without adding

new operators to AML or without extending the power of APPLY. In this thesis. the

ody information about an APPLY function that is used during query op timization is

the shapes of its domain and range boxes. The functions themselves are considered

bladi-boxes for query optimization purpose: all the APPLY functions with a fxxed

domain box shape and a fixed range box shape are optimized the same way.

-4 new class of optimizations can be considered by using semantic information

of user-defined functions. For example, suppose that two A ~ P L Y functions f and

g appear in an AML expression in succession and in that order. Further, suppose

that f's range box shape matches g's domain box shape and that g's function

applications are tiled. In such a case it may be possible to combine the two functions

into a composite function h = f O g. If h is used in place of f and g, the resulting

query may require less buffer space and may be quicker to evaluate than the original

query.

As mentioned in Section 7.2.1, at least 4 categories of optimizations that involve

user-defined functions can be identified: those that change the ordei of two user-

defined functions, those that combine two or more user-defined functions, those

that split a user-defhed function into two or more parts, and those that exploit

the dependency of a function application on some of the "previous" function ap-

plications on the same ôrray. Performing these types of optimizations for arbitrary

user-dehed functions is dîfficult. One problem is how to convey the semantics of

the user-dehed functions to the query optimizer. One way to do that is to restrict

the domain of the user-defined functions and to equip the query optimizer n-ith the

rewrite rules from those domains. For example, a query optimizer with bon-ledge

of 1inea.r algebra and matrix algebra may be able to optimize many queries using

identities from those domains. In addition, restricting user-deked functions to a

finite set may be necessary to manage complexity. How to systematically appfv

rewrite d e s is another challenge.

8.2.2 Integration of Arrays wit h Relations

Relational database systems are in widespread use. The idea of an RDBMS provid-

ing bullt-in support for relations and arrays (and possibly msiny other data types)

raises several interesting research questions, some of whkh are identified in this

section. Some of the ideas in this section have been adopted from [60].

Eere is an outline of how an RDBMS that permits relational attributes of type

"a.rrayn might work. Consider a relation c d e d Employee stored in such an RDBMS.

Employee contains the following information about employees that work in a com-

pany: name, date of birth, and a digital picture. The schema for Employee is

(namerstring, do b:Date, picturerArray) . The following query ret rieves the names

and clipped, low-resolution pictures of all the employees born after January 1, 1970.

SELECT E . name, AML (" c l i p (lowres CE. picture)) Il)

FROM Employee E

WHERE E.dob > ~01/01/1970~

CH-4PTER 8. CONCLUSIONS -4XD FUTURE WORK 1%

The non-relational (array) expression is flagged by the word -XML-. This enables

the SQL paner to hand over the string within parentheses to the AML passer.

Suppose that clip and lowres are hi&-level operaton that are defhed using SUB

and APPLY, respectively. The AML parser performs rnacro expansions of clip and

lowres during pusing and generates an AML expression. The AMI, optimizer then

optimizes this AMI; expression and generates a plan for it. The top level SQL

optrmizer treats the AML plan as a user-defined fuxiction with some cost which it

learns fiom the AML optimizer. The SQL optimizer then places the array plan at

an appropriate place within the relational plan.

The PREDATOR proposal [61] suggests an architecture for a DBMS that sup

ports enhanced abstract data types-data types that axe enhanced by type-specific

query optimizers. AU types share some common utilities such as storage manager,

records and schema utilities, a d file system interface. If queries are globally opti-

mized, types dso share a utiiity that performs cost function mappings. Types such

as relations and arrays have sepaxate query languages, optimizers, and evaluators.

Primitive types such as integers have no such enhancements. If and when S Q L

based relational DBMSs start to offer built-in support for types such as arrays, the

system architecture would becorne more monoli thic.

8.2.3 ParalIel Evaluation of AML Queries

As mentioned in Section 7.2.1, AML is a collection-oriented language. Sipelstein

and Blelloch have observed that collection-oriented languages are data-parallel lm-

guages [62]; the parallelism cornes fiom applying an operation over a potentidy

CHAPTER 8. CONCL USll0,VS AND FUTu'RE WORK

lasge set of data (arrays in case of -4ML). (In contrast, in control-parallel languages.

different operations can be executed in parallel.) Data-parallel languages permit

efficient pardel implementations because the operators in such languages provide

implicit parallelism. The compiler does not have to do complex loop analysis to

find parailelism,

Some of the issues involved in building a parallel evaluator for -4ML are: data

layout schemes, methods for coordinating data retrieval, methods for coordinating

computation, and methods for interprocessor communication-

Due to its iterator-based implementation, ArrayDB's query evaluator is well-

suited for p d e l implementation. For example, a parent iterator that fills its

interna1 data b d e r by m a h g n GetNext() c d s (in the serial case) to its child

may be able to use n threads instead to do the job. The threads can be as-

sigaed to one or more processors. It also seems possible to do thread synchroniza-

tion withïn the iterator paradigm. Data partitioning-the way data is partitioned

among processors-would be an important issue in a pardel AML eduator . The

data partitioning problem for user-dehed functions that consume and produce

one-dimensional streams has been studied [47]. In [47], the stream-processing user-

defbed functions (functions similar to APPLY functions) are classified based on

the shapes of their input boxes (called "windowsn in [47]). Windows can have unit,

fixed, or variable lengths and successive windows rnay or may not overlap. The ideas

in [47], coupled with linearization techniques mentioned in Section 7.1.2, might pro-

vide a suitable starting point for studying data partitioning schemes for a pardel

AML evduator. SUB might prove usefil for defining different data partitions as

CH,;LPTER 8. CONCLUSIONS -AND FUTURE W O X

views on a set of base arrays. Because of the "sliding domain box' semantics of

APPLY, some data duplication may be necessary.

