Skip to main content

Advertisement

Log in

Triangular membership function based real-time gesture monitoring system for physical disorder detection

  • S.I.: ICACNI 2016
  • Published:
Computing and Visualization in Science

Abstract

A novel approach to distinguish 25 body gestures enlightening physical disorders in young and elder individuals is explained using the proposed system. Here a well-known human sensing device, Kinect sensor is used which approximates the human body by virtue of 20 body joints and produces a data stream from which skeleton of the human body is traced. Sampling rate of the data stream is 30 frames per second where every frame represents a body gesture. The overall system is bifurcated into two parts. The offline part calculates 19 features from each frame representing a diseased gesture. These features are angle and distance information between 20 body joints. Features correspond to a definite pattern for a specific body gesture. In online part, triangular fuzzy matching based algorithm performs to detect real-time gestures with 90.57% accuracy. For achieving better accuracy, decision tree is enforced to separate sitting and standing body gestures. The proposed approach is observed to outperform several contemporary approaches in terms of accuracy while presenting a simple system which is based on medical knowledge and is capable of distinguishing as large as 25 gestures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mitra, S., Acharya, T.: Gesture recognition: a survey. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 37(3), 311–324 (2007)

    Article  Google Scholar 

  2. Gavrila, D.M.: The visual analysis of human movement: a survey. Comput. Vis. image Underst. 73(1), 82–98 (1999)

    Article  MATH  Google Scholar 

  3. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Comput. Vis. Image Underst. 81(3), 231–268 (2001)

    Article  MATH  Google Scholar 

  4. Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE international symposium on Mixed and augmented reality (ISMAR), pp. 127–136 (2011)

  5. Mahbub, U., Imtiaz, H., Roy, T., Rahman, M.S., Rahman Ahad, M.A.: A template matching approach of one-shot-learning gesturen recognition. Pattern Recognit. Lett. 34, 1780 (2012)

    Article  Google Scholar 

  6. Solaro, J.: The kinect digital out-of-box experience. Computer (Long. Beach. Calif) 44, 97–99 (2011)

    Google Scholar 

  7. Clark, R.A., Pua, Y.-H., Fortin, K., Ritchie, C., Webster, K.E., Denehy, L., Bryant, A.L.: Validity of the Microsoft kinect for assessment of postural control. Gait Posture 36(3), 372–377 (2012)

    Article  Google Scholar 

  8. Zhu, Y., Ji, X.: Expected values of functions of fuzzy variables. J. Intell. Fuzzy Syst. 17(5), 471–478 (2006)

    MATH  Google Scholar 

  9. Pal, N.R.: Handling of inconsistent rules with an extended model of fuzzy reasoning. J. Intell. Fuzzy Syst. 7(1), 55–73 (1999)

    Google Scholar 

  10. Yager, R.R., Filev, D.P.: Generation of fuzzy rules by mountain clustering. J. Intell. Fuzzy Syst. 2(3), 209–219 (1994)

    Article  Google Scholar 

  11. Yager, R.R., Filev, D.P.: Template-based fuzzy systems modeling. J. Intell. Fuzzy Syst. 2(1), 39–54 (1994)

    Article  Google Scholar 

  12. Wang, W., Wang, Z., Klir, G.J.: Genetic algorithms for determining fuzzy measures from data. J. Intell. Fuzzy Syst. 6(2), 171–183 (1998)

    Google Scholar 

  13. Scarpelli, H., Gomide, F.: Fuzzy reasoning and fuzzy Petri nets in manufacturing systems modeling. J. Intell. Fuzzy Syst. 1(3), 225–241 (1993)

    Article  Google Scholar 

  14. Feng, G., Cao, S.G., Rees, N.W., Chak, C.K.: Design of fuzzy control systems based on state feedback. J. Intell. Fuzzy Syst. 3(4), 295–304 (1995)

    Article  Google Scholar 

  15. Lin, Y., Cunningham III, G.A.: Building a fuzzy system from inputoutput data. J. Intell. Fuzzy Syst. 2(3), 243–250 (1994)

    Article  Google Scholar 

  16. Huang, H.-Z., Wu, W.-D., Liu, C.-S.: A coordination method for fuzzy multi-objective optimization of system reliability. J. Intell. Fuzzy Syst. 16(3), 213–220 (2005)

    MATH  Google Scholar 

  17. Mateou, N.H., Andreou, A.S.: A framework for developing intelligent decision support systems using evolutionary fuzzy cognitive maps. J. Intell. Fuzzy Syst. 19(2), 151–170 (2008)

    MATH  Google Scholar 

  18. Karayiannis, N.B.: Fuzzy partition entropies and entropy constrained fuzzy clustering algorithms. J. Intell. Fuzzy Syst. 5(2), 103–111 (1997)

    Article  Google Scholar 

  19. Aliev, R.A., Fazlollahi, B., Vahidov, R.M.: Soft computing based multi-agent marketing decision support system. J. Intell. Fuzzy Syst. 9(1), 19 (2000)

    Google Scholar 

  20. Zhou, Z., Dai, W., Eggert, J., Giger, J.T., Keller, J., Rantz, M., He, Z.: A real-time system for in-home activity monitoring of elders. In: Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC 2009), pp. 6115–6118 (2009)

  21. Wu, Y., Huang, T.S.: Vision-based gesture recognition: a review. Urbana 51, 61801 (1999)

    Google Scholar 

  22. Diraco, G., Leone, A., Siciliano, P.: An active vision system for fall detection and posture recognition in elderly healthcare. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 1536–1541 (2010)

