Abstract
This note wants to explain how to obtain meaningful pictures of (possibly high-dimensional) convex polytopes, triangulated manifolds, and other objects from the realm of geometric combinatorics such as tight spans of finite metric spaces and tropical polytopes. In all our cases we arrive at specific, geometrically motivated, graph drawing problems. The methods displayed are implemented in the software system polymake.
Similar content being viewed by others
References
Balinski M.L.: On the graph structure of convex polyhedra in n-space. Pac. J. Math. 11, 431–434 (1961) MR MR0126765 (23 #A4059)
Bandelt H.-J., Dress A.: Reconstructing the shape of a tree from observed dissimilarity data. Adv. Appl. Math. 7(3), 309–343 (1986) MR MR858908 (87k:05060)
Blind R., Mani-Levitska P.: Puzzles and polytope isomorphisms. Aequationes Math. 34(2–3), 287–297 (1987) MR MR921106 (89b:52008)
Block F., Yu J.: Tropical convexity via cellular resolutions. J. Algebraic Combin. 24(1), 103–114 (2006) MR MR2245783 (2007f:52041)
Cremona, L.: Graphical statics. Oxford University Press (1890) (English trans: T.H. Beare)
Develin M., Sturmfels B.: Tropical convexity. Doc. Math. 9, 1–27 (2004) (electronic), correction: ibid., pp. 205–206. MR MR2054977 (2005i:52010)
Eppstein, D.: Ukrainian easter egg. In: The geometry junkyard. computational and recreational geometry, 23 January 1997, http://www.ics.uci.edu/~eppstein/junkyard/ukraine/
Fruchtermann T., Reingold E.: Graph drawing by force-directed placement. Softw. Pract. Experience 21(11), 1129–1164 (1992)
Gawrilow, E., Joswig, M.: polymake, version 2.3 (desert), 1997–2007, with contributions by T. Rörig and N. Witte, free software, http://www.math.tu-berlin.de/polymake
Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes, polytopes–combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, pp. 43–73. Birkhäuser, Basel MR 2001f:52033 (2000)
Gunn, C., Hoffmann, T., Schmies, M., Weißmann, S.: jReality, http://www.jreality.de (2007)
Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23(2), 254–267 (2006) www.splitstree.org
Isbell J.R.: Six theorems about injective metric spaces. Comment. Math. Helv. 39, 65–76 (1964) MR MR0182949 (32 #431)
Joswig, M.: Goldfarb’s cube (2000), http://www.eg-models.de, eg-model nr. 2000.09.030
Joswig, M.: Tropical halfspaces. Combinatorial and computational geometry. Math. Sci. Res. Inst. Publ. vol. 52, pp. 409–431. Cambridge University Press, Cambridge MR MR2178330 (2006g:52012) (2005)
Jünger, M., Mutzel, P. (eds.): Graph drawing software, mathematics and visualization. Springer, Berlin (2004) MR MR2159308
Kaibel V., Schwartz A.: On the complexity of polytope isomorphism problems. Graphs Combin. 19(2), 215–230 (2003) MR MR1996205 (2004e:05125)
Klee, V., Minty, G.J.: How good is the simplex algorithm? Inequalities, III. In: Proceedings of the 3rd Symposium, University of California, Los Angeles, California, 1969; dedicated to the memory of Theodore S. Motzkin). Academic Press, New York (1972) pp. 159–175. MR MR0332165 (48 #10492)
Maxwell, J.C.: On reciprocal figures and diagrams of forces. Philosophical Magazine, 250–261, Ser. 4, 27 (1864)
Polthier, K., Hildebrandt, K., Preuss, E., Reitebuch, U.: JavaView, version 3.95, http://www.javaview.de (2007)
Richter-Gebert J.: Realization spaces of polytopes, vol 1643. Springer, Berlin (1996)
Rörig, T., Witte, N., Ziegler, G.M.: Zonotopes with large 2d cuts, (2007) arXiv:0710.3116v2
Schlegel V.: Theorie der zusammengesetzten Raumgebilde, vol. 44, Nova Acta, no. 4. Leopoldina, Halle (1883)
Steinitz, E.: Polyeder und Raumteilungen, Encyklopädie der mathematischen Wissenschaften. Dritter Band: Geometrie, III.1.2., Heft 9, Kapitel 3 A B 12, pp. 1–139 (1922)
Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie, Springer-Verlag, Berlin (1976) Reprint der 1934 Auflage, Grundlehren der Mathematischen Wissenschaften, No. 41. MR MR0430958 (55 #3962)
Sturmfels, B., Yu, J.: Classification of six-point metrics. Electron. J. Combin. 11(1), Research Paper 44, 16 (electronic) MR MR2097310 (2005m:51016) (2004)
Tollis, I.G., Battista, G.D., Eades, P., Tamassia, R.: Graph drawing. In: Algorithms for the visualization of graphs. Prentice Hall , Upper Saddle River MR MR2064104 (2005i:68067) (1999)
Tutte W.T.: How to draw a graph. Proc. Lond. Math. Soc. 13(3), 743–767 (1963)
Wagner, U. (ed.): Conference on Geometric and Topological Combinatorics, Problem Session. Oberwolfach Reports 4 (1), 265–267 (2006)
Wayne, B.M., Eppstein, D., Guibas, L.J., Hershberger, J.E., Suri, S., Wolter, J.D., The centroid of points with approximate weights. In: Spirakis, P.G. (ed.) Proceedings of the 3rd European Symposium Algorithms (ESA 1995), Lecture Notes in Computer Science, pp. 460–472. Springer, Berlin (1995)
Ziegler G.M.: Lectures on polytopes. Springer, Berlin (1995)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Wittum.
Rights and permissions
About this article
Cite this article
Gawrilow, E., Joswig, M., Rörig, T. et al. Drawing polytopal graphs with polymake . Comput. Visual Sci. 13, 99 (2010). https://doi.org/10.1007/s00791-009-0127-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00791-009-0127-3
Keywords
- Visualization
- Graphs
- Polytopes
- Schlegel diagrams
- Tight spans of finite metric spaces
- Tropical polytopes
- Simplicial manifolds