During the design and implementation of Titan. ' the problem of parailel eval-

uation of very speciâlized foms of queries on remote-sensing data was studied [IO].

Prior work such as this should be useful when building a parde l AML evaluator.

'Titan is a pardlel shared-nothing database system for remot~sensing data.

Appendix A

Proofs of Logical Rewrite Rules

A.1 Introduction

This appendix contains the proofs of the non-trivial logical rewrite rules in Chap

ter 2. A few general remarks about the theorems follow.

Sue and MERGE operators map slabs in their input arrays to slabs in their

output arrays. Therefore, proofs of the theorems show that the original expres-

sions and the rewrïttea expressions generate the same array slabs. Since s WB and

MERGE do not change or permute anay c d values in slabs, it then follows that the

resdt arrays from the original expression and the rewritten expression are identical.

AR APPLY operator decides whether a subarray of the input array participates in

producing (part of the) result array based pureiy on whether the APPLY patterns

select the lower-left corner element of the subarray or not. Accordingly, proofs of

the theorems involving APPLY operators show that the original expressions and the

rewritten expressions select identical lower-left corner elements.

The fouonring observations, which follow from the definitions of SWB and MERGE.

help in the proofs of some of the theorem. Each observation establishes correspon-

dences between the i-slabs of the output array and the i-slabs of the input arrays

of a par t icdu AML operator. The i-slabs themselves are numbered from O: that

is, the slab number is the index of the i-slab in an array.

Observation A.l For the AML expression Y = S U B ~ (P , . ~) , where P # 0 . the

i-slab number j (j 2 O) of Y equals the i-slab number (index(P, j + 1)) of A.

Observation A.2 For the AML expression Y = SUB;(P, A), where P # 0 . the

i-slab number j (j 2 O) of 4 equals the i-slab number (count(P, j) - 1) of Y. if

P[j] = 1; if P[j] = O , the i-slab number j (j 2 0) of A does not appear in the

output array Y .

Observation A.3 In the merge-balanced AML expression Y = MERGE;(P, A, B, b) ,

wheîe P # O and P # 1, the i-slab nvmber j (j 2 O) of A equals the i-slab number

(index(P, j + 1)) of Y; the i-slab number j (j 2 O) of B equals the i-slab number

(index(F, j + 1)) of Y .

Observation A.4 In the merge-balanced AML expression Y = M ERGE;(P, A, B, 6),

where P # O and P # 1, the i-slab number j (j 2 0) of Y equals the i-slab number

(count(P, j) - 1) of A if Pb] = 1. The i-slab number j (j 2 O) of Y equals the

i-slab number (carnt(F, j) - 1) of -4 ijf P b] = 0.

A.2 Proofs

Theorem 2.4 (combining two SUBS) S U B ~ (Q , SU&(P, A)) = S U B ~ (R , A), where

-4PPEXDx A. PROOFS OF LOGICAL RETVRZTE RULES

P #O, Q # 0, and Ris defined by: index(R. j + 1) = zndex(P.index(Q.j+l)+1).

for j 2 0.

Proof. Let Y = SUB~(Q) SUB~(P. -4)) and let Z = SUB,(R, -4). Further. let -Y =

SUB;(P, A) so that Y = SLIB~(Q, -Y). Y = Z wiU be proved by shon-ing chat the

i-slab number j (j 2 O) of Y is identical to the i-slab number j (j 3 O) of 2.
*

According to Observation -4.1 appLied to the AML expression Y- = SUB;(Q, -Y).

the i-slab number j (j 2 O) of Y' is the Gslab number (index(Ql j + 1)) of S.

According to Observation A.1, applied to the -4ML espression -Y = suei(P, -A), the

i-slab number (indez(Q, j + 1)) of X is the i-slab number (index(P, index(Q, j +
1) + 1)) of A.

Applying Observation '4.1 to the AML expression Z = SUB;(R, -A), ive get that

the i-slab number j (j 2 O) of Z is the i-slab number (index(R, j + 1)) of A.

From the definition of R, the i-slab number j (j 3 O) of Z is the i-slab number

(index(P: index(Q, j + 1) + 1)) of A for alJ j 2 O. 0

Theorem 2.9 (associativity of MERGE) Suppose that the AML expression

MERGE~(Q, MERGE;(P, A? B, 6), C, 6) is merge-balanced, P # O, P # 1, Q # 0, and

where, for j 2 O, R and S are defined by: indez(R, j + 1) = i ndez (Q , index(P, j +
1) + 1)) and ~[count (R , j) - l] = Q[j] if Rb] = O. Furthermore, the AML expression

APPENDLX A. PROOFS OF LOGICAL REWRITE RULES

on the right hand side is merge-balanced.

Proof. Let yP = MERGE;(P? B,6); let yQ = MERGE~(Q, lFP. C.6): let Z" =

MERGE((S? B, C, 6); and let zR = MERGE~(R, -4, ZS). The goal is to prove that YQ

and ZR have the same i-slabs. Moreover, it needs to be shown that if the original

-4ML expression is merge-balanced, then so is the rewritten one.

Since the MERGE operator does not reorder or duplkate the slabs coming fiom

the same array, to prove that YQ and .ZR have the same i-slabs? it s d c e s to prove

the following: i-slab j (j 2 0) of YQ comes from a particular m a y (A, B, or C) in

the origind expression ifE the i-slab j (j 2 O) of ZR comes fiom the same array in

the rewritten expression.