  23. Jaimes, A., Sebe, N.: Multimodal humancomputer interaction: a survey. Comput. Vis. image Underst. 108(1), 116–134 (2007)

    Article  Google Scholar 

  24. Kolsch, M., Turk, M.: Fast 2d hand tracking with flocks of features and multi-cue integration. In: Conference on Computer Vision and Pattern Recognition Workshop (CVPRW04), p. 158 (2004)

  25. Potegal, M., Kosorok, M.R., Davidson, R.J.: Temper tantrums in young children: 2. Tantrum duration and temporal organization. J. Dev. Behav. Pediatr. 24(3), 148–154 (2003)

    Article  Google Scholar 

  26. Xia, J., Siochi, R.A.: A real-time respiratory motion monitoring system using KINECT: proof of concept. Med. Phys. 39, 2682 (2012)

    Article  Google Scholar 

  27. Tamura, S., Kawasaki, S.: Recognition of sign language motion images. Pattern Recognit. 21(4), 343–353 (1988)

    Article  Google Scholar 

  28. Hellerstedt, W.L., Jeffery, R.W.: The association of job strain and health behaviours in men and women. Int. J. Epidemiol. 26(3), 575–583 (1997)

    Article  Google Scholar 

  29. Martin, C.C., Burkert, D.C., Choi, K.R., Wieczorek, N.B., McGregor, P.M., Herrmann, R.A., Beling, P.A.: A real-time ergonomic monitoring system using the Microsoft Kinect. In: 2012 IEEE on Systems and Information Design Symposium (SIEDS), pp. 50–55 (2012)

  30. Yu, X., Wu, L., Liu, Q., Zhou, H.: Children tantrum behaviour analysis based on Kinect sensor. In: 2011 Third Chinese Conference on Intelligent Visual Surveillance (IVS), pp. 49–52 (2011)

  31. Le, T.-L., Nguyen, M.-Q., Nguyen, T.-T.-M.: Human posture recognition using human skeleton provided by Kinect. In: 2013 International Conference on Computing, Management and Telecommunications (ComManTel), pp. 340–345 (2013)

  32. Pal, M., Saha, S., Konar, A.: Probability induced distance based gesture matching for healthcare using Microsoft’s kinect sensor. In: 4th International Conference on Advanced Computing, Networking, and Informatics (ICACNI 2016), pp. 1–6 (2016)

  33. Tong, J., Zhou, J., Liu, L., Pan, Z., Yan, H.: Scanning 3d full human bodies using kinects. IEEE Trans. Vis. Comput. Graph. 18(4), 643–650 (2012)

    Article  Google Scholar 

  34. Leyvand, T., Meekhof, C., Wei, Y.-C., Sun, J., Guo, B.: Kinect identity: technology and experience. Computer (Long. Beach. Calif) 44(4), 94–96 (2011)

    Google Scholar 

  35. Hernandez-Lopez, J.-J., Quintanilla-Olvera, A.-L., Lpez-Ramrez, J.-L., Rangel-Butanda, F.-J., Ibarra-Manzano, M.-A., Almanza-Ojeda, D.-L.: Detecting objects using color and depth segmentation with Kinect sensor. Proc. Technol. 3, 196–204 (2012)

    Article  Google Scholar 

  36. Qi, F., Han, J., Wang, P., Shi, G., Li, F.: Structure guided fusion for depth map inpainting. Pattern Recognit. Lett. 34, 70 (2012)

    Article  Google Scholar 

  37. Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12(2), 14371–454 (2012)

    Article  Google Scholar 

  38. Dutta, T.: Evaluation of the KinectTM sensor for 3-D kinematic measurement in the workplace. Appl. Ergon. 43(4), 645–649 (2012)

    Article  Google Scholar 

  39. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. (Ny) 3(2), 177–200 (1971)

  41. Van Laarhoven, P.J.M., Pedrycz, W.: A fuzzy extension of Saatys priority theory. Fuzzy Sets Syst. 11(1), 199–227 (1983)

    MathSciNet  Google Scholar 

  42. Liou, T.-S., Wang, M.-J.J.: Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 50(3), 247–255 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Bortolan, G., Degani, R.: A review of some methods for ranking fuzzy subsets. Fuzzy Sets Syst. 15(1), 119 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pedrycz, W.: Why triangular membership functions? Fuzzy Sets Syst. 64(1), 21–30 (1994)

    Article  MathSciNet  Google Scholar 

  45. Wang, L.-X.: Fuzzy systems are universal approximators. In: IEEE International Conference on Fuzzy Systems, pp. 1163–1170 (1992)

  46. Wang, L.-X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the doctors of Calcutta Medical College and Hospital, specially Dr. Subhasish Saha, Head and Professor of Orthopedics Department, for his kind and generous support for preparation of the datasets. We are thankful to the organising committee of 4th International Conference on Advanced Computing, Networking, and Informatics (ICACNI 2016) and of Computing and Visualization in Science journal for giving us this opportunity to present the extension of our work in the special issue of this journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Pal.

Additional information

We would like to thank University Grant Commission, India, University of Potential Excellence Programme (Phase II) in Cognitive Science, Jadavpur University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Pal, M. & Konar, A. Triangular membership function based real-time gesture monitoring system for physical disorder detection. Comput. Visual Sci. 22, 1–14 (2019). https://doi.org/10.1007/s00791-017-0281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-017-0281-y

Keywords

Navigation