Skip to main content
Log in

Risk bounds for factor models

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Recent literature has investigated the risk aggregation of a portfolio \(X=(X_{i})_{1\leq i\leq n}\) under the sole assumption that the marginal distributions of the risks \(X_{i} \) are specified, but not their dependence structure. There exists a range of possible values for any risk measure of \(S=\sum_{i=1}^{n}X_{i}\), and the dependence uncertainty spread, as measured by the difference between the upper and the lower bound on these values, is typically very wide. Obtaining bounds that are more practically useful requires additional information on dependence.

Here, we study a partially specified factor model in which each risk \(X_{i}\) has a known joint distribution with the common risk factor \(Z\), but we dispense with the conditional independence assumption that is typically made in fully specified factor models. We derive easy-to-compute bounds on risk measures such as Value-at-Risk (\(\mathrm{VaR}\)) and law-invariant convex risk measures (e.g. Tail Value-at-Risk (\(\mathrm{TVaR}\))) and demonstrate their asymptotic sharpness. We show that the dependence uncertainty spread is typically reduced substantially and that, contrary to the case in which only marginal information is used, it is not necessarily larger for \(\mathrm{VaR}\) than for \(\mathrm{TVaR}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bäuerle, N., Müller, A.: Stochastic orders and risk measures: consistency and bounds. Insur. Math. Econ. 38, 132–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernard, C., Denuit, M., Vanduffel, S.: Measuring portfolio risk under partial dependence information. J. Risk Insur. (2017), forthcoming. doi:10.1111/jori.12165

    Google Scholar 

  3. Bernard, C., Jiang, X., Wang, R.: Risk aggregation with dependence uncertainty. Insur. Math. Econ. 54, 93–108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernard, C., Rüschendorf, L., Vanduffel, S.: Value-at-risk bounds with variance constraints. J. Risk Insur. (2017), forthcoming. doi:10.1111/jori.12108

    Google Scholar 

  5. Bernard, C., Rüschendorf, L., Vanduffel, S., Yao, J.: How robust is the value-at-risk of credit risk portfolios? Eur. J. Finance 23, 507–534 (2017)

    Article  Google Scholar 

  6. Bernard, C., Vanduffel, S.: A new approach to assessing model risk in high dimensions. J. Bank. Finance 58, 166–178 (2015)

    Article  Google Scholar 

  7. Bignozzi, V., Puccetti, G., Rüschendorf, L.: Reducing model risk via positive and negative dependence assumptions. Insur. Math. Econ. 61, 17–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burgert, C., Rüschendorf, L.: Consistent risk measures for portfolio vectors. Insur. Math. Econ. 38, 289–297 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carhart, M.M.: On persistence in mutual fund performance. J. Finance 52, 57–82 (1997)

    Article  Google Scholar 

  10. Chamberlain, G., Rothschild, M.: Arbitrage, factor structure, and mean-variance analysis on large asset markets. Econometrica 51, 1281–1304 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Connor, G., Korajczyk, R.A.: A test for the number of factors in an approximate factor model. J. Finance 48, 1263–1291 (1993)

    Article  Google Scholar 

  12. Cont, R., Deguest, R., Scandolo, G.: Robustness and sensitivity analysis of risk measurement procedures. Quant. Finance 10, 593–606 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daníelsson, J., Jorgensen, B., Mandira, S., Samorodnitsky, G., de Vries, C.G.: Subadditivity re-examined: the case for value-at-risk. Discussion paper, Financial Markets Group, London School of Economics and Political Science (2005). Available online at http://eprints.lse.ac.uk/24668/

  14. Deelstra, G., Diallo, I., Vanmaele, M.: Bounds for Asian basket options. J. Comput. Appl. Math. 218, 215–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dhaene, J., Vanduffel, S., Goovaerts, M., Kaas, R., Tang, Q., Vyncke, D.: Risk measures and comonotonicity: a review. Stoch. Models 22, 573–606 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Embrechts, P., Puccetti, G., Rüschendorf, L.: Model uncertainty and VaR aggregation. J. Bank. Finance 37, 2750–2764 (2013)