Let us choose C to be the a r b i t r q array. ' That is, it will be shown that : i-slab

j (j 2 O) of YQ comes from C in the original expression iff the i-slab j (j 2 O) of ZR

comes from C in the rewritten expression. Suppose that the preceding statement

is denoted by E. A proof of E follows.

As per Observation -4.4 applied to YQ = MERGE;(Q, yP, C, 6) , the i-slab j

(j 2 0) of YQ comes fiom C iff Q [j] = O. For easy reference, the 'iff' condition of

the previous statement is reproduced below as the condition CL:

As per Observation A.4 applied to ZR = MERGE;(R,A, ZS, b), the i-slab j

(j 2 O) of ZR is equal to the i-slab (count(z, j) - 1) of ZS iff R[j] = O. As per

'The proofs when the arrays A or B are chosen are simiiar and are therefore, omitted. The
definitions of R and S aIso change when either of A or B is chosen to bc the arbitrary array.

MPENDLX A. PROOFS OF LOGICAL REWXITE RULES

Observation A.4 applied to = MERGE~(S, B. CI b), the i-slab (count(z,j) - 1)

of 2' cornes from C iff Rb] = O and S[c<nrnt(R, j) - l] = O. For easy reference. the

'iff' condition of the previous statement is reproduced below as the condition C?:

C2 : Rb] = O and S[count(R, j) - i] = O

E is proved if it can be s h o w that for all j 3 O, Cl * C2.
Proof of Cl =+ C2. First: it will be shown that Q [j] = O + Rb] = O. From

R's definition, it follows that, for any j' 2 O, if R F] = 1, Qljl must be equal to 1.

(There could certainly exist indices j" 2 O such that & kt'] = 1, but Rb"] = O.) The

conclusion Rb'] = 1 + Qm = 1 is just the contrapositive of Q [j] = O * Rlj] = O.

Having established that Q[j] = O =+ Rlj] = O , ~ [c o u n t (R , j) - l] = O follows

imxnediately from the defini tion of S.

Proof of C2 + Cl- Given that R[j] = O and S[count(R, j) - 11 = O, Qb] = O

follows immediately from the definition of S.

Next , let us prove that R and S are uniquely defhed for a.ll j > O. R's definition

gives all the indices j' 2 O where Rb'] = 1 and thus bits of R are uniquely defined.

For S, observe that the condition R[j] = O is equivalent to the condition Rlj] = 1,

and thus (count(x, j) - 1) generates the successive integers 0,1,2, .

Finally, let us prove that if the original expression is merge-balanced, then so is

the rewritten one. In the original expression, Ab] = B[j] = Elj] = Fp b] = f~ [j] ,

for aU dimensions j # i, because the original expression is merge-balanced. In the
4

rewritten expression, Ab] = &] = e[j] = S b] = 5~b] , for a l l dimensions j # i,

because only the MERGE patterns in dimension i changed. Thus, the rewritten

APPENDIX A. PROOFS OF LOGIC-AL REW-RITE RCXES

expression is merge-bdanced in ail the dimensions j # i.

In the original expression ~%[i] = $1 + +[il, and I'Q [il = -Z[i] + B[i] + (?[il

because the original expression is merge-balanced. Ln the rewritten expression,

fs[i] = g[i] + c[i], or othenvise the rewritten expression c-ot be identicd to

the original one. Simiiarly, ~ f [i l = x[i] + *[il = X[i] + @[il [il f [il, or othem-ise

the rewritten expression c a ~ o t be identical to the original one. Therefore, the

rewritten expression is merge-balanced in dimension i. O

Theorem 2.10 (pushing SUB through MERGE, version 1) Suppose that

MERGE;(~, A, B, 6) is merge-balanced, and P # O, P # 1, and Q # O.

sue;(&, MERGE;(P, -4, B, 6)) = MERGE~(T, s u ~ i (R , -A), SUB;(S, B), 6)

where the resulting MERGE is balanced, and for j 2 O, R, S, and T are defined

as follows. R[j] = Q[indez(P, j + l)]; Sb] = Q[indez(P,j + 111; and T [j] =

P[index(Q, j + l)].

Proof: Let Y' = MERGE~(P, A, B, 6); let YQ = SUB~(Q,Y'); let zR = SU%@, A);

let ZS = SUB;(S, B); and let ZT = MERGE~(T, zR, ZS, 6). The goal is to prove

that YQ and zT have the same i-slabs. bloreover, it needs to be shown that if the

MERGE operator k the original expression is balanced, then the MERGE operator

i n the rewritten expression is also balanced.

Since SUB and MERGE operators do not reorder or duplicate the slabs coming

from the same array, to prove that YQ and ZT have the same i-slabs, it s f i c e s to

show the following three statements: (1) i-slab j (j 2 O) of A is in YQ iff it is in

APPENDLX -4- PROOFS OF LOGICAL REWRITE RULES 196

zT; (2) i-slab j (j 2 0) of B is in YQ iff it is in 2': and (3) i-slab j (j 2 0) of IQ

comes from A iff the i-slab j (j 2 0) of zT comes h m -4.

The first statement above can be proved as follows. A s per Observation -4.3

appiied to YP = MERGE~(P, A, B, 6), the i-slab j (j 2 O) of -1 is equal to the

i-slab inder(P, j + 1) of yP. Now the i-slab indez(e j + 1) of YP is in YQ 3

Q[index(P, j + l)] = 1.

