Skip to main content
Log in

On optimal portfolio diversification with respect to extreme risks

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Extreme losses of portfolios with heavy-tailed components are studied in the framework of multivariate regular variation. Asymptotic distributions of extreme portfolio losses are characterized by a functional γ ξ =γ ξ (α,Ψ) of the tail index α, the spectral measure Ψ, and the vector ξ of portfolio weights. Existence, uniqueness, and location of the optimal portfolio are analysed and applied to the minimization of risk measures. It is shown that diversification effects are positive for α>1 and negative for α<1. Strong consistency and asymptotic normality are established for a semiparametric estimator of the mapping ξ γ ξ . Strong consistency is also established for the estimated optimal portfolio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, C.: Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Finance 26, 1505–1518 (2002)

    Article  Google Scholar 

  2. Barbe, P., Fougères, A.-L., Genest, C.: On the tail behaviour of sums of dependent risks. ASTIN Bull. 36, 361–373 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Basrak, B., Davis, R.A., Mikosch, T.: A characterization of multivariate regular variation. Ann. Appl. Probab. 12, 908–920 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of Mathematics and Its Applications, vol. 27. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  5. Böcker, K., Klüppelberg, C.: Modelling and measuring multivariate operational risk with Lévy copulas. J. Oper. Risk 3(2), 3–27 (2008)

    Google Scholar 

  6. Boman, J., Lindskog, F.: Support theorems for the Radon transform and Cramér–Wold theorems. J. Theor. Probab. 22, 683–710 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Daníelsson, J., Jorgensen, B.N., Sarma, M., de Vries, C.G.: Sub-additivity re-examined: the case for value-at-risk. EURANDOM Reports (2005). http://www.eurandom.nl/reports/2005/006-report.pdf

  8. Davis, R., Resnick, S.: Tail estimates motivated by extreme value theory. Ann. Stat. 12, 1467–1487 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. de Haan, L., Ferreira, A.: Extreme Value Theory. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)

    MATH  Google Scholar 

  10. de Haan, L., Resnick, S.I.: Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 40, 317–337 (1977)

    Article  MATH  Google Scholar 

  11. de Haan, L., Resnick, S.I.: Estimating the limit distribution of multivariate extremes. Commun. Stat. Stoch. Mod. 9, 275–309 (1993)

    Article  MATH  Google Scholar 

  12. de Haan, L., Sinha, A.K.: Estimating the probability of a rare event. Ann. Stat. 27, 732–759 (1999)

    Article  MATH  Google Scholar 

  13. Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Stat. 17, 1833–1855 (1989)

    Article  MATH  Google Scholar 

  14. Drees, H.: Refined Pickands estimators of the extreme value index. Ann. Stat. 23, 2059–2080 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Drees, H., Ferreira, A., de Haan, L.: On maximum likelihood estimation of the extreme value index. Ann. Appl. Probab. 14, 1179–1201 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Einmahl, J.H.J., de Haan, L., Huang, X.: Estimating a multidimensional extreme-value distribution. J. Multivar. Anal. 47, 35–47 (1993)

    Article  MATH  Google Scholar 

  17. Einmahl, J.H.J., de Haan, L., Sinha, A.K.: Estimating the spectral measure of an extreme value distribution. Stoch. Process. Appl. 70, 143–171 (1997)

    Article  MATH  Google Scholar 

  18. Einmahl, J.H.J., de Haan, L., Piterbarg, V.I.: Nonparametric estimation of the spectral measure of an extreme value distribution. Ann. Stat. 29, 1401–1423 (2001)

    Article  MATH  Google Scholar 

  19. Embrechts, P., Lambrigger, D., Wüthrich, M.V.: Multivariate extremes and the aggregation of dependent risks: examples and counter-examples. Extremes 12, 107–127 (2009)

    Article  MathSciNet  Google Scholar 

  20. Embrechts, P., Nešlehová, J., Wüthrich, M.V.: Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness. Insur. Math. Econ. 44, 164–169 (2009)

    Article  MATH  Google Scholar 

  21. Falk, M., Hüsler, J., Reiss, R.-D.: Laws of Small Numbers: Extremes and Rare Events. DMV Seminar, vol. 23. Birkhäuser, Basel (1994)

    MATH  Google Scholar 

  22. Hajós, G., Rényi, A.: Elementary proofs of some basic facts concerning order statistics. Acta Math. Acad. Sci. Hungar. 5, 1–6 (1954)

    Article  MATH  Google Scholar 

  23. Hauksson, H.A., Dacorogna, M.M., Domenig, T., Müller, U.A., Samorodnitsky, G.: Multivariate extremes, aggregation and risk estimation. SSRN eLibrary (2000). http://ssrn.com/paper=254392

  24. Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975)

    Article  MATH  Google Scholar 

  25. Hult, H., Lindskog, F.: Regular variation for measures on metric spaces. Publ. Inst. Math. (Beograd) (N.S.) 80(94), 121–140 (2006)

    Article  MathSciNet  Google Scholar 

  26. Joe, H.: Multivariate Models and Dependence Concepts. Monographs on Statistics and Applied Probability, vol. 73. Chapman & Hall, London (1997)

    MATH  Google Scholar 

  27. Klüppelberg, C., Resnick, S.I.: The Pareto copula, aggregation of risks, and the emperor’s socks. J. Appl. Probab. 45, 67–84 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Malevergne, Y., Sornette, D.: Extreme Financial Risks. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management. Princeton Series in Finance. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  30. Moscadelli, M.: The modelling of operational risk: Experience with the analysis of the data collected by the Basel Committee. SSRN eLibrary (2004). http://ssrn.com/paper=557214

  31. Nešlehová, J., Embrechts, P., Chavez-Demoulin, V.: Infinite-mean models and the LDA for operational risk. J. Oper. Risk 1(1), 3–25 (2006)

    Google Scholar 

  32. Pickands III, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119–131 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  33. Pickands III, J.: Multivariate extreme value distributions. In: Proceedings of the 43rd session of the International Statistical Institute, Book 2, Buenos Aires, 1981, vol. 49, pp. 859–878, 894–902. ISI, 1981. With a discussion

  34. Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Applied Probability. A Series of the Applied Probability Trust, vol. 4. Springer, New York (1987)

    MATH  Google Scholar 

  35. Resnick, S.: The extremal dependence measure and asymptotic independence. Stoch. Mod. 20, 205–227 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Resnick, S.I.: Heavy-Tail Phenomena. Springer Series in Operations Research and Financial Engineering. Springer, New York (2007)

    MATH  Google Scholar 

  37. Schmidt, R., Stadtmüller, U.: Non-parametric estimation of tail dependence. Scand. J. Stat. 33, 307–335 (2006)

    Article  MATH  Google Scholar 

  38. Smith, R.L.: Estimating tails of probability distributions. Ann. Stat. 15, 1174–1207 (1987)

    Article  MATH  Google Scholar 

  39. van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer, New York (1996). Corrected 2nd printing 2000

    MATH  Google Scholar 

  40. Wüthrich, M.V.: Asymptotic Value-at-Risk estimates for sums of dependent random variables. Astin Bull. 33, 75–92 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Mainik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainik, G., Rüschendorf, L. On optimal portfolio diversification with respect to extreme risks. Finance Stoch 14, 593–623 (2010). https://doi.org/10.1007/s00780-010-0122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-010-0122-z

Keywords

Mathematics Subject Classification (2000)

JEL Classification

Navigation