    Article  Google Scholar 

  17. Embrechts, P., Puccetti, R., Rüschendorf, L., Wang, R., Beleraj, A.: An academic response to Basel 3.5. Risks 2(1), 25–48 (2014)

    Article  Google Scholar 

  18. Embrechts, P., Wang, B., Wang, R.: Aggregation-robustness and model uncertainty of regulatory risk measures. Finance Stoch. 19, 763–790 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Emmer, S., Kratz, M., Tasche, D.: What is the best risk measure in practice? A comparison of standard measures. J. Risk 18(2), 31–60 (2015)

    Article  Google Scholar 

  20. Engle, R.F., Ng, V.K., Rothschild, M.: Asset pricing with a factor-ARCH covariance structure: empirical estimates for treasury bills. J. Econom. 45, 213–237 (1990)

    Article  Google Scholar 

  21. Fama, E.F., French, K.R.: Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 33, 3–56 (1993)

    Article  MATH  Google Scholar 

  22. Föllmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time, 2nd revised and extended edn. de Gruyter, Berlin (2004)

    MATH  Google Scholar 

  23. Gneiting, T.: Making and evaluating point forecasts. J. Am. Stat. Assoc. 106, 746–762 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gordy, M.B.: A comparative anatomy of credit risk models. J. Bank. Finance 24, 119–149 (2000)

    Article  Google Scholar 

  25. Gordy, M.B.: A risk-factor model foundation for ratings-based bank capital rules. J. Financ. Intermed. 12, 199–232 (2003)

    Article  Google Scholar 

  26. Ingersoll, J.E.: Some results in the theory of arbitrage pricing. J. Finance 39, 1021–1039 (1984)

    Article  Google Scholar 

  27. Jorion, P.: Value-at-Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill, New York (2006)

    Google Scholar 

  28. Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the Fatou property. In: Kusuoka, S., Yamazaki, A. (eds.) Advances in Mathematical Economics, vol. 9, pp. 49–71. Springer, Berlin (2006)

    Chapter  Google Scholar 

  29. Kaas, R., Dhaene, J., Goovaerts, M.J.: Upper and lower bounds for sums of random variables. Insur. Math. Econ. 27, 151–168 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krätschmer, V., Schied, A., Zähle, H.: Qualitative and infinitesimal robustness of tail-dependent statistical functionals. J. Multivar. Anal. 103, 35–47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Krätschmer, V., Schied, A., Zähle, H.: Comparative and qualitative robustness for law-invariant risk measures. Finance Stoch. 18, 271–295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lewbel, A.: The rank of demand systems: theory and nonparametric estimation. Econometrica 59, 711–730 (1991)

    Article  Google Scholar 

  33. Meilijson, I., Nadas, A.: Convex majorization with an application to the length of critical paths. J. Appl. Probab. 16, 671–677 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Puccetti, G., Rüschendorf, L.: Computation of sharp bounds on the distribution of a function of dependent risks. J. Comput. Appl. Math. 236, 1833–1840 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Puccetti, G., Rüschendorf, L.: Asymptotic equivalence of conservative VaR- and ES-based capital charges. J. Risk 16(3), 1–19 (2014)

    Article  Google Scholar 

  36. Puccetti, G., Wang, B., Wang, R.: Complete mixability and asymptotic equivalence of worst-possible VaR and ES estimates. Insur. Math. Econ. 53, 821–828 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ross, S.A.: The arbitrage theory of capital asset pricing. J. Econ. Theory 13, 341–360 (1976)