Now the i-skb j (j 2 O) of A is in zT in Rljl = 1. From the definition of

R, the i-slab j (j 2 O) of A is in zT iff Q[index(P, j + l)] = 1. By comparing

this conclusion to the one reached in the previous paragraph, the first statement is

proved.

The proof of the second statement-which involves using the definition of S-is

symmetric to that of the first statement.

The third statement can be proved as follows. -4s per Observation A.1 applied to

yQ = S U B ~ (Q , YP), the i-slab j (j 2 O) of YQ is equal to the i-slab inder(Q, j + 1)

of YP. Now the i-slab index(Q, j+l) of YP comes from Aiff P[index(Q, j+l)] = 1.

The i-slab j (j 2 O) of ZT comes fiom A iff Tb] = 1. From the definition of T,

the i-slab j (j 2 O) of zT comes from -4 iff P[inder(Q, j + I)] = 1. By comparing

tiiis conclusion to the one reached in the previous paragraph, the third statement

is proved.

Finally, let us prove that the MERGE operator in the remitten expression is

bdanced. The MERGE operator in the original expression is balanced and therefore,

for all the dimensions j # i, AI^] = Bk]- In the rewritten expression, ZRb] = Ab]
and gs[j] = Ëb] for all j # i because the SUB operators with the patterns R and

S do not change the array lengths of their argument arrays in dimensions other

than dimension i. Therefore, the MERGE operator in the ren-ritten espression is

balanced as far as all dimensions j # i are concerned.

Next, let us prove that the MERCE operator in the rewritten expression is b d -

asced in dimension i. fp[i] = +q[i] + B[i] because the MERCE operator in the

original expression is balanced. Suppose that, in the original expression, the SUB

operator deletes a i-slabs of -4 and b i-slabs of B (a 2 O, b 2 O). Therefore,

f ~ [i] = X[i] + +[il - a - b- Now in the rewritten expression, the SUB operators

must delete a i-slabs fiom A and b i-slabs from B because otherwise, the two ex-

pressions WU not be equivalent. Therefore, ~ ! [i] = .@] - a and *[il = d[i] - b.
4

New ~ ~ [i] m u t be equd to YQ[i] because otherwise, the two expressions will not

be equivalent . Therefore, $[il = A[i] + B[i] - a - b. Now '~[i] + Zs [il is equal

to (A[ij - a) + (g[i] - b) whidi, in turn, is equal to ~ ~ [i] . Therefore, the MERCE

operator in the rewritten expression is balanced in dimension i. O

Theorem 2.13 (pushing SUB into APPLY) Suppose that P and R are APPLY

patterns in dimension il P # O, Q # 0, and Sf[i] > 0.

For all j 2 O, R is defined as follows. (v denotes a logicd OR operation on

bits.)

,4PPENDE A. PROOFS OF LOGICAL REWRITE RULES

if P b] = 1; R[j] = 0 if Pb] = 0-

S is defined as follows. For alI t such that O 5 t < Rr[ij.

if P[j] = 1 and Rb] = 1.

Proof. Let YP = APPLY(f , A, Pi = P) and let YQ = SU&(Q, YP) . Further, let

ZR = APPLY(f, A, Pi = R) and let ZS = SUB;(S, zR). The goal is to show that YQ

and ZS have the same i-slabs.

Let the phrase "f-application on the i-slab j of An (where j 2 O) refer to a

collection of function applications when the left edge of f's domain-box is situated

on top of the i-slab j of A.

That both yQ and 2' have the same i-slabs can be shown by proving the

following statement : for all j 2 O and for all t where (O 5 t < RI [il), the t-th i-slab

(O 5 t < Rf[i]) resulting from the f-application on the j-th i-slab (j 2 O) of A is

in YQ LE it is-in ZS.

Neither SUB nor APPLY permute the orders of the i-slabs that they process and

therefore, the shb n-bers aad the orderings ammg the k i-slabs (1 5 k 5 Ef[il)
that are indexed by t in YQ and in ZS axe preserved. Moreover, it is sficient

to consider mappings among the i-slabs because this rewrite d e copies the AP-

PLY patterns P, (n # i) from the original expression to the remitten expression.

Therefore, identical function applications happen on the correspondhg i-slabs in

the original expression and in the rewritten expression.

Consider the AML expression on the left-hand side of the rewrite d e . The f-

APPENDIX -4- PROOFS OF LOGLCAL REWRITE RULES 199

application on the i-slab j (j 2 0) of A produces the Rf [il Cslabs (((count(P! j) -

1) Rf [il) + t) (where O 5 t < Ef [il) of YP iff Pb] = 1. Each one of these i-slabs

(((count(P, j) - 1) Rf[il) + t) (where O 5 t < Rf[i]) of YP is present in I'Q iff

the corresponding bit Q[((count(P, j) - 1) - Bf[i]) + t] = 1 and Pb] = 1. For easy

reference, the 'iff' condition of the previous statement is reproduced below as the

condition CI :

Cl : Q[((count(P, j) - 1) - &[il) + t] = 1 and Pb] = 1

Now consider the AML expression on the right-hand side of the rewrite rule. The

f-application on the i-slab j (j 2 O) of A produces the gf [il i-slabs (((count(R, j) -

1) - Ef[il) + t) (where O 5 t < Rj[il) of Z R iff Rb] = 1- Each one of these i-slabs

(((count(R, j) - 1) .Gf [il) + t) (where O 5 t < &[il) of ,ZR is present in 2' iff

the corresponding bit S[((count (R, j) - 1) Zf [il) + t] = 1 and R[j] = 1. For easy

reference, the 'ifE' condition of the previous statement is reproduced below as the

condition Cz :

C2 : S[((count(R, j) - 1) - gf [il) + t] = i. and Rb] = 1

The theorem is proved if it c m be s h o w that for ail j > O and for ail O 5 t < Ef [il,
c, c-. c,.

Proof of Ci C2. Choose an arbitrary j (j > 0) and an arbitrary t (O 5 t <

&[il). First, i t will be s h o w that Ci + Rb] = 1. Since Q[((count(P, j) - 1)

Rf [il) + t] = 1 for the pa.rticuIar value of t, it can be concluded that

APPENDLX A. PROOFS OF LOGICAL REWRITE RULES

~ ~ ~ ' - ' ~ [((c o u n t (~ , j) - 1) - Ef[i]) + t] = 1 because the logical OR operation is

involved and one of the R [il bits is ho- to be 1. This c&nclusiono the assumption

P b] = 1' and the definition of R d o w us to conclude that Rb] = 1.

Given that Pb] = 1 and Q[((count(P, j) - 1) - Ef[il) + t] = 1, and hav-

ing proved that R[j] = 1, it c m be concluded-using the definition of S-that

S[((cmt(R, j) - 1) - Rr[il) + t] = 1, where O 5 t < Zf[i] .
Proof of Cz Cl. Once again, choose an arbitrary j (j 2 0) and an arbitrary

t (O 5 t < %[il). First, it wiU be shown that C2 + Pb] = 1. Given Rb] = 1

and the definition of R, Plj] = 1 follows. Given that R[j] = 1, P[j] = 1, and

s [((c m n t (~ , j)-1) -Rf [i])+t] = 1 (where O 5 t < gf[i]) , it can be concluded-using

the definition of S-that Q[((caunt(P, j) - 1) gt[i]) +t] = 1 (where O 5 t < gf [il).

Thus, C2 3 Cl has been proved-

F i n a , it will be shown the R and S are defbed for all indices j 2 0. From

R7s definition, it foLlows that if Rb] = 1, then P[j] = 1. Thus, the expression

(((count(R, j) - 1) - Zj[i]) + t) in the definition of S generates the consecutive

integers O, 1,2,3, - - - and therefore, S is defined for all j >: O. It follows from R's

definition that Rb] is dehed whenever Pb] is and thus R is defined for ail j > 0.
O

Theorem 2.14 (pulling SUB out of APPLY) Suppose that P and R are APPLY

patterns in dimension i, P # O , and D [il > O.

A P P L Y (~ , A, Po, Pl, - , P, - - -) = APPLY(f , SUB;(Q, A), Po, Pl, , R, -. -)

Q is defined as follows. (For notational con~enience~ the definition of P[j] is

extended such that Pb] = O for all j < O. V denotes a logical OR operation on

bits.) For a 3 j 2 O, Qb] = O iff P[t] = O.

R is defined as follows. For all j 2 O, R[count(Q, j) - 11 = P[j] if Q [j] = 1.

P ~ o o f . Let yP = APPLY(~ ,A , Pi = P) and let ZQ = S U B ; (Q ~ . ~) . Further. let

zR = A P P L Y (~ , zQ, Pi = R). The goal is to show that yP and have the same

i-slabs.

Let the phrase "f-application on the i-slab j of An (n-here j 2 O) refer to a

collection of function applications when the left edge of f's domain-box is situated

on top of the i-slab j of -4.

That both yP and ,ZR have the same i-slabs c m be shown by proving the

following statement: for all j 3 0, the f-application on the i-slab j (j 2 O) of A

results in Sf[i] i-slabs in yP iff the f-application on the i-slab j of A results in

&[il i-slabs in ,ZR.

Neither SUB nor APPLY permute the orders of the i-slabs that they process and

therefore, the slab numbers and the orderings among the Rf [il i-slabs in YP and in

are preserved. Moreover, it is sufficient to consider mappings among the i-slabs

because this rewrite rule-like Rule 10-copies the APPLY patterns P, (n # i) from

the original expression to the rewritten expression. Therefore, identical h c t i o n

applications happen on the corresponding i-slabs in the original expression and in

the rewritten expression.

Consider the AML expression on the left-hand side of the rewrite rule. The

f -application on the i-slab j (j 2 O) of A produces %[il i-slabs in YP iff Pb] = 1.

APPEIVDE -4. PROOFS OF LOGICAL REUI'RISE RULES

For easy reference, the condition of the previous statement is reproduced belon-

as the condition Cl :

Cl : P l i] = 1

Now consider the AML expression on the right-hand side of the rewrite d e .

The i-slab j (j 2 O) of A is equal to the i-slab ((count(Q. j) - 1) of 2 4 iff Qlj] = 1

(as per Observation A.2). The f-application on the i-slab ((count(Q, j) - 1) of ZQ

produces gf[i] i-slabs in ZR iff Q b] = 1 and R[count(Q, j) - 11 = 1. For easy

reference, the 'ifF' condition of the previous statement is reproduced below as the

condition C2:

C2 : Q[j] = 1 and R[count(Q, j) -11 = 1

The theorem is proved if it can be shown that for all j 2 O, Cl w C2.

Proof of Cl + C2. Choose an arbitrary j 2 O. First, it will be s h o w that

Cl Q[j] = 1. From P L] = 1, vi t=~-D~[q+i - P[t] = 1 follows because the logical OR

operation is involved and the bit P b] is h o w n to be 1. Q7s definition then implies

that Qb] = 1. (Q7s definition defines exactly those indices j 2 O when Q [j] = O; at

all the other indices Qlj] = 1.)

