Skip to main content
Log in

Drawing polytopal graphs with polymake

  • Published:
Computing and Visualization in Science

Abstract

This note wants to explain how to obtain meaningful pictures of (possibly high-dimensional) convex polytopes, triangulated manifolds, and other objects from the realm of geometric combinatorics such as tight spans of finite metric spaces and tropical polytopes. In all our cases we arrive at specific, geometrically motivated, graph drawing problems. The methods displayed are implemented in the software system polymake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balinski M.L.: On the graph structure of convex polyhedra in n-space. Pac. J. Math. 11, 431–434 (1961) MR MR0126765 (23 #A4059)

    MATH  MathSciNet  Google Scholar 

  2. Bandelt H.-J., Dress A.: Reconstructing the shape of a tree from observed dissimilarity data. Adv. Appl. Math. 7(3), 309–343 (1986) MR MR858908 (87k:05060)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blind R., Mani-Levitska P.: Puzzles and polytope isomorphisms. Aequationes Math. 34(2–3), 287–297 (1987) MR MR921106 (89b:52008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Block F., Yu J.: Tropical convexity via cellular resolutions. J. Algebraic Combin. 24(1), 103–114 (2006) MR MR2245783 (2007f:52041)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cremona, L.: Graphical statics. Oxford University Press (1890) (English trans: T.H. Beare)

  6. Develin M., Sturmfels B.: Tropical convexity. Doc. Math. 9, 1–27 (2004) (electronic), correction: ibid., pp. 205–206. MR MR2054977 (2005i:52010)

    MATH  MathSciNet  Google Scholar 

  7. Eppstein, D.: Ukrainian easter egg. In: The geometry junkyard. computational and recreational geometry, 23 January 1997, http://www.ics.uci.edu/~eppstein/junkyard/ukraine/

  8. Fruchtermann T., Reingold E.: Graph drawing by force-directed placement. Softw. Pract. Experience 21(11), 1129–1164 (1992)

    Article  Google Scholar 

  9. Gawrilow, E., Joswig, M.: polymake, version 2.3 (desert), 1997–2007, with contributions by T. Rörig and N. Witte, free software, http://www.math.tu-berlin.de/polymake

  10. Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes, polytopes–combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, pp. 43–73. Birkhäuser, Basel MR 2001f:52033 (2000)

  11. Gunn, C., Hoffmann, T., Schmies, M., Weißmann, S.: jReality, http://www.jreality.de (2007)

  12. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23(2), 254–267 (2006) www.splitstree.org

    Google Scholar 

  13. Isbell J.R.: Six theorems about injective metric spaces. Comment. Math. Helv. 39, 65–76 (1964) MR MR0182949 (32 #431)

    Article  MATH  MathSciNet  Google Scholar 

  14. Joswig, M.: Goldfarb’s cube (2000), http://www.eg-models.de, eg-model nr. 2000.09.030

  15. Joswig, M.: Tropical halfspaces. Combinatorial and computational geometry. Math. Sci. Res. Inst. Publ. vol. 52, pp. 409–431. Cambridge University Press, Cambridge MR MR2178330 (2006g:52012) (2005)

  16. Jünger, M., Mutzel, P. (eds.): Graph drawing software, mathematics and visualization. Springer, Berlin (2004) MR MR2159308

  17. Kaibel V., Schwartz A.: On the complexity of polytope isomorphism problems. Graphs Combin. 19(2), 215–230 (2003) MR MR1996205 (2004e:05125)

    MATH  MathSciNet  Google Scholar 

  18. Klee, V., Minty, G.J.: How good is the simplex algorithm? Inequalities, III. In: Proceedings of the 3rd Symposium, University of California, Los Angeles, California, 1969; dedicated to the memory of Theodore S. Motzkin). Academic Press, New York (1972) pp. 159–175. MR MR0332165 (48 #10492)

  19. Maxwell, J.C.: On reciprocal figures and diagrams of forces. Philosophical Magazine, 250–261, Ser. 4, 27 (1864)

  20. Polthier, K., Hildebrandt, K., Preuss, E., Reitebuch, U.: JavaView, version 3.95, http://www.javaview.de (2007)

  21. Richter-Gebert J.: Realization spaces of polytopes, vol 1643. Springer, Berlin (1996)

    Google Scholar 

  22. Rörig, T., Witte, N., Ziegler, G.M.: Zonotopes with large 2d cuts, (2007) arXiv:0710.3116v2

  23. Schlegel V.: Theorie der zusammengesetzten Raumgebilde, vol. 44, Nova Acta, no. 4. Leopoldina, Halle (1883)

    Google Scholar 

  24. Steinitz, E.: Polyeder und Raumteilungen, Encyklopädie der mathematischen Wissenschaften. Dritter Band: Geometrie, III.1.2., Heft 9, Kapitel 3 A B 12, pp. 1–139 (1922)

  25. Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie, Springer-Verlag, Berlin (1976) Reprint der 1934 Auflage, Grundlehren der Mathematischen Wissenschaften, No. 41. MR MR0430958 (55 #3962)

  26. Sturmfels, B., Yu, J.: Classification of six-point metrics. Electron. J. Combin. 11(1), Research Paper 44, 16 (electronic) MR MR2097310 (2005m:51016) (2004)

  27. Tollis, I.G., Battista, G.D., Eades, P., Tamassia, R.: Graph drawing. In: Algorithms for the visualization of graphs. Prentice Hall , Upper Saddle River MR MR2064104 (2005i:68067) (1999)

  28. Tutte W.T.: How to draw a graph. Proc. Lond. Math. Soc. 13(3), 743–767 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wagner, U. (ed.): Conference on Geometric and Topological Combinatorics, Problem Session. Oberwolfach Reports 4 (1), 265–267 (2006)

  30. Wayne, B.M., Eppstein, D., Guibas, L.J., Hershberger, J.E., Suri, S., Wolter, J.D., The centroid of points with approximate weights. In: Spirakis, P.G. (ed.) Proceedings of the 3rd European Symposium Algorithms (ESA 1995), Lecture Notes in Computer Science, pp. 460–472. Springer, Berlin (1995)

  31. Ziegler G.M.: Lectures on polytopes. Springer, Berlin (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewgenij Gawrilow.

Additional information

Communicated by G. Wittum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawrilow, E., Joswig, M., Rörig, T. et al. Drawing polytopal graphs with polymake . Comput. Visual Sci. 13, 99 (2010). https://doi.org/10.1007/s00791-009-0127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00791-009-0127-3

Keywords

Mathematics Subject Classification (2000)