Skip to main content

Advertisement

Log in

Device-free near-field human sensing using WiFi signals

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Wireless device-free human sensing is an emerging technique of Internet of Things, which holds great potential for ubiquitous location-based services and human-interaction applications. Although existing studies can detect human appearance, they still neglect to further identify whether a user is approaching a sensor or not, which is critical for fine-grained recognition of human behaviors. In this paper, we first conduct comprehensive experiments to measure relationships between signal fading and human positions. The experimental results show that signal fading stepwise changes with different distances of the human to a sensor. Moreover, the signal fading is worse when the human is located closer to an antenna of the sensor. Motivated by these observations, we propose NSee, a novel system for device-free near-field human sensing without site-survey fingerprints. Specifically, we cluster signal fading features of different antennas by a Gaussian mixture model, and further propose a cluster identification algorithm to identify clusters in correspondence to different near-field subareas of human appearance. Based on cluster characteristics, NSee can recognize near-field human presence with online sensing. We implement a prototype of NSee system based on a commercial WiFi card with multiple antennas. Extensive experimental results illustrate that the proposed system can achieve an averaged accuracy of 90% in device-free near-field human recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abdel-Nasser H, Samir R, Sabek I, Youssef M (2013) MonoPHY: Mono-stream-based device-free WLAN localization via physical layer information. In: Proc. of the WCNC. IEEE

  2. Alippi C, Bocca M, Boracchi G, Patwari N, Roveri M (2015) RTI goes wild: Radio tomographic imaging for outdoor people detection and localization. IEEE Trans Mob Comput 15(10):2585–2598

    Article  Google Scholar 

  3. Alletto S, Cucchiara R, Fiore G D, Mainetti L, Mighali V, Patrono L, Serra G (2016) An indoor location-aware system for an IoT-based smart museum. IEEE Internet Things J 3(2):244– 253

    Article  Google Scholar 

  4. Chen C, Ding Y, Xie X, Zhang S, Wang Z, Feng L (2019) TrajCompressor: An online map-matching-based trajectory compression framework leveraging vehicle heading direction and change. IEEE Transactions on Intelligent Transportation Systems

  5. Cheng L, Wang J (2019) Walls have no ears: A non-intrusive WiFi-based user identification system for mobile devices. IEEE/ACM Trans Netw 27(1):245–257

    Article  Google Scholar 

  6. Conti M, Boldrini C, Kanhere S S, Mingozzi E, Pagani E, Ruiz P M, Younis M (2015) From MANET to people-centric networking: Milestones and open research challenges. Comput Commun 71:1–21

    Article  Google Scholar 

  7. Davies L, Gather U (1993) The identification of multiple outliers. J Am Stat Assoc 88(423):782–792

    Article  MathSciNet  Google Scholar 

  8. Duan C, Yang L, Lin Q, Liu Y (2018) Tagspin: High accuracy spatial calibration of RFID antennas via spinning tags. IEEE Trans Mob Comput 17(10):2438–2451

    Article  Google Scholar 

  9. Fan X, He X, Xiang C, Puthal D, Gong L, Nanda P, Fang G (2018) Towards system implementation and data analysis for crowdsensing based outdoor RSS maps. IEEE Access 6:47535–47545

    Article  Google Scholar 

  10. Fan X, Xiang C, Chen C, Song X, Yang P, Gong L, Nanda P, He X (2020) Buildsensys: Reusing building sensing data for traffic prediction with cross-domain learning. IEEE Transactions on Mobile Computing

  11. Gong L, Man D, Lv J, Shen G, Yang W (2015) Frid: Indoor fine-grained real-time passive human motion detection. In: Proc. of the UIC. IEEE

  12. Gong L, Yang W, Xiang C, Man D, Yu M, Yin Z (2016) WiSal: ubiquitous WiFi-based device-free passive subarea localization without intensive site-survey. In: Proc. of the Trustcom/BigDataSE/ISPA. IEEE

  13. Gong L, Zhao Y, Chaocan X, Li Z, Qian C, Yang P (2018) Robust light-weight magnetic-based door event detection with smartphones. IEEE Trans Mob Comput 18(11):2631– 2646

    Article  Google Scholar 

  14. Halperin D, Hu W, Sheth A, Wetherall D (2011) Predictable 802.11 packet delivery from wireless channel measurements. ACM SIGCOMM Comput Commun Rev 41(4):159– 170

    Article  Google Scholar 

  15. Jiang W, Miao C, Ma F, Yao S, Wang Y, Yuan Y, Xue H, Song C, Ma X, Koutsonikolas D et al (2018) Towards environment independent device free human activity recognition. In: Proc. of the MobiCom. ACM

  16. Kianoush S, Savazzi S, Vicentini F, Rampa V, Giussani M (2017) Device-Free RF human body fall detection and localization in industrial workplaces. IEEE Internet of Things J 4(2):351– 362

    Article  Google Scholar 

  17. Kosba A E, Saeed A, Youssef M (2012) Rasid: A robust wlan device-free passive motion detection system. In: Proc. of the PerCom. IEEE

  18. Liu D, Cao Z, He Y, Ji X, Hou M, Jiang H (2019) Exploiting concurrency for opportunistic forwarding in duty-cycled Iot networks. ACM Trans Sensor Netw 15(3):31

    Google Scholar 

  19. Liu Y, Yang Z (2010) Location, localization, and localizability: Location-awareness technology for wireless networks. Springer Science & Business Media

  20. Lv J, Yang W, Gong L, Man D, Du X (2016) Robust WLAN-based indoor fine-grained intrusion detection. In: Proc. of the IEEE GLOBECOM. IEEE

  21. Patwari N, Wilson J (2011) Spatial models for human motion-induced signal strength variance on static links. IEEE Trans Inf Forensics Secur 6(3):791–802

    Article  Google Scholar 

  22. Qian K, Wu C, Yang Z, Liu Y, Jamieson K (2017) Widar: Decimeter-level passive tracking via velocity monitoring with commodity Wi-Fi. In: Proc. of the MobiHoc

  23. Qian K, Wu C, Yang Z, Liu Y, Zhou Z (2014) Pads: Passive detection of moving targets with dynamic speed using phy layer information. In: Proc. of the ICPADS. IEEE

  24. Ren S, Wang H, Gong L, Xiang C, Wu X, Du Y (2019) Intelligent contactless gesture recognition using WLAN physical layer information. IEEE Access 7:92758–92767

    Article  Google Scholar 

  25. Saeed A, Kosba A E, Youssef M (2014) Ichnaea: A low-overhead robust wlan device-free passive localization system. IEEE J Sel Topics Signal Process 8(1):5–15

    Article  Google Scholar 

  26. Sen S, Choudhury R R, Radunovic B, Minka T (2011) Precise indoor localization using PHY layer information. In: Proc. of the 10th ACM workshop on hot topics in networks. ACM

  27. Sen S, Lee J, Kim K H, Congdon P (2013) Avoiding multipath to revive inbuilding WiFi localization. In: Proc. of the MobiSys. ACM

  28. Wang Z, Guo B, Yu Z, Zhou X (2018) Wi-Fi CSI-based behavior recognition: From signals and actions to activities. IEEE Commun Mag 56(5):109–115

    Article  Google Scholar 

  29. Xiang C, Yang P, Tian C, Cai H, Liu Y (2015) Calibrate without calibrating: An iterative approach in participatory sensing network. IEEE Trans IEEE Trans Parallel Distrib Syst 26(2):351–361

    Article  Google Scholar 

  30. Xiang C, Yang P, Tian C, Zhang L, Lin H, Xiao F, Zhang M, Liu Y (2016) Carm: Crowd-sensing accurate outdoor rss maps with error-prone smartphone measurements. IEEE Trans Mob Comput 15(11):2669–2681

    Article  Google Scholar 

  31. Xiao C, Han D, Ma Y, Qin Z (2019) CsiGAN: Robust channel State information-based activity recognition with GANs. IEEE Internet of Things Journal

  32. Xiao F, Wang Z, Ye N, Wang R, Li X Y (2018) One more tag enables fine-grained RFID localization and tracking. IEEE/ACM Trans Netw 26(1):161–174

    Article  Google Scholar 

  33. Xiao J, Wu K, Yi Y, Wang L, Ni L (2013) Pilot: Passive device-free indoor localization using channel state information. In: Proc. of the ICDCS. IEEE

  34. Xiao J, Wu K, Yi Y, Wang L, Ni L M (2012) FIMD: Fine-grained device-free motion detection. In: Proc. of the ICPADS. IEEE

  35. Xie Y, Li Z, Li M (2015) Precise power delay profiling with commodity WiFi. In: Proc. of the MobiCom. ACM

  36. Xu C, Firner B, Zhang Y, Howard R, Li J, Lin X (2012) Improving rf-based device-free passive localization in cluttered indoor environments through probabilistic classification methods. In: Proc. of the IPSN. ACM

  37. Yang J, Ge Y, Xiong H, Chen Y, Liu H (2010) Performing joint learning for passive intrusion detection in pervasive wireless environments. In: Proc. of the INFOCOM. IEEE

  38. Yang Z, Zhou Z, Liu Y (2013) From rssi to csi: Indoor localization via channel response. ACM Comput Surv 46(2):25

    Article  Google Scholar 

  39. Youssef M, Mah M, Agrawala A (2007) Challenges: Device-free passive localization for wireless environments. In: Proc. of the MobiCom. ACM

  40. Zhang X, Yang Z, Liu Y, Tang S (2019) On reliable task assignment for spatial crowdsourcing. IEEE Trans Emerging Topics Comput 7(1):174–186

    Article  Google Scholar 

  41. Zheng J, Cai Y, Wu Y, Shen X (2018) Dynamic computation offloading for mobile cloud computing: A stochastic game-theoretic approach. IEEE Trans Mob Comput 18(4):771– 786

    Article  Google Scholar 

  42. Zhou Z, Yang Z, Wu C, Shangguan L, Liu Y (2013) Towards omnidirectional passive human detection. In: Proc. of the INFOCOM. IEEE

  43. Zhu H, Xiao F, Sun L, Wang R, Yang P (2017) R-TTWD: Robust device-free through-the-wall detection of moving human with WiFi. IEEE J Select Areas Commun 35(5):1090– 1103

    Article  Google Scholar 

Download references

Funding

This research is supported by the Young Scientists Fund of the National Natural Science Foundation of China No. 61902211, the National Natural Science Foundation of China No. 61872447, the Natural Science Foundation of Tianjin City (CN) No. 18JCQNJC69900, and the Natural Science Foundation of Chongqing: No.CSTC2018JCYJA1879

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaocan Xiang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Xiang, C., Fan, X. et al. Device-free near-field human sensing using WiFi signals. Pers Ubiquit Comput 26, 461–474 (2022). https://doi.org/10.1007/s00779-020-01385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-020-01385-4

Keywords

Navigation