Given that P[j] = 1 and having proved that Qb] = 1, it con be conduded-

using the definition of R-that R[count (Q, j) - 11 = 1.

Proof of C2 =+ Cl. Once again, choose an arbitrary j 2 O. Given that QQli] = 1

and R[count(Q, j) - 11 = 1, it can be concluded-using the definition of R-that

P b] = 1. Thus, C2 + Cl has been proved.

Findy, it will be shown that Q and R are defined for all j 2 O. Q is defmed

for exactly those indices j where Q [j] is 0; for all the other indices j', Q[jr] = 1.

-4PPENDLX -4- PROOFS OF LOGICAL REWXITE R u'LES 203

In the definition of R, notice that (count(Q, j) - 1) when Q [j] = 1 generates the

successive indices O, 1,2, - - . a

Bibliography

[l] Rakesh Agram-al, Ashish Gupta, and S u n i t a Sarawagi. Modeling EvLultidimen-

sional Databases. In Proceedings of the Thirteenth International Conference

on Data Engineering? pages 232-243, Birmingham, UK, April 1997.

[2] Manish Arya, William Cody, Christos Faloutsos, 3oel Richardson, and Arthur

Toga. QBISM: Extending a DBMS to Support 3D Medical Images. In Proceed-

ings of the 10th International Conference on Data Engineering, pages 314-325,

Houston, Texas, February 1994. IEEE Computer Society Press.

[3] P. Baumasn, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The Mul-

tidimensional Database S ystem RasDaMan. In Proceedings of ACM SIGMOD

International Conference on Management of Data? pages 575-577, Seattle,

Washington, USA, June 1998.

[4] Peter Baumann. Management of Multidimensional Discrete Data. The VLDB

Journal, 3 (4):4OI-+M, 1994.

[5] Norbert Bedcmann, Hans-Pet er Kriegel, Ralf Schneider, and Bernhard Seeger .

R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. In

Proceedings of the ACM SIGMOD International Conference on Management

of Data, pages 322-331, Atlantic City, NJ, May 1990.

[6] Timothy Budd. An APL Compiler. Springer-Vdag, Xew USA, 19SS.

[il Mîchael3. Carey, David J. DeWitt, and Jeffrey F. Naughton. The 0 0 7 Bench-

mark. In Proceedings of the 1999 ACM SIGMOD International Conference on

Management of Data, pages 12-21, Washington, DC, May 1993.

[8] Don Chamberlin. A Complete Guide to DB2 Universal Database. Morgan

Kaufmann, San Francisco, CA, 1998.

[9] Chialin Chang, .4nurag Acharya, Alan Sussman, and Joel Saltz. T2: -4 Cus-

tomizable Parde l Dat abase For Multi-dimensional Da ta SIGMOD Record,

27(1):58-66, March 1998.

[I O] Chialin Chang, Bongki Moon, Anurag Acharya, Carter Shock, Alan Sussman,

and Joel H. Saltz. Titan: A High-Performance Remote Sensing Database. In

Proceedings of the Thirteenth International Conference on Data Engineering,

pages 375-384, Birmingham, UK, April1997.

[Il] Shi-Kuo Chang and Arding Hsu. Image Information Systems: Where Do We

Go Frorn Here? IEEE Transactions on Knowledge and Data Engineering,

4(5):431-442, October 1992.

[12] Surajit Chaudhuri and Umeshwar Dayal. AR Overview of Data Warehousing

and OLAP Technology. SIGMOD Record, 26(1):65-74, Mar& 1997.

[13] Surajit Chaudhuri and Kyuseok Shim. Optimization of Queries with User-

defined Predicates. In Proceedings of the 22nd VLDB Conference. pages 87-9s.

Mumbai (Bombay), India, September 1996.

[14] Transaction Processing Performance Council. TPC Benchmark Descriptions.

web-page, 2000. See http://tpc.org/bench.descrip.html.

[l5] David J. DeWitt, Navin Kabra, Jun Luo, Jignesh M. Patel, and Jie-Bing Yu.

Client-Semer Paradise. In Proceedings of the 20th VLDB Conference, pages

558-569, Santiago, Chile, 1994.

[16] R. A. Fidel and J. L. Bentley- Quad Trees: -4 Data Structure for Retrieval

on Composite Keys. Acta Informatica, 4(1):1-9, 1974.

[li] Patrick C. Fischer and Robert L. Probert. Storage Reorganization Techniques

for Matriu Computation in a Paging Environment. Communications of the

ACM, 22(7):405-415, July 1979.

[18] Paula Furtado and Peter Baumann. Storage of Multidimensional Arrays Based

on Arbitrary Tiling. In Proceedings of the 15th International Confe~ence on

Data Enginenng, pages 480-489, Sydney, Australia, March 1999.

[19] Hector Garcia-Molina, Jeflkey D. UZlman, and Jennifer Widom. Database Sys-

tem Implementation. Prentice Hall, Upper Saddle River, New Jersey, 2000.

[20] -Man George and Joseph W.-H. Liu. Compter Solution of Large Sparse Pos-

itive Definite Systems. Prentice-Hall Series in Computational Mathematics.

Prentice-Hall, Englewood CWs, NJ, 1981.

[21] Goetz Graefe. Encapsdation of Parallelism in the Volcano Query Processing

System. In Proceedings of the 1990 ACM SIGMOD International Conference

o n Management of Data, pages 102-111. Atlantic City, XJ1 May 1990.

[22] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Com-

putilag Surveys, 25(2) : 73-170, June 1993.

[23] Leo J. Guibas and Douglas K. Wyatt. Compilation and Delayed Evaluation in

APL. Ln Conference- Record of the Fifth Annual ACMSymposiz lm on Principles

of Programrning Languages, pages 1-8, Tucson, -Arizona, Ja.nu;isv 1978.

[24] Antonin Guttman. R-Trees: A D ynamic Index Structure for Spatial Searching.

In Proceedings of the ACM SIGMOD International Conference o n Management

of Data, pages 47-57, Boston, MA, June 1984.

[25] Marc Gyssens and Lalcs V.S. Lakshrnanan. A Foundation for Mdti-

Dimensional Databases. In Proceedings of the 23r& International Conference on

Very Large Data Bases, pages 106-115, Athens, Greece, August 1997. Morgan

Kaufmann.

i

1261 Joseph M. Hellerstein and Jeffrey F. Naughton. Query Execution Techniques

for Caching Expensive Methods. Ln Proceedings of the ACM-SIGMOD Inferna-

tional Conference on Management of Data, pages 423-434, Montreal, Canada,

June 1996. ACM, Inc.

[25] Joseph M. Hellerstein ond Michael Stonebraker. Predicate Migration: Optimiz-

ing Queries with Expensive Predicates. In Proceedings of the ACM-SIGMOD

International Conference on Management of Data. pages 267-276, Washing-

ton, DC, USA, 1993. ACM, Inc.

[28] Illustra Information Technologies. IRC., 1111 Broadway. Suite 2000. Oakland,

CA 94607. Illustra User's Guide, June 1994.

[29] The MathWorks Inc. Image Processing Toolbox 2 data sheet, Web-page, 2000.

See http://wniw.mathworlis.com/products/image~

[30] K. E. Iverson. A Programming Language. John Wiley P- Sons, Inc., New York,

1962.

[31] I-I. V. Jagadish. Linear Clustering of Objects with Multiple Attributes. In

Proceedings of the A CM SIGMOD Internatio na2 Conference on Management

of Data, pages 332-342, Atlantic City, NJ, May 1990.

[32] Michael A. Jenkins. Q'Nial: A Portable Interpreter for the Nested Interac-

tive Array Language, Nial. Softuare-Practice and Experience, 19 (2): 111-126,

February 1989.

[33] Michael A. Jenkins. personal email communication, 1999.

[34] Michael A. Jenkins, Janice 1. Glasgow, and Car1 D. McCrosby. Progr;Lmming

Styles in Nial. IEEE Software: 3(1):46-55, 1986.

[35] Harry Katzan, Jr. APL User's Guide. Computer Science Series. Van Nostrand

Reinhold Company, New York, 1971.

[36] Leonid Liblrin, Rona Machlia, and Limsoon Wong. A Query Language for Mul-

tidimensional Arrays: Design, Impiementation, and Op timization Techniques.

In Proceedings of the ACM-SIGMOD International Conference on Manage-

ment of Data, pages 228-239, Montreal, Canada, 1996. ACM. Inc.

[37] Thomas M. Lillesand and Ralph W. Kiefer. Remo te Senstng and Image Inter-

pretation. John Wïley & Sons, Inc., New ?-ork, USA, fourth edition, 1999.

[38] Guy M. Lohman, Joseph C. Stoltzfus, Anita N. Benson, Michael D. Martin,

and Alfonso F. Cardenas, Remotely-sensed Geophysical Databases: Expe-

rience and Implications for Generalized DBMS. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 146-160,

San Jose, CA, May 1983.

[39] Kemy Lui. personal email communication, 2000. Engineering Development

Group, The MathWorks h c .

[40] David Maier and Bennet Vance. -4 C d to Order. In Proceedings of the ACM

SIGA CT-SIGMOD-SIGART Symposium on Principles of Database Systems,

pages 1-16, 1993.

[41] Anuiprasad P. Marathe and Kenneth Salem. A Language for Manipdating

Arrays. In Proceedings of the 23rd international Conference on Very Large

Data Bases, pages 46-55, Athens, Greece, August 1997. Morgan Kaufmann.

[42] Arunprasad P. Marathe and Kenneth Salem. Query Processing Techniques

for Arrays. Zn Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 323-334, Philadelphia, Pemsylvania, USA. June

1999. ACb1 Press,

[43] Trenchard More, Jr. -4xioms and Theorems for a Theory of Arrays. IBM

Journal of Research and Developrnent, 17: l35-lT5, March 1973.

[44] Steven S. Mudini&. Advanced Compiler Design and Inplementatzon. Morgan

Kaufmann, San Francisco, 1997.

[45] Ron Musidr and Terence Critchlow. Practical Lessons in Supporting Large-

Scale Computational Science. SIGMOD Record, B(4) :49-57, December 1999.

(461 National Space Science Data Center, Greenbelt , Maryland. CDF User 's Guide,

October 1996. Version 2.6.

[47] Kenneth W. Ng and Richard R. Muntz. ParaUelizing User-Dehed Functions in

Distributed Object-Relational DBMS. In Proceedings of the 1999 International

Database Engineering and Applications Symposium, pages 442-445, Mont real,

Canada, August 1999.

[48] Michael A. Olson, Wei Michael Hong, Michael Ubell, and Michael Stonebraker.

Query Processing in a Parallel Object-Relational Database System. Bulletin

of the IEEE Cornputer Society Technical Cornmittee o n Data Engineering,

19(4):3-10, December 1996.

[49] David A. Patterson, Garth A. Gibson, and Randy H. Katz. A Case for Re-

dundant Arrays of Inexpensive Disks (RAID). In Proceedings of the ACM

SIGMOD International Confe~ence on Management of Data. pages 109-116.

Chicago, Illinois, June 1988.

[JO] Russ Rew, Glenn Davis, S teve E m e r s o n , and Harvey Davies. Net CDF User 's

Guide. Unidata Program Center, Boulder, Colorado. Februaq 1996. Version

2.4.

[5l] G. X. Ritter, J. N. Wilson, and J. L. Davidson. Image Algebra: Pm Overview.

C o m p t e r Vision, Graphies, and Image Processing, 49:29ï-331, 1990.

[52] Gerhard X. Ritter and Joseph N. Wilson. Handbook of Cornputer Vision Ab

g o r i t h in Image Algebra. CRC Press, Boca Raton, Florida, 1996.

1531 John T. Robinson. The K-D-B-Tree: A Search Structure for Large Multidimen-

sional Dynamic Indexes. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 10-18, Ann Arbor, Michigan, April

1981.

[54] -Arnold L. Rosenberg. -4llocating Storage for Extendible Arrays. Journal of

t he Association for Cornpating Machinery, 21 (4):652-670, October 1974.

[55] Arnold L. Rosenberg. Managing Storage for Extendible Arrays. SIAM Journal

on Computing, 4(3):287-306, September 1975.

[56] -4rnold L. Rosenberg. Preserving Proximity in Arrays. SIAM Journal on

Cornputing, 4(4):443-460, December 1975.

[57] Kenneth Salem and Hector Garcia-Molina. Disk Striping. In Proceedings of the

BLBLIOGR4PWEœ 212

International Conference on Data Engineering. pages 336-342. Los Angeles.

CA, February 1986-

[58] Sunita Sarawagi and Michael Stonebraker. Efficient Organization of Large

Multidimensional.4rrays. In Proceedings of the 10th International Conference

on Data Engineering, pages 328-336, Houston, Texas, February 1994. IEEE

Computer Society Press.

1591 Praveen Seshadri. Enhanced Abstract Data Types in Object-Relational

Databases. VLDB Journal, 7(3):130-140, 1998.

Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. The Design and

Implementation of a Sequence Database System. In Proceedings of the 22nd

VLDB Conference, pages 99-110, Mumbai (Bombay), India, September 1996.

Praveen Seshadri, Miron Livny, and Raghu Ramalnshnan. The Case for En-

hanced Abstract Data Types. In Proceedings of the 23rd VLDB Conference,

pages 66-75, -4thens, Greece, 1997.

Jay M. Sipelstein and Guy E. Blelloch. Collection-Oriented Languages. Tech-

nical Report CMU-CS-90-127, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA, March 1991.

Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for Corn-

puter Graphies: Theory and Applications. Morgan Kauf'mann, San Francisco,

1996.

[64] K. Stolze. SQL/MM Part 5: StilI Image - The Standard and Implementation

-4spects. Jenaer Schften zur Mathematik und Informatik Math/Inf/00/27.

Institut für Informatik, Friedrich-Schiller-Uni~rersitZt Jena. September 2000.

[65] Michael Stonebraker, Jim Frew, Kenn Gardels, and Jeff Meredith. The SE-

QUOL4 2000 Storage Benchmark. In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, pages 2-1 1, Washington, D C ,

May 1993-

[66] Michael Stonebraker and Gieg Kemnitz. The Postgres next-generation

database management system. Communications of the ACM, 34(10):78-93,

October 1991.

[67] Michael Stonebraker and Dorothy Moore. Object-Relational DBMSs: The Next

Great Wave. Morgan Kaufmann, San Francisco, 1996.

[6S] Michad Stonebraker, Lawrence A. Rowe, and Michael Kirohama. The Im-

plementation of POSTGRES. I E E Transactions on Knowledge and Data

Engineering, 2(1):125-142, 1990.

[69] Joseph M. Treat and Timothy A. Budd. Extensions to grid selector composi-

tion and compilation in APL. Information Processing Letters, lg(3) : 117-123,

October 1984-

[?O] University of Illinois at Urbana-C hampaign. NCSA HDF Calling Interfaces

and Utilities, 3.1 edition, July 1990.

[Ti] Scott L. Vandenberg and David J. DeWitt. Algebraic Support for Cornplex

Objects with Arrays, fdentity, and Neritance. In Proceedings of the ACM-

SIGMOD International Conference on Management of Data, pages 15s-167.

ACM, hc., 1991.

[72] Wei Jiong Yang, and Richard Muntz. PK-tree: A Spatial Index Struc-

ture for High Dimeosional Point Data. In Proceedings of the 5th International

Conference of Foundations of Data Organization (N D 0 '98), Kobe, Japan,

November 1998.

[73] Norbert Widmann and Peter Baumann. Efficient Execution of Operations in a

DBMS for Multidimensional Arrays. IR Proceedings of the 10th International

Conference on Scientific and Statistical Database Management, Capri, Itdy,

Jdy 1998.

[74] Norbert Wibann and Peter Baumann. Pedormance Evaluation of Mdti-

dimensional Array Storage Techniques in Databases. In Proceedings of the

1999 International Database Engineering and Applications Symposium, pages

355-389, Montreal, Canada, August 1999.

[75] W. A. Wulf, D. B. Russell, and 4. N. Habermann. BLISS: A Language for

S ystems Programming. Communications of the A CM, 14:780-790, December

1971.