    Article  MathSciNet  Google Scholar 

  38. Rüschendorf, L.: Random variables with maximum sums. Adv. Appl. Probab. 14, 623–632 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rüschendorf, L.: The Wasserstein distance and approximation theorems. Z. Wahrscheinlichkeitstheor. Verw. Geb. 70, 117–129 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Santos, A.A., Nogales, F.J., Ruiz, E.: Comparing univariate and multivariate models to forecast portfolio value-at-risk. J. Financ. Econom. 11, 400–441 (2013)

    Article  Google Scholar 

  41. Sharpe, W.F.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 19, 425–442 (1964)

    Google Scholar 

  42. Vanduffel, S., Shang, Z., Henrard, L., Dhaene, J., Valdez, E.A.: Analytic bounds and approximations for annuities and Asian options. Insur. Math. Econ. 42, 1109–1117 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vanmaele, M., Deelstra, G., Liinev, J., Dhaene, J., Goovaerts, M.: Bounds for the price of discrete arithmetic Asian options. J. Comput. Appl. Math. 185, 51–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, B., Wang, R.: The complete mixability and convex minimization problems with monotone marginal densities. J. Multivar. Anal. 102, 1344–1360 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, B., Wang, R.: Extreme negative dependence and risk aggregation. J. Multivar. Anal. 136, 12–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, B., Wang, R.: Joint mixability. Math. Oper. Res. 41, 808–826 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, R.: Asymptotic bounds for the distribution of the sum of dependent random variables. J. Appl. Probab. 51, 780–798 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, R., Peng, L., Yang, J.: Bounds for the sum of dependent risks and worst value-at-risk with monotone marginal densities. Finance Stoch. 17, 395–417 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Vanduffel.

Additional information

Carole Bernard acknowledges support from the Humboldt Foundation and from the Project on Systemic Risk funded by the GRI in financial services and by the Louis Bachelier Institute. Ludger Rüschendorf acknowledges support from DFG grant RU 704/11-1. Steven Vanduffel acknowledges support from the Chair Stewardship of Finance and FWO. Ruodu Wang acknowledges support from NSERC (RGPIN-435844-2013). We thank Edgars Jakobsons from ETH Zurich for his interesting comments on an earlier draft. The authors thank the Editor, an Associate Editor and the two reviewers for their careful reading of the paper and for their many valuable comments and suggestions, which helped to improve the paper.

Appendices

Appendix A: Proof of Proposition 2.1

For any admissible risk vector \({X}\in A(H)\), the conditional distribution of \(X_{i}\) given \(Z=z\) is given by \(F_{i| z}\). Therefore, conditionally under \(Z=z\), the random vector \({X}\) has marginal distributions \(F_{i| z}\), \(1\le i\le n\). As a consequence, we obtain by conditioning

$$ P\bigg[\sum_{i=1}^{n} X_{i}\ge t\bigg] = \int P\bigg[\sum _{i=1}^{n} X_{i}\ge t\bigg| Z=z\bigg] dG(z) \le\int\overline{M} _{z} (t) dG(z), $$

and thus \(\overline{M}{}^{f}(t)\le\int\overline{M_{z}} (t) dG(t)\).

Conversely, let \({X}_{z}=(X_{i,z})\) be random vectors with marginal distributions \(F_{i| z}\) such that for given \(\varepsilon>0\),

$$ P\bigg[\sum_{i=1}^{n} X_{i,z}\ge t\bigg] \ge\overline{M_{z}}(t)-\varepsilon. $$
(A.1)

The risk vector \({X}\) has a representation as a mixture model \({X}= {X}_{Z}\), where \(Z\) is a random variable with distribution \(G\), independent of \((X_{i,z})\). Then by conditioning, we obtain that \(({X},Z)\) is admissible, i.e., \({X}\in A(H)\) and

$$ P\bigg[\sum_{i=1}^{n} X_{i} \ge t\bigg] \ge\int\overline{M_{z}} (t) dG(z)-\varepsilon. $$
(A.2)

As a result, (A.1) and (A.2) establish equality in (2.4). The lower bound is proved in a similar way.  □

Remark A.1

By a measurable selection result as in [39], a worst case distribution for \(\overline{M}{}^{f}\) exists, and thus the \(\varepsilon\)-argument in the proof of Proposition 2.1 could be avoided in the case of the upper bound. However, the lower bounds \(\underline{M}^{f}\) and \(\underline{M_{z}} (t)\) are only attainable when we modify the definition of the Value-at-Risk slightly; see [3, 4].

