Skip to main content
Log in

Inertia based filtering of high resolution images using a GPU cluster

  • Published:
Computing and Visualization in Science

Abstract

The scheme of inertia based anisotropic diffusion is a very powerful noise reducing and structure preserving image processing operator. This paper presents an implementation of this time consuming filter process on a cluster of Nvidia Tesla high performance computing processors, which can be applied to very large amounts of data in only a few minutes. Applying the inertia based diffusion filter to high resolution image stacks of neuron cells provides fully automatic geometric reconstructions of these images on a scale of <1μm. Such a high throughput and automatic image processing tool has great impact on various research areas, in particular the fast growing field of computational neuroscience, where one encounters increasing amount of microscopy data that needs to be processed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AMD: AMD Stream Computing User Guide. http://developer.amd.com/gpu_assets/ATI_Stream_SDK_CAL_Programming_Guide_v2.0.pdf. AMD (2010)

  2. Broser, P.J., Eberhard, S., Heumann, H., Heusel, A., Jungblut, D., Queisser, G., Schulte, R., Vossen, C., Wittum, G.: The Neuron Reconstruction Algorithm. http://www.neura.org

  3. Broser P.J., Schulte R., Roth A., Helmchen F., Waters J., Lang S., Sakmann B., Wittum G.: Nonlinear Anisotropic Diffusion Filtering of Three-Dimensional Image Data from 2-Photon Microscopy. Heidelberg University, Heidelberg, J. Biomed. Opt. 9(6):1253–1264 (2004)

  4. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook for GPUs: Stream Computing on Graphics Hardware. SIGGRAPH, Stanford University (2004)

  5. Ghuloum, A., Sprangle, E., Fang, J., Wu, G., Zhou, X.: Ct: A Flexible Parallel Programming Model for Tera-scale Architectures. Intel (2007)

  6. Frangi, A.F., Niessen, W.J.,Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. Lecture Notes in Computer Sciences, vol. 1496, pp. 130–137. Springer, Berlin (1998)

  7. Hackbusch W.: Iterative Solution of Large Sparse Systems of Equations. Springer, Berlin (1993)

    MATH  Google Scholar 

  8. Jaehne B.: Digital Image Processing. Springer, Berlin (2005)

    Google Scholar 

  9. Jungblut D., Karl S., Mara H., Krömker S., Wittum G.: Surface Morphology Reconstruction of Volume Data for Archaeology In: Proceedings of conference. Scientific Computing and Cultural Heritage. Springer, Berlin (2010)

    Google Scholar 

  10. Jungblut, D.: Trägheitsbasiertes Filtern mikroskopischer Messdaten unter Verwendung moderner Grafikhardware. Diploma thesis, Heidelberg University (2007)

  11. Lenzen, F.: 3D-Rekonstruktion von DNA-Strukturen. Diploma thesis, Bonn University (2001)

  12. Lorensen W.E., Cline H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21, 163–169 (1987)

    Article  Google Scholar 

  13. Munshi, A.: The OpenCL Specification. Khronos OpenCL Working Group (2008)

  14. Nvidia: Nvidia Cuda Programming Guide. Version 2.0 (2008)

  15. Nvidia: Nvidia Cuda Software Development Kit. Version 2.0 (2008)

  16. Nvidia: NVidia Tesla C1060 Computing processor bord. NVidia (2010). www.nvidia.com/docs/IO/43395/BD-04111-001_v06.pdf

  17. Otsu N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  18. Perona P., Malik J.: Scale-Space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  19. Queisser G., Bading H., Wittmann M., Wittum G.: Filtering, reconstruction, and measurement of the geometry of nuclei from hippocampal neurons based on confocal microscopy data. J. Biomed. Opt. 13(1), 014009 (2008)

    Article  Google Scholar 

  20. Santamaria-Pang, A., Bildea, T.S., Tan, S., Kakadiaris, I.A.: Denoising for 3-D photon-limited imaging data using nonseparable filterbanks. IEEE Trans. Image Process. 17(12) (2008)

  21. Schmitt, S., Evers, J.F., Duch, C., Scholz, M., Obermayer, K.: New methods for the computer-assisted 3D reconstruction of neurons from confocal image stacks. Neuro Image 23, 1283–1298 (2004)

    Google Scholar 

  22. Taylor, J.R.: Classical Mechanics. University Science Books (2004)

  23. Weickert J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  24. Xu, Y., Weaver, J.B., Healy, Jr., D.M., Lu, J.: Wavelet transform domain filters: A spatially selective noise filtration technique. IEEE Trans. Image Process. 3, 747–758 (1994)

    Google Scholar 

  25. Yuste R., Denk W.: Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Jungblut.

Additional information

Communicated by Martin Rumpf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungblut, D., Queisser, G. & Wittum, G. Inertia based filtering of high resolution images using a GPU cluster. Comput. Visual Sci. 14, 181–186 (2011). https://doi.org/10.1007/s00791-012-0171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-012-0171-2

Keywords

Navigation