Appendix B: Proof of Proposition 3.2

a) Consider the vector \(X_{Z}^{c}\) having components \(F_{i| Z}^{-1}(U)\), and observe that their conditional distribution functions are \(F_{i| z}\) and their marginal distribution functions are \(F_{i}\). Hence, \(X_{Z}^{c}\in A(H)\) and \(S_{Z}^{c}\in\mathcal{S}(H)\). Furthermore, for any \(X\in A(H)\), we can use the mixture representation \(X_{Z}\) for \(X\) with \(X_{i,z}=F_{i| z}^{-1}(U_{i,z})\) as in Sect. 2. From the convex ordering result in (3.2), it follows that

$$ S_{z}=\sum_{i=1}^{n} X_{i| z}\le_{\mathrm{cx}} \sum_{i=1}^{n} F_{i| z}^{-1}(U). $$

This implies by conditioning that \(S_{Z}\preceq_{\mathrm{cx}} \sum_{i=1}^{n} F_{i| Z}^{-1}(U)=S_{Z}^{c}\).

b) Since \(\varrho\) is consistent with the convex order, the result follows from a).

Appendix C: Proof of Proposition 4.9

For any \(X_{Z}\in A(H)\), it holds that

$$\begin{aligned} \mathrm{VaR}_{\alpha}(S_{Z}) =& \mathrm{VaR}_{\alpha}\,\big(\,\mathrm {VaR}_{U}(S_{Z})\big)\\ \leq& \mathrm{VaR}_{\alpha}\,\bigg(\min \bigg\{ \,\mathrm{TVaR}_{U}(S_{Z}^{c}),\mu_{Z}+v_{Z}\sqrt{\frac {U}{1-U}}\bigg\} \bigg), \end{aligned}$$

where we have used that for all \(z\in D\) and \(u\in(0,1)\), \({\mathrm {VaR}}_{u}(S_{z}) \leq\mathrm{TVaR}_{u}(S_{z}^{c})\) and \({\mathrm {VaR}}_{u}(S_{z}) \leq\mu_{z}+v_{z}\sqrt{\frac{u}{1-u}}\) (Cantelli bound). This shows the desired result for \(\overline{\mathrm{VaR}}_{\alpha }^{f}\). The case of \(\underline{\mathrm{VaR}}_{\alpha}^{f}\) is similar.  □

Appendix D: Proof of Proposition 4.10

For any \(X_{Z}\in A(H)\), it holds that \(\mathrm{TVaR}_{\alpha}(S_{Z})\leq\mathrm{TVaR}_{\alpha}(S^{c}_{Z})= \mathrm{TVaR}_{\alpha}(\mathrm{VaR}_{U}(S^{c}_{Z}))\). Furthermore, \(\mathrm{TVaR}_{\alpha}(S_{Z})= \mathrm{TVaR}_{\alpha}(\mathrm {VaR}_{U}(S_{Z}))\) and for all \(z\in D\) and \(u\in(0,1)\), \({\mathrm {VaR}}_{u}(S_{z}) \leq\mu_{z}+v_{z}\sqrt{\frac{u}{1-u}}\) (Cantelli bound). Hence, by combining, we obtain the desired result.  □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, C., Rüschendorf, L., Vanduffel, S. et al. Risk bounds for factor models. Finance Stoch 21, 631–659 (2017). https://doi.org/10.1007/s00780-017-0328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-017-0328-